1
|
Zhu J. Utilization of peanut hull hydrochar /beta cyclodextrin/Fe 3O 4 magnetic composite for lead ion removal from water solution. ENVIRONMENTAL RESEARCH 2024; 259:119525. [PMID: 38964586 DOI: 10.1016/j.envres.2024.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
This study involves synthesizing peanut hull hydrochar (PHH) and a PHH/β-CD/Fe3O4 magnetic composite through hydrothermal and chemical precipitation methods, respectively, to use as effective adsorbents for Pb2+ removal. Vibrating-sample magnetometry (VSM) and Brunauer-Emmett-Teller (BET) analyses revealed that the magnetic saturation value and specific active surface area of PHH/β-CD/Fe3O4 are 31.543 emu/g and 32.123 m2/g, respectively. The impact of key variables on adsorption efficiency was evaluated using the response surface method - central composite design. ANOVA results (F-value: 166.22 and p-value: <0.05) demonstrated that the model effectively assesses the interaction of variables in the adsorption process. Additionally, R2, Adjusted R2, and Predicted R2 values were 0.999, 0.986, and 0.975, respectively, indicating the model's high adequacy in describing response changes. The maximum efficiency for Pb2+ adsorption was found to be 95.35% using PHH and 99.73% with the PHH/β-CD/Fe3O4 magnetic composite. These measurements were taken at a temperature of 25 °C, an adsorbent dose of 1 g/L, a pH of 6, and a Pb2+ concentration of 5 mg/L, with respective contact times of 130 min and 50 min. Thermodynamic analysis revealed negative enthalpy and Gibbs free energy values, indicating that the adsorption process is exothermic and spontaneous. The negative entropy parameter suggests a reduction in random interactions during the process. The Pb2+ adsorption data for both PHH (R2: 0.982) and PHH/β-CD/Fe3O4 (R2: 0.985) were best described by the Pseudo 2nd order kinetic model. Equilibrium data followed the Freundlich model, with R2 values of 0.981 for PHH and 0.990 for PHH/β-CD/Fe3O4, highlighting the importance of heterogeneous surfaces in the removal process. The maximum adsorption capacities for Pb2+ were 26.72 mg/g for PHH and 33.88 mg/g for PHH/β-CD/Fe3O4. Reuse and stability tests confirmed the structural stability and reusability of the adsorbents. Therefore, the PHH/β-CD/Fe3O4 magnetic composite is a promising option for removing Pb2+ from aqueous solutions.
Collapse
Affiliation(s)
- Junren Zhu
- Chongqing Vocational Institute of Engineering, Chongqing, 402660, PR China.
| |
Collapse
|
2
|
Wei T, Ni H, Ren X, Zhou W, Gao H, Hu S. Fabrication of nitrogen-doped carbon dots biomass composite hydrogel for adsorption of Cu (II) in wastewater or soil and DFT simulation for adsorption mechanism. CHEMOSPHERE 2024; 361:142432. [PMID: 38797204 DOI: 10.1016/j.chemosphere.2024.142432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
With the increase of Cu (II) content, its bioaccumulation becomes a potential pollution to the environment. It is necessary to design an economical and efficient material to remove Cu (II) without causing other environmental hazards. A novel material of alginate composite bead (ALG@NCDs) was synthesized by embedding N-doped carbon dots into pure alginate bead for the adsorption of Cu (II) from wastewater and contaminated soil. The initial concentration, the amount of adsorbent, temperature, adsorption time, and pH value were optimized for the adsorption of Cu (II). According to the Langmuir isothermal adsorption model, the maximum adsorption amount of the material to Cu (II) was 152.44 mg/g. The results of selective adsorption showed that ALG@NCDs had higher affinity to Cu (II) than to Pb (II), Co (II), Ni (II), and Zn (II). After five adsorption-desorption experiment, adsorption capacity of the ALG@NCDs was kept 89% of the initial adsorption capacity. Its Cu (II) adsorption mechanism was studied by density functional theory calculations. In addition, the material could effectively adsorb Cu (II) and release the phytonutrient Ca (II) simultaneously when applied to actual wastewater and soil. The fabricated ALG@NCDs would be a promising material for the adsorption of Cu (II) from wastewater or soil.
Collapse
Affiliation(s)
- Tongyu Wei
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Hanwen Ni
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Xueqin Ren
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China.
| | - Shuwen Hu
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
3
|
Chen J, Duan Q, Ji C, Liu J, Wang Z, Song J, Li W, Zhang C. Modified coconut shell biochars (MCSBCs): Fabrication and their adsorptions for Pb(II). Heliyon 2024; 10:e32422. [PMID: 38933981 PMCID: PMC11200355 DOI: 10.1016/j.heliyon.2024.e32422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The modified coconut shell biochars (MCSBCs) were fabricated and their adsorptions for Pb(II) were evaluated, in which waste coconut shell was used as the raw material, both ZnCl2 and KMnO4 were applied as the inorganic modifiers. FT-IR spectra, TGA, SEM and BET techniques were utilized to characterize their properties. It was spotted that the thermal stability of UCSBC could arrive at 500 °C. The BET specific surface areas of both Zn- and Mn-modified MCSBCs (485.137, 476.734 m2/g) were highly decreased as compared with that of UCSBC (3528.78 m2/g). In contrast, the average pore diameters of both Zn- and Mn-modified MCSBCs (3.295, 3.803 nm) were smaller than that of UCSBC (3.814 nm). These findings reveal that the modification of CSBC didn't change its pore size. Their adsorptions for Pb(II) were performed and some controlling factors involving pH, contact time, starting concentration and temperature were explored. Moreover, the experiment data were fitted via linear and non-linear techniques. It was found that the Langmuir maximal adsorption amounts of un-modified coconut shell biochar (UCSBC), Zn-modified and Mn-modified MCSBCs for Pb(II) could reach 31.653, 86.547 and 93.666 mg/g, respectively. Two-parameter kinetic models exposed that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs obeyed both the Lagergren first-order (non-linear R2 = 0.990, 0.954, 0.953, respectively) and Avrami fractional-order (non-linear R2 = 0.989, 0.946, 0.945, respectively) kinetic models. Two-parameter and three-parameter isotherm models verified that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs followed the Langmuir (non-linear R2 = 0.992, 0.997, 0.993, respectively) as well as Sips (non-linear R2 = 0.992, 0.997, 0.992, respectively) isotherm models. The computation of thermodynamic parameters evidenced that the modification of UCSBC via KMnO4 and ZnCl2 can effectively rise its adsorption for Pb(II), exhibiting promising applications in the handling of metal-bearing water.
Collapse
Affiliation(s)
- Jingyi Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Qianqian Duan
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Chunyu Ji
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Ziyao Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Jiahui Song
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Wei Li
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| | - Chaojian Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, 230601, China
| |
Collapse
|
4
|
Wang J, Pi H, Zhao P, Zhou N. Efficient removal of methyl orange and ciprofloxacin by reusable Eu-TiO 2/PVDF membranes with adsorption and photocatalysis methods. RSC Adv 2024; 14:18432-18443. [PMID: 38860257 PMCID: PMC11163413 DOI: 10.1039/d4ra02962c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The presence of methyl orange (MO) and ciprofloxacin (CIP) in wastewater poses a serious threat to the environment and human health. Titanium dioxide nanoparticles (TiO2 NPs) are widely studied as photocatalysts for wastewater treatment. However, TiO2 NPs have the drawbacks of high energy required for activation, fast electron-hole pair recombination and difficulty in recovering from water. To overcome these problems, europium decorated titanium dioxide/poly(vinylidene fluoride) (Eu-TiO2/PVDF) membranes were successful prepared in this work by combining the modified sol-gel method and the immersion phase inversion method. The Eu-TiO2/PVDF membranes obtained with the increase of Eu-TiO2 NPs content during the preparation process were named M1, M2 and M3, respectively. The pure PVDF membrane without the addition of Eu-TiO2 NPs was named M0, which was prepared by the immersion phase inversion method and served as a reference. The prepared Eu-TiO2/PVDF membranes could not only adsorb MO, but also degrade CIP under visible-light irradiation. Moreover, the Eu-TiO2/PVDF membranes exhibited adsorption-photocatalytic activity towards a mixture of MO and CIP under visible-light irradiation. Last but not the least, the Eu-TiO2/PVDF membranes exhibited excellent recyclability and reusability, opening the avenue for a possible use of these membranes in sewage-treatment plants.
Collapse
Affiliation(s)
- Jiao Wang
- Northwest Institute for Non-ferrous Metal Research Xi'an 710016 Shaanxi P. R. China
| | - Hemu Pi
- Northwest Institute for Non-ferrous Metal Research Xi'an 710016 Shaanxi P. R. China
| | - Panchao Zhao
- Northwest Institute for Non-ferrous Metal Research Xi'an 710016 Shaanxi P. R. China
| | - Na Zhou
- Northwest Institute for Non-ferrous Metal Research Xi'an 710016 Shaanxi P. R. China
| |
Collapse
|
5
|
Bilgic A, Aydin Z. A new bodipy/pillar[5]arene functionalized magnetic sporopollenin for the detection of Cu(II) and Hg(II) ions in aqueous solution. J Colloid Interface Sci 2024; 657:102-113. [PMID: 38035413 DOI: 10.1016/j.jcis.2023.11.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
In this study, a new bodipy/pillar[5]arene functionalized magnetic MS-Sp-P[5]-bodipy microcapsule sensor was prepared based on the use of environmentally friendly for the selective and sensitive detection of Cu(II) and Hg(II) ions in aqueous media. SEM results used in the characterization process of the materials synthesized at each stage confirmed the structural and morphological changes in the pore structure, while other characterization results (FT-IR and XRD) elucidated the role of pillar[5]arene compound and bodipy dye in the synthesis of magnetic microcapsule sensors. The colloidal solution of MS-Sp-P[5]-bodipy (water/ethanol)) showed two fluorescence bands centered at 402 and 540 nm. The detection limits of MS-Sp-P[5]-bodipy for Hg(II) and Cu(II) were calculated to be 0.06 µM and 2.27 µM, respectively (at 540 nm). The linear range of the magnetic sensor for Hg(II) and Cu(II) was found to be in the range of 1-150 µM and 10-150 µM, respectively. The experimental results (response time, pH, temperature, sensitivity and selectivity) demonstrated the applicability and potential of the prepared magnetic microcapsule sensor for the detection of Cu(II) and Hg(II) in water and tap water samples containing heavy metal ions.
Collapse
Affiliation(s)
- Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey.
| | - Ziya Aydin
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| |
Collapse
|
6
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Fan J, Kang L, Liu D, Zhang S. Modification of Carbon Dots for Metal‐Ions Detection. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202300062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 01/06/2025]
Abstract
AbstractIt is very appealing to develop cheap, highly sensitive and efficient metal ion fluorescence sensors as traditional instrument methods are inherently costly and time‐consuming. Carbon dots (CDs) are widely used for sensing metal ions, attributing to their merits of good biocompatibility, low toxicity, easy surface modification and excellent photostability. This article reviewed the research progress of CDs as metal ion sensors in recent years, and studied their modification methods and detection performances. Finally, the challenges and opportunities of CDs as metal ion sensors were also analyzed. This article is expected to provide inspiration and help for researchers focusing on CDs as metal ion sensors.
Collapse
Affiliation(s)
- Jiang Fan
- Department of Chemical Engineering, Textile and Clothing Shaanxi Polytechnic Institute No. 12 Wenhui West Road Xianyang 712000 Shaanxi China
| | - Lei Kang
- School of Surveying & Testing Shaanxi Railway Institute West Section of Shengli Street Weinan 714000 Shaanxi China
- School of Chemistry and Chemical Engineering Guangzhou University No. 230 Waihuan West Road, Guangzhou 510006, GuangdongGuangdong China
| | - Di Liu
- Department of Chemical Engineering, Textile and Clothing Shaanxi Polytechnic Institute No. 12 Wenhui West Road Xianyang 712000 Shaanxi China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development Shaanxi University of Science and Technology Weiyang University Park Xi'an 710021, GuangdongShaanxi China
| |
Collapse
|
8
|
Elgarahy AM, Al-Mur BA, Akhdhar A, El-Sadik HA, El-Liethy MA, Elwakeel KZ, Salama AM. Biosorption kinetics of cerium(III) and cobalt(II) from liquid wastes using individual bacterial species isolated from low-level liquid radioactive wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15198-15216. [PMID: 36166126 DOI: 10.1007/s11356-022-23241-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The existence of toxic heavy metals in the aquatic environment has emphasized a considerable exigency to develop several multifunctional biosorbents for their removal. Herein, three individual bacterial species of Cellulosimicrobium cellulans, Bacillus coagulans, and Microbacterium testaceum were successfully isolated from low-level liquid radioactive wastes. Their loading capacities towards cerium and cobalt metal ions were inclusivity inspected under variable operational parameters of pH, primary pollutant concentration, interaction time, temperature, stirring speed, and biosorbent dosage. By analyzing the influence of solution pH, concentration, temperature, biosorbent mass, and agitation speed on the biosorption kinetics, the biosorption process confirms pseudo-second-order kinetic, intraparticle diffusion, and Elovich equation. Remarkably, the isolated Microbacterium testaceum exhibited high loading capacities reaching 68.1 mg g-1, and 49.6 mg g-1 towards Ce(III), and Co(II) ions, respectively, at the initial concentration of 2.8 mM, pH 4.5, and 25 °C. Overall, the isolated bacterial species can potentially be offered up as a promising scavenger for Ce(III) and Co(II) from liquid waste effluents.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| | - Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science , University of Jeddah, Jeddah, Saudi Arabia
| | - Hamdy A El-Sadik
- Water Quality Audit Department, Egyptian Water and Wastewater Regulatory Agency (EWRA), New Cairo City, Egypt
- Hot Laboratories and Waste Management Centre, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, P.O. Box 12262., Giza, Egypt
| | - Khalid Z Elwakeel
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Chemistry, College of Science , University of Jeddah, Jeddah, Saudi Arabia.
| | - Abeer M Salama
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
9
|
Li D, Xu K, Zhang C. Improvement of Photocatalytic Performance by Building Multiple Heterojunction Structures of Anatase-Rutile/BiOI Composite Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3906. [PMID: 36364681 PMCID: PMC9654642 DOI: 10.3390/nano12213906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, multiple heterojunction structures of anatase-rutile/Bismuth oxyiodide (BiOI) composite fibers are designed by the combined method of electrospinning and hydrothermal techniques. The influence of different Ti/Bi atomic ratios ([Ti/Bi]) on the nanostructures and photocatalytic properties are investigated. It is found that the morphology of BiOI covered on the TiO2 fiber surface changed with [Ti/Bi] from nanosheets to submicron spheres structures. Additionally, the crystallization of the composite fibers including the phases of anatase, rutile, and BiOI is identified, theses phases are in close contact with each other, and the interfacial effects are helpful to form the multiple heterojunctions which lead to blue shifts on the chemical state of Ti. The absorption of visible light has been improved by compositing BiOI on TiO2, while the band gap values of the composite fibers are significantly reduced, which can enhance the generation and separation of electrons and holes. For the case of [Ti/Bi] = 1.57, the photodegradation rate of anatase-rutile/BiOI composite fibers is about 12 times that of pure TiO2. For the photocatalytic mechanism, the synergistic s-type heterojunctions increase the content of active oxides which have a positive effect on the degradation rate.
Collapse
Affiliation(s)
- Dayu Li
- Correspondence: (D.L.); (C.Z.)
| | | | | |
Collapse
|
10
|
Musarurwa H, Tavengwa NT. Cellulose composites tethered with smartness and their application during wastewater remediation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|