1
|
Rahimi F, Hajizadeh P, Amoabediny G, Ebrahimi B, Khaledi M, Sameni F, Afkhami H, Bakhti S, Rafiee Taqanaki E, Zafari M. Prognosticating the effect of temperature and pH parameters on size and stability of the nanoliposome system based on thermodynamic modeling. J Liposome Res 2023; 33:392-409. [PMID: 37171257 DOI: 10.1080/08982104.2023.2203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/28/2022] [Indexed: 05/13/2023]
Abstract
The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.
Collapse
Affiliation(s)
- Fardin Rahimi
- Nanobio Technology, Head of Research Laboratory and Nanobiotechnology, Shahed University, Tehran, Iran
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Pari Hajizadeh
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Hamed Afkhami
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Elham Rafiee Taqanaki
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Zafari
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Zancanella P, Oliveira DML, de Oliveira BH, Woiski TD, Pinto CC, Santana MHA, Souto EB, Severino P. Mitotane liposomes for potential treatment of adrenal cortical carcinoma: ex vivo intestinal permeation and in vivo bioavailability. Pharm Dev Technol 2020; 25:949-961. [DOI: 10.1080/10837450.2020.1762645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Patricia Zancanella
- Department of Chemical, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Daniele M. L. Oliveira
- Biotechnology Industrial Program, Laboratory of Nanotechnology and Nanomedicine (LNMed), University of Tiradentes, Aracaju, Sergipe, Brazil
| | | | - Thiago D. Woiski
- Research Institute “Pelé Pequeno Príncipe”, Curitiba, Paraná, Brazil
| | - Cesar C. Pinto
- Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Maria H. A. Santana
- School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Eliana B. Souto
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Patrícia Severino
- Biotechnology Industrial Program, Laboratory of Nanotechnology and Nanomedicine (LNMed), University of Tiradentes, Aracaju, Sergipe, Brazil
- School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
- Tiradentes Institute, Dorchester, MA, USA
| |
Collapse
|
3
|
Alghalayini A, Garcia A, Berry T, Cranfield CG. The Use of Tethered Bilayer Lipid Membranes to Identify the Mechanisms of Antimicrobial Peptide Interactions with Lipid Bilayers. Antibiotics (Basel) 2019; 8:antibiotics8010012. [PMID: 30704119 PMCID: PMC6466558 DOI: 10.3390/antibiotics8010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
This review identifies the ways in which tethered bilayer lipid membranes (tBLMs) can be used for the identification of the actions of antimicrobials against lipid bilayers. Much of the new research in this area has originated, or included researchers from, the southern hemisphere, Australia and New Zealand in particular. More and more, tBLMs are replacing liposome release assays, black lipid membranes and patch-clamp electrophysiological techniques because they use fewer reagents, are able to obtain results far more quickly and can provide a uniformity of responses with fewer artefacts. In this work, we describe how tBLM technology can and has been used to identify the actions of numerous antimicrobial agents.
Collapse
Affiliation(s)
- Amani Alghalayini
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Alvaro Garcia
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Thomas Berry
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Charles G Cranfield
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
4
|
Albumin-Encapsulated Liposomes: A Novel Drug Delivery Carrier With Hydrophobic Drugs Encapsulated in the Inner Aqueous Core. J Pharm Sci 2018; 107:436-445. [DOI: 10.1016/j.xphs.2017.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
|
5
|
Abstract
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.
Collapse
|
6
|
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9:79-89. [PMID: 28510082 PMCID: PMC5425815 DOI: 10.1007/s12551-016-0246-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/26/2016] [Indexed: 02/03/2023] Open
Abstract
The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.
Collapse
Affiliation(s)
- Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil.
| | - Marcos A E Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Higa LH, Arnal L, Vermeulen M, Perez AP, Schilrreff P, Mundiña-Weilenmann C, Yantorno O, Vela ME, Morilla MJ, Romero EL. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania braziliensis Antigens. PLoS One 2016; 11:e0150185. [PMID: 26934726 PMCID: PMC4774928 DOI: 10.1371/journal.pone.0150185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1β, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with a deficient healthcare system.
Collapse
Affiliation(s)
- Leticia H. Higa
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Laura Arnal
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Mónica Vermeulen
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junin 956, 4° piso, 1113, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Priscila Schilrreff
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | | | - Osvaldo Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), UNLP. 50 No. 227, 1900 La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - María José Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
- * E-mail:
| |
Collapse
|
8
|
Simão AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev 2015; 7:391-397. [PMID: 28510100 DOI: 10.1007/s12551-015-0180-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, the study of liposomes has become a very interesting area of research. The versatility and amazing biocompatibility of liposomes has resulted in their wide-spread use in many scientific fields, and many of their applications, especially in medicine, have yielded breakthroughs in recent decades. Specifically, their easy preparation and various structural aspects have given rise to broadly usable methodologies to internalize different compounds, with either lipophilic or hydrophilic properties. The study of compounds with potential biotechnological application(s) is generally related to evaluation and risk assessment of the possible cytotoxic or therapeutic effects of the compound under study. In most cases, undesirable side-effects are associated with an interaction of the liposome with the cell membrane and/or its absorption and subsequent interaction with a cellular biomolecule. Liposomal carrier systems have an unprecedented potential for delivering bioactive substances to specific molecular targets due to their biocompatibility, biodegradability and low toxicity. Liposomes are therefore considered to be an invaluable asset in applied biotechnology studies due to their potential for interaction with both hydrophilic and lipophilic compounds.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Thuanny Alexandra Campos Cury
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Centro de Nanotecnologia Aplicada a Saúde-Nanosus, Presidência da Fiocruz, Rua Prof. Algacyr Munhoz Mader, 3775, 81350-010, Curitiba, PR, Brazil.,Brasil e Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Rosangela Itri
- Depto. Física Aplicada, Instituto de Física, IF-USP, São Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Colhone MC, Silva-Jardim I, Stabeli RG, Ciancaglini P. Nanobiotechnologic approach to a promising vaccine prototype for immunisation against leishmaniasis: a fast and effective method to incorporate GPI-anchored proteins of Leishmania amazonensis into liposomes. J Microencapsul 2014; 32:143-50. [PMID: 25265060 DOI: 10.3109/02652048.2014.958203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Liposomes are known to be a potent adjuvant for a wide range of antigens, as well as appropriate antigen carriers for antibody generation response in vivo. In addition, liposomes are effective vehicles for peptides and proteins, thus enhancing their immunogenicity. Considering these properties of liposomes and the antigenicity of the Leishmania membrane proteins, we evaluated if liposomes carrying glycosylphosphatidylinositol (GPI)-anchored proteins of Leishmania amazonensis promastigotes could induce protective immunity in BALB/c mice. To assay protective immunity, BALB/c mice were intraperitoneally injected with liposomes, GPI-protein extract (EPSGPI) as well as with the proteoliposomes carrying GPI-proteins. Mice inoculated with EPSGPI and total protein present in constitutive proteoliposomes displayed a post-infection protection of about 70% and 90%, respectively. The liposomes are able to work as adjuvant in the EPSGPI protection. These systems seem to be a promising vaccine prototype for immunisation against leishmaniasis.
Collapse
Affiliation(s)
- Marcelle Carolina Colhone
- Departamento Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo , Ribeirão Preto, São Paulo , Brazil
| | | | | | | |
Collapse
|
10
|
Yamakami K. Effect of Liposomal Phosphatidylcholine Acyl Chain Length on the Bactericidal Activity of Liposome-Encapsulated Nisin on Cariogenic Streptococcus mutans. ACTA ACUST UNITED AC 2014. [DOI: 10.15406/jdhodt.2014.01.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wang L, Quan C, Liu B, Wang J, Xiong W, Zhao P, Fan S. Functional reconstitution of Staphylococcus aureus truncated AgrC histidine kinase in a model membrane system. PLoS One 2013; 8:e80400. [PMID: 24303011 PMCID: PMC3841183 DOI: 10.1371/journal.pone.0080400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022] Open
Abstract
The integral membrane protein AgrC is a histidine kinase whose sensor domains interact with an autoinducing peptide, resulting in a series of downstream responses. In this study, truncated AgrCTM5-6C and AgrCTM5-6C-GFP with GFP as a reporter gene were produced using a bacterial system. Purified AgrCTM5-6C and AgrCTM5-6C-GFP were reconstituted into liposomes by a detergent-mediated method. To achieve high-yield protein incorporation, we investigated the effect of different detergents on protein reconstitution efficiency. The highest incorporation was found with N,N-dimethyldode-cylamine N-oxide during complete liposome solubilization, which resulted in a yield of 85±5%. The COOH-terminus of the protein AgrCTM5-6C was almost exclusively oriented towards the inside of the vesicles. AgrCTM5-6C in proteoliposomes exhibited approximately a 6-fold increase in constitutive activity compared with AgrCTM5-6C in detergent micelles. The reconstitution of AgrCTM5-6C or AgrCTM5-6C-GFP was characterized using dynamic light scattering, fluorescence microscopy, and transmission electron microscopy. Based on the results, the optimal conditions for protein incorporation were defined. These findings contribute to the study of membrane protein structure and function in vitro using a reconstitution system.
Collapse
Affiliation(s)
- Lina Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, China
- The State Ethnic Affairs Commission-Ministry of Education, Dalian, China
- * E-mail:
| | - Baoquan Liu
- Department of Life Science, Dalian Nationalities University, Dalian, China
- The State Ethnic Affairs Commission-Ministry of Education, Dalian, China
| | - Jianfeng Wang
- Department of Life Science, Dalian Nationalities University, Dalian, China
- The State Ethnic Affairs Commission-Ministry of Education, Dalian, China
| | - Wen Xiong
- Department of Life Science, Dalian Nationalities University, Dalian, China
- The State Ethnic Affairs Commission-Ministry of Education, Dalian, China
| | - Pengchao Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shengdi Fan
- Department of Life Science, Dalian Nationalities University, Dalian, China
- The State Ethnic Affairs Commission-Ministry of Education, Dalian, China
| |
Collapse
|
12
|
Ohlsson G, Tabaei SR, Beech J, Kvassman J, Johanson U, Kjellbom P, Tegenfeldt JO, Höök F. Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes. LAB ON A CHIP 2012; 12:4635-4643. [PMID: 22895529 DOI: 10.1039/c2lc40518k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (<10 ms) the solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications.
Collapse
Affiliation(s)
- Gabriel Ohlsson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bischof AA, Wilke N. Molecular determinants for the line tension of coexisting liquid phases in monolayers. Chem Phys Lipids 2012; 165:737-44. [PMID: 22982729 DOI: 10.1016/j.chemphyslip.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/01/2023]
Abstract
The line tension (λ) in biphasic membranes has been determined in monolayers and bilayers using a variety of techniques. In this work we present a novel approach to the determination of λ in monolayers with liquid/liquid phase coexistence, overcoming several of the drawbacks of current techniques. Using our method, we determined the line tension of liquid/liquid phases in binary mixtures of different lipids and a molecule similar to cholesterol but less oxidizable. We analyzed the effect of the hydrocarbon chain length and the polar head-group of the non-sterol lipid and found the latter to exert much more influence than the former. The presence of PE led to high λ values, PG to low values and PS and PC to intermediate values. The line tension showed a strong correlation with the critical packing parameter of the phospholipid. The spontaneous curvature displayed by the phases constituted by a particular lipid appears to be an important parameter for determining the line tension in mixed films.
Collapse
Affiliation(s)
- Andrea Alejandra Bischof
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | |
Collapse
|
14
|
Ciancaglini P, Simão AMS, Bolean M, Millán JL, Rigos CF, Yoneda JS, Colhone MC, Stabeli RG. Proteoliposomes in nanobiotechnology. Biophys Rev 2012; 4:67-81. [PMID: 28510001 PMCID: PMC5418368 DOI: 10.1007/s12551-011-0065-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/22/2011] [Indexed: 01/08/2023] Open
Abstract
Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.
Collapse
Affiliation(s)
- P Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil.
| | - A M S Simão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J L Millán
- Sanford Children's Health Research Center, Sanford - Burnham Medical Research Institute, La Jolla, CA, USA
| | - C F Rigos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J S Yoneda
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M C Colhone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - R G Stabeli
- Centro de Estudos de Biomoléculas Aplicadas a Medicina, Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), 76800-000, Porto Velho, RO, Brazil
- Fundação Oswaldo Cruz (Fiocruz-Rondonia), Ministério da Saúde, 76812-245, Porto Velho, RO, Brazil
| |
Collapse
|
15
|
Opanasopit P, Paecharoenchai O, Rojanarata T, Ngawhirunpat T, Ruktanonchai U. Type and composition of surfactants mediating gene transfection of polyethylenimine-coated liposomes. Int J Nanomedicine 2011; 6:975-83. [PMID: 21720509 PMCID: PMC3124401 DOI: 10.2147/ijn.s18647] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Indexed: 11/25/2022] Open
Abstract
Background: The objective of this study was to compare the transfection efficiency of anionic liposomes coated with polyethylenimine (PEI) with that of PEI and Lipofectamine 2000™ using the plasmid DNA encoding green fluorescent protein in a human hepatoma (Huh7) cell line. Methods: Factors affecting transfection efficiency, including type of surfactant, ratio of phosphatidylcholine (PC)/surfactant, carrier/DNA weight ratio, and the presence of serum have been investigated. Anionic liposomes, composed of PC and anionic surfactants, ie, sodium oleate (NaO), sodium taurocholate (NaT), or zwitterionic surfactant (3-[{3-cholamidopropyl}-dimethylammonio]-1-propanesulfonate, CHAPS) at molar ratios of 10:1, 10:1.5, and 10:2 were prepared by the sonication method. Subsequently, they were coated with PEI to produce polycationic liposomes (PCL). Results: PCL was able to condense with pDNA depending on the PCL/DNA weight ratio. PCL composed of PC:NaO (10:2) showed higher transfection efficiency than NaT and CHAPS at all weight ratios tested. Higher transfection efficiency and gene expression were observed when the carrier/DNA weight ratio increased. The highest transfection efficiency was found at a weight ratio of 0.5. Conclusion: This PCL showed remarkably high transfection efficiency with low cytotoxicity to Huh7 cells in vitro, in comparison with PEI and Lipofectamine 2000.
Collapse
|
16
|
Perinoto ÂC, Maki RM, Colhone MC, Santos FR, Migliaccio V, Daghastanli KR, Stabeli RG, Ciancaglini P, Paulovich FV, de Oliveira MCF, Zucolotto V. Biosensors for Efficient Diagnosis of Leishmaniasis: Innovations in Bioanalytics for a Neglected Disease. Anal Chem 2010; 82:9763-8. [DOI: 10.1021/ac101920t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ângelo C. Perinoto
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Rafael M. Maki
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Marcelle C. Colhone
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Fabiana R. Santos
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Vanessa Migliaccio
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Katia R. Daghastanli
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Rodrigo G. Stabeli
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Pietro Ciancaglini
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Fernando V. Paulovich
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Maria C. F. de Oliveira
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| | - Valtencir Zucolotto
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, SP, Brazil, Instituto de Ciências Matemáticas e de Computação, USP, CP 668, 13560-970 São Carlos, SP, Brazil, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil, Departamento de Biofísica da Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil, and Universidade Federal de Rondônia (UNIR) and Fundação Oswaldo Cruz - Fiocruz Noroeste, Rondônia, Brazil
| |
Collapse
|
17
|
Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2160-9. [PMID: 20647001 DOI: 10.1016/j.bbamem.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
Abstract
Bacterial conjugative systems code for an essential membrane protein that couples the relaxosome to the DNA transport apparatus, called type IV coupling protein (T4CP). TrwB is the T4CP of the conjugative plasmid R388. In earlier work we found that this protein, purified in the presence of detergents, binds preferentially purine nucleotides trisphosphate. In contrast a soluble truncated mutant TrwBΔN70 binds uniformly all nucleotides tested. In this work, TrwB has been successfully reconstituted into liposomes. The non-membranous portion of the protein is almost exclusively oriented towards the outside of the vesicles. Functional analysis of TrwB proteoliposomes demonstrates that when the protein is inserted into the lipid bilayer the affinity for adenine and guanine nucleotides is enhanced as compared to that of the protein purified in detergent or to the soluble deletion mutant, TrwBΔN70. The protein specificity for adenine nucleotides is also increased. No ATPase activity has been found in TrwB reconstituted in proteoliposomes. This result suggests that the N-terminal transmembrane segment of this T4CP interferes with its ATPase activity and can be taken to imply that the TrwB transmembrane domain plays a regulatory role in its biological activity.
Collapse
|
18
|
Santos LER, Colhone MC, Daghastanli KRP, Stabeli RG, Silva-Jardim I, Ciancaglini P. Lipid microspheres loaded with antigenic membrane proteins of the Leishmania amazonensis as a potential biotechnology application. J Colloid Interface Sci 2009; 340:112-8. [PMID: 19747691 DOI: 10.1016/j.jcis.2009.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 11/26/2022]
Abstract
Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine's formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 nm, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis.
Collapse
Affiliation(s)
- Luiz E R Santos
- Depto. Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Colhone MC, Nobre TM, Zaniquelli MED, Stabeli RG, Ciancaglini P. Incorporation of antigenic GPI-proteins from Leishmania amazonensis to membrane mimetic systems: Influence of DPPC/cholesterol ratio. J Colloid Interface Sci 2009; 333:373-9. [DOI: 10.1016/j.jcis.2009.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
|
20
|
Brgles M, Jurašin D, Sikirić MD, Frkanec R, Tomašić J. Entrapment of Ovalbumin into Liposomes—Factors Affecting Entrapment Efficiency, Liposome Size, and Zeta Potential. J Liposome Res 2008; 18:235-48. [DOI: 10.1080/08982100802312762] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Use of proteoliposome as a vaccine against Trypanosoma cruzi in mice. Chem Phys Lipids 2008; 152:86-94. [PMID: 18262496 DOI: 10.1016/j.chemphyslip.2007.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/20/2007] [Accepted: 12/27/2007] [Indexed: 11/23/2022]
Abstract
We have generated proteoliposomes carrying proteins of Trypanosoma cruzi for use as immunogens in BALB/c mice. T. cruzi trypomastigote and amastigote forms were sonicated and mixed with SDS, with 94% recovery of soluble proteins. To prepare proteoliposomes, we have used a protocol in which dipalmitoylphosphatidylcholine, dipalmitoyl-phosphatidylserine and cholesterol were incubated with the parasite proteins. BALB/c mice immunized with 20microg were able to generate antibodies which, in Western blotting, reacted with the proteins of T. cruzi. We further investigated the ability of peritoneal cells from immunized mice to arrest the intracellular replication of trypomastigotes, in vitro. After 72h of culture, the number of intracellular parasites in immunized macrophages decreased significantly, as compared to controls. Despite the fact that exposure of mice to T. cruzi proteins incorporated into proteoliposomes generate antibodies and activate macrophages, the immunized mice were not protected against T. cruzi intraperitoneal challenge.
Collapse
|
22
|
Zucolotto V, Daghastanli KRP, Hayasaka CO, Riul A, Ciancaglini P, Oliveira ON. Using Capacitance Measurements as the Detection Method in Antigen-Containing Layer-by-Layer Films for Biosensing. Anal Chem 2007; 79:2163-7. [PMID: 17263514 DOI: 10.1021/ac0616153] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The layer-by-layer technique is employed here to immobilize antigen-containing liposomes, so-called proteoliposomes, onto Au-interdigitated substrates, which are capable of molecular recognition of anti-pasteurellosis antibodies. Detection was carried out using a novel strategy entirely based upon capacitance measurements, and to enhance sensitivity, we combine the response of three different sensing units in a similar procedure used for taste sensors. With the three-electrode array immunoglobulin G (IgG) against pasteurellosis is detected at concentrations as low as nanograms per milliliter. Furthermore, because of the molecular recognition capability, a distinction can be made between specific and nonspecific IgG. The concepts behind the biosensors reported here may have a large impact for clinical tests, as the procedures to detect the antibody take only a few minutes and the biosensors are relatively low cost.
Collapse
|
23
|
Santos FR, Ferraz DB, Daghastanli KRP, Ramalho-Pinto FJ, Ciancaglini P. Mimetic membrane system to carry multiple antigenic proteins from Leishmania amazonensis. J Membr Biol 2006; 210:173-81. [PMID: 16909340 DOI: 10.1007/s00232-006-0005-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Liposomes have long been used as models for lipid membranes and for the reconstitution of a single or multiple proteins. Also, liposomes have adjuvant activity in vaccines against several protozoan or bacterial organisms. Thus, the main objective of the present study was to obtain a crude extract of detergent-solubilized proteins of Leishmania amazonensis amastigotes and reconstitute them into liposomes. Neutral and zwiterionic detergents were less efficient than an ionic detergent. In order to obtain efficient solubilization using only sodium dodecyl sulfate (SDS), the effects of detergent and protein concentration and incubation time were studied. The maximum of solubilized proteins was obtained instantaneously using a ratio of 0.5 mg/ml of protein to 0.1% (w/v) detergent at 4 degrees C. Dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylserine (DPPS) and cholesterol in a weight ratio of 5:1:4 were used for protein reconstitution into liposomes using the cosolubilization method, yielding 60% of incorporation. The incorporation of multiple parasite proteins results in a vesicular diameter of proteoliposomes of about 140 nm, presenting a final lipid weight ratio for DPPC, DPPS and cholesterol of 1:1:5, with high stability. The detergent-solubilized proteins of L. amazonensis amastigotes present in the proteoliposome, when analyzed by SDS-polyacrylamide gel electrophoresis, include a wide range of parasite-incorporated proteins. BALB/c mice inoculated with these proteoliposomes were able to produce antibodies against the proteins reconstituted in DPPC:DPPS:cholesterol liposomes and were partially resistant to infection with L. amazonensis promastigotes. These results indicate that this system can be used as a possible vaccine against L. amazonensis.
Collapse
Affiliation(s)
- Fabiana R Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brasil
| | | | | | | | | |
Collapse
|
24
|
Race PR, Lakey JH, Banfield MJ. Insertion of the enteropathogenic Escherichia coli Tir virulence protein into membranes in vitro. J Biol Chem 2006; 281:7842-9. [PMID: 16436373 DOI: 10.1074/jbc.m513532200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insertion of the enteropathogenic Escherichia coli Tir protein into the plasma membrane of intestinal epithelial cells is a crucial event in infection because it provides a receptor for intimate bacterial adherence. This interaction with the bacterial outer membrane protein intimin is also essential in generating a number of signaling activities associated with virulence. Tir can be modified at various sites by phosphorylation and functionally interacts with multiple host proteins. To investigate the mechanism of membrane insertion and to establish a model system in which the multiple interactions/functions of Tir can be uncoupled and independently characterized, we used intrinsic tryptophan fluorescence, surface plasmon resonance, and protease digestion assays to show that Tir can insert directly into phospholipid vesicles in a composition-dependent manner to generate the topology reported in vivo. This is the first time that Tir has been shown to insert into membranes in a simple model system in the absence of chemical modification or other factors. These data are consistent with the protein interacting with lipids through two sites. The major site is localized to the transmembrane/intimin-binding domain region and includes Trp235, which is shown to be an effective reporter of interaction. The minor site is located within the C-terminal domain. Together, these data support a model in which Tir is released into the cytoplasm by the type III translocon and then independently inserts into the plasma membrane from a cytoplasmic location. A thorough understanding of this mechanism will be crucial to understand the subtleties of enteropathogenic E. coli pathogenesis.
Collapse
Affiliation(s)
- Paul R Race
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|