1
|
Song Y, Li Y, Lu Z, Yue L, Xiao T, Yang B, Liu J, Yuan C, Guo T. FGF20 Secreted From Dermal Papilla Cells Regulate the Proliferation and Differentiation of Hair Follicle Stem Cells in Fine-Wool Sheep. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39704013 DOI: 10.1111/jpn.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Wool traits determine the market value of fine-wool sheep, and wool fibre-breaking elongation (fibres can be stretched or elongated before they break) is one of the important wool traits. The interaction between hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs) determines hair follicle development in fine wool sheep, thereby directly influencing wool traits. A genome-wide association study based on pre-sequencing data identified FGF20, which was significantly associated with wool fibre-breaking elongation. The study reveals that the regulatory mechanism of FGF20 secreted from DPCs affects the proliferation and differentiation of HFSCs through a co-culture system, to provide a new perspective for fine-wool sheep breeding. After knocking down FGF20 expression in DPCs, the results showed that the expression of fibroblast growth factor receptor 2 (FGFR2) and fibroblast growth factor receptor 3 (FGFR3) in DPCs and HFSCs was significantly decreased (p < 0.05), the number of EdU-positive cells and cell viability was significantly decreased (p < 0.01), and the apoptosis rate was significantly increased (p < 0.05). Meanwhile, the differentiation markers of SOX9, NOTCH1 and β-Catenin in HFSCs were also significantly reduced (p < 0.05). These findings indicate that FGF20-knockdown in DPCs of fine-wool sheep inhibits the proliferation and differentiation of HFSCs in the co-culture system, providing a theoretical basis for elucidating the regulatory mechanism of hair follicle self-renewal and differentiation of fine-wool sheep and providing a co-culture system for regenerative medicine.
Collapse
Affiliation(s)
- Yali Song
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tong Xiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
2
|
Sousa P, Lopes B, Sousa AC, Coelho A, de Sousa Moreira A, Rêma A, Gonçalves-Maia M, Amorim I, Alvites R, Alves N, Geuna S, Maurício AC. Isolation, Expansion, and Characterization of Rat Hair Follicle Stem Cells and Their Secretome: Insights into Wound Healing Potential. Biomedicines 2024; 12:2854. [PMID: 39767760 PMCID: PMC11672956 DOI: 10.3390/biomedicines12122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Stem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Methods and Results: Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques. Immunohistochemical analysis and real-time PCR confirm the expression of specific surface markers and genes, validating the cells' identity. Growth kinetics, colony formation units (CFU), and tri-differentiation capacity were also assessed. Additionally, the cells' secretome was analyzed, regarding its content in biofactors with wound healing properties. Conclusions: These findings highlight the potential of these cells as a valuable cell source for skin regeneration applications. They contribute to advancing our understanding of stem cell applications in regenerative medicine and hold promise for therapeutic interventions in various clinical contexts, aligning with broader research on the diverse capabilities of hair follicle stem cells.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia de Sousa Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Gonçalves-Maia
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Maia & Muller-Biotech, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
4
|
Nilforoushzadeh M, Rahimi Jameh E, Jaffary F, Abolhasani E, Keshtmand G, Zarkob H, Mohammadi P, Aghdami N. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice. CELL JOURNAL 2017; 19:259-268. [PMID: 28670518 PMCID: PMC5412784 DOI: 10.22074/cellj.2016.3916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/28/2016] [Indexed: 11/16/2022]
Abstract
Objective Dermal papilla and hair epithelial stem cells regulate hair formation and
the growth cycle. Damage to or loss of these cells can cause hair loss. Although
several studies claim to reconstitute hairs using rodent cells in an animal model,
additional research is needed to develop a stable human hair follicle reconstitution
protocol. In this study, we have evaluated hair induction by injecting adult cultured
human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in
a mouse model.
Materials and Methods In this experimental study, discarded human scalp skins were
used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured
and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into
three groups that received injections in their dorsal skin. The first group received cultured
dermal papilla cells, the second group received a mixture of cultured epithelial and dermal
papilla cells, and the third group (control) received a placebo [phosphate-buffered saline
(PBS-)].
Results Histopathologic examination of the injection sites showed evidence of hair
growth in samples that received cells compared with the control group. However, the
group that received epithelial and dermal papilla cells had visible evidence of hair growth.
PKH tracing confirmed the presence of transplanted cells in the new hair.
Conclusion Our data showed that injection of a combination of adult human cultured
dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells
could induce new hair in nude mice.
Collapse
Affiliation(s)
| | - Elham Rahimi Jameh
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran.,Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariba Jaffary
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran.,Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Abolhasani
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Gelavizh Keshtmand
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Hajar Zarkob
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Mohammadi
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
5
|
New Insight Into the Immunostaining Method Suitable for the Pilosebaceous Complex Unit. Am J Dermatopathol 2015; 38:79-81. [PMID: 26067285 DOI: 10.1097/dad.0000000000000300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lee J, Lee KI, Chung HM. Investigation of Transcriptional Gene Profiling in Normal Murine Hair Follicular Substructures Using Next-Generation Sequencing to Provide Potential Insights Into Skin Disease. Cell Transplant 2015; 25:377-99. [PMID: 25995029 DOI: 10.3727/096368915x688227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Skin diseases, including hair-related diseases and neoplasia, are a major public health problem. While their prevalence is increasing, their treatment options are limited. Researchers have tried to investigate the genes and signal pathways underlying hair follicles (HFs) to develop genetically targeted therapies through microarrays, which represent an appropriate modality for the analysis of small genomes. To enable the comprehensive transcriptome analysis of large and/or complex transcriptomes, we performed RNA-seq using next-generation sequencing (NGS). We isolated interfollicular keratinocytes (IFKs), HFs, and dermal fibroblasts including dermal papilla cells (DFs-DPCs) from normal C57BL/6 murine skin, transplanted combinations of these samples into nude mice, and followed the mice over time. Sustained hair growth was supported by HFs and DFs-DPCs. We then investigated the pathways and the relevant gene ontology associated with any identified differentially expressed genes (DEGs). In addition, in the culture and flow cytometry (FCM), the HFs had a more quiescent cell cycle pattern than did the IFKs and DFs-DPCs. Therefore, the representative cell cycle-related gene expression of IFKs, HFs, and DFs-DPCs was analyzed by NGS. Our study will allow researchers to further investigate the potential interactions and signaling pathways that are active in HF-related diseases and cancer and may aid in future bioengineering applications.
Collapse
Affiliation(s)
- Jaein Lee
- Department of Laboratory Medicine, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Republic of Korea
| | | | | |
Collapse
|
7
|
Najafzadeh N, Nobakht M, Pourheydar B, Golmohammadi MG. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury. Neural Regen Res 2013; 8:3365-3372. [PMID: 25206658 PMCID: PMC4146002 DOI: 10.3969/j.issn.1673-5374.2013.36.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/09/2013] [Indexed: 12/17/2022] Open
Abstract
Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.
Collapse
Affiliation(s)
- Nowruz Najafzadeh
- Department of Anatomy and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maliheh Nobakht
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ; Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran ; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Pourheydar
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran ; Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
8
|
Kumar A, Mohanty S, Sahni K, Kumar R, Gupta S. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo. J Cutan Aesthet Surg 2013; 6:121-5. [PMID: 24023440 PMCID: PMC3764761 DOI: 10.4103/0974-2077.112679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS) transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells), seems to be a good addition to the prevailing cell-based therapies for vitiligo; however, need to be explored further in larger, and preferably randomized blinded studies. This review discusses the principle, technical details, and stem cell composition of hair follicular outer root sheath cell suspension.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
9
|
Regulatory effect of β-catenin on proliferation of hair follicle stem cells involves PI3K/Akt pathway. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0019-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
10
|
Zhang Y, Yu J, Shi C, Huang Y, Wang Y, Yang T, Yang J. Lef1 contributes to the differentiation of bulge stem cells by nuclear translocation and cross-talk with the Notch signaling pathway. Int J Med Sci 2013; 10:738-46. [PMID: 23630438 PMCID: PMC3638297 DOI: 10.7150/ijms.5693] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/10/2013] [Indexed: 12/16/2022] Open
Abstract
Lymphoid enhancer binding factor-1 (Lef1) is an essential regulatory protein in the Wnt signal pathway, which controls cell growth and differentiation. Investigators in the field of skin biology have confirmed that multipotent bulge stem cells (BSCs) are responsible for hair follicle development and regeneration. However, the role of Lef1 remains poorly understood. In this study, we investigated the pattern of Lef1 expression at different stages of the hair growth cycle. Lef1 was strongly expressed during anagen but attenuated in both catagen- and telogen-phase hair follicles in vivo. When stem cells were induced to differentiate toward a hair fate in a co-culture system, Lef1 was notably up-regulated and accumulated in the nucleus, appearing to activate the target protein c-myc and jagged1. Simultaneously, the Wnt and Notch signaling pathways were co-activated, as confirmed by the increased expression of β-catenin and notch1. Plasmids expressing Lef1 and ΔNLef1, a construct in which the β-catenin-binding domain of Lef1 was deleted, were used to evaluate the effects of Lef1 on stem cell differentiation. Lef1 overexpression promoted bulge stem cell differentiation toward a hair fate, which was accompanied by the subsequent migration of β-catenin into the nucleus, whereas no changes were observed in the control group. Taken together, our results demonstrate that Lef1 plays an important role in bulge stem cell differentiation, promoting β-catenin translocation into the nucleus, activating downstream signaling molecules, eventually causing hair follicle bulge stem cells to adopt the hair fate.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Oh JH, Mohebi P, Farkas DL, Tajbakhsh J. Towards expansion of human hair follicle stem cells in vitro. Cell Prolif 2011; 44:244-53. [PMID: 21535265 DOI: 10.1111/j.1365-2184.2011.00754.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Multipotential human hair follicle stem cells can differentiate into various cell lineages and thus are investigated here as potential autologous sources for regenerative medicine. Towards this end, we have attempted to expand these cells, directly isolated from minimal amounts of hair follicle explants, to numbers more suitable for stem-cell therapy. MATERIALS AND METHODS Two types of human follicle stem cells, commercially available and directly isolated, were cultured using an in-house developed medium. The latter was obtained from bulge areas of hair follicles by mechanical and enzymatic dissociation, and was magnetically enriched for its CD200(+) fraction. Isolated cells were cultured for up to 4 weeks, on different supports: blank polystyrene, laminin- and Matrigel(TM) -coated surfaces. RESULTS Two-fold expansion was found, highlighting the slow-cycling nature of these cells. Flow cytometry characterization revealed: magnetic enrichment increased the proportion of CD200(+) cells from initially 43.3% (CD200+, CD34: 25.8%; CD200+, CD34+: 17.5%) to 78.2% (CD200+, CD34: 41.5%; CD200+, CD34+: 36.7%). Enriched cells seemed to have retained and passed on their morphological and molecular phenotypes to their progeny, as isolated CD200(+) presenting cells expanded in our medium to a population with 80% of cells being CD200(+): 51.5% (CD200(+), CD34(-)) and 29.6% (CD200(+), CD34(+)). CONCLUSIONS This study demonstrates the possibility of culturing human hair follicle stem cells without causing any significant changes to phenotypes of the cells.
Collapse
Affiliation(s)
- J H Oh
- Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
12
|
Tiede S, Kloepper JE, Ernst N, Poeggeler B, Kruse C, Paus R. Nestin in Human Skin: Exclusive Expression in Intramesenchymal Skin Compartments and Regulation by Leptin. J Invest Dermatol 2009; 129:2711-20. [DOI: 10.1038/jid.2009.148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Drewa T, Joachimiak R, Kaznica A, Sarafian V, Sir J. Primary cultures from rat vibrissae as a potential cell source for in vitro construction of urinary bladder wall grafts. Transplant Proc 2009; 41:1932-5. [PMID: 19545759 DOI: 10.1016/j.transproceed.2009.02.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/19/2008] [Accepted: 02/23/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND In vitro-constructed grafts can be used for human bladder augmentation. There are many diseases in which autologous cells cannot be used for this purpose. The aim of the present study was to examine the potential of rat vibrissae hair follicle cells to form cultures, which could serve as a source for in vitro creation of urinary bladder wall grafts. METHODS Two hundred vibrissae were excised from young Wistar male rats. Two different digestions were performed, in dispase and in collagenase. All follicles were additionally incubated in trypsin and ethylenediamine tetraacetic acid. Two different culture media based on DMEM (Dulbecco's Modified Eagle's Medium) were used: the first was supplemented with keratinocyte growth factor (KGF) and the second with epidermal growth factor. Immunocytochemical detection of cytokeratin, CD34, p63, Ki-67 (proliferation index), and HMB45 (Human Melanoma Black 45) was performed. RESULTS Forty-eight primary cultures of rat follicle vibrissae cells were established from 200 hair follicles (24% successful rate). Twenty-four primary cultures were obtained after dispase digestion and 24 after collagenase treatment. Each group was cultured in 2 different media. A heterogeneity of primary cultures was observed. Cells formed a monolayer within a period of 2 to 4 weeks. The 24 primary cultures established after dispase treatment exhibited monolayers of small cuboid cells expressing cytokeratin and CD34. In the 40th passage 20%-40% of cells expressed p63; 85% of these cells from late passages were positive for Ki-67, indicating preserved mitotic potential. Epithelial-like phenotype was observed after dispase digestion and cultivation in KGF-supplemented medium. After 3 weeks, the morphology of these cells changed into fibroblast-like. These cultures were negative for CD34. Fibroblast-like cell growth was observed after collagenase treatment in both KGF- and EGF-supplemented media. These cells were positive for the melanocyte cell marker (HMB45). CONCLUSIONS Culture media and isolation conditions influence hair follicle stem cell differentiation. The stem cell niche within the hair follicles is a reservoir of cells, which can be potentially used for in vitro creation of urinary bladder wall grafts.
Collapse
Affiliation(s)
- T Drewa
- Department of Tissue Engineering, CM UMK, Bydgoszcz, Poland.
| | | | | | | | | |
Collapse
|
14
|
Mercati F, Pascucci L, Ceccarelli P, Dall'Aglio C, Pedini V, Gargiulo AM. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species. Eur J Histochem 2009; 53:e19. [PMID: 19864210 PMCID: PMC3168233 DOI: 10.4081/ejh.2009.e19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 07/22/2009] [Indexed: 12/19/2022] Open
Abstract
The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle. As there are no data available regarding DS stem cells in dog species, we carried out a morphological analysis of the hair follicle DS and performed both an immunohistochemical and an immunocytochemical investigation to identify CD90+ cells. We immunohistochemically evidenced a clear and abundant positivity to CD90 protein in the DS cells located in the lower part of anagen hair follicle. The positive cells showed a typical fibroblast-like morphology. They were flat and elongated and inserted among bundles of collagen fibres. The whole structure formed a close and continuous sleeve around the anagen hair follicle. Our immunocytochemical study allowed us to localize CD90 protein at the cytoplasmic membrane level.
Collapse
Affiliation(s)
- F Mercati
- Dipartimento di Scienze Biopatologiche e Igiene delle Produzioni Animali e Alimentari, Sezione di Anatomia Veterinaria, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Lademann J, Patzelt A, Richter H, Schanzer S, Sterry W, Filbry A, Bohnsack K, Rippke F, Meinke M. Comparison of two in vitro models for the analysis of follicular penetration and its prevention by barrier emulsions. Eur J Pharm Biopharm 2009; 72:600-4. [DOI: 10.1016/j.ejpb.2009.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Toscani M, Rotolo S, Ceccarelli S, Morrone S, Micali G, Scuderi N, Frati L, Angeloni A, Marchese C. Hair regeneration from transected follicles in duplicative surgery: rate of success and cell populations involved. Dermatol Surg 2009; 35:1119-25. [PMID: 19438685 DOI: 10.1111/j.1524-4725.2009.01197.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The use of bisected hair follicles in hair transplantation has been previously reported, but the capacity of each half to regenerate the entire hair has not been clarified. OBJECTIVE To evaluate duplicative surgery rate of success and to analyze the cell populations involved in hair regeneration. METHODS We screened 28 patients undergoing duplicative surgery. Approximately 100 hair follicles from each patient were horizontally bisected and implanted. Upper and lower portions were stained for the known epithelial stem cell markers CD200, p63, beta1-integrin, CD34, and K19. RESULTS Similar percentages of hair regrowth after 12 months were observed when implanting the upper (72.7 +/- 0.4%) and lower (69.2 +/- 1.1%) portions. Expression of CD200, p63, and beta1-integrin was detected in both portions, whereas K19 and CD34 stained different cell populations in the upper and lower fragment, respectively. CONCLUSION Duplicative surgery might represent a successful alternative for hair transplantation, because both portions are capable of regenerating a healthy hair. Moreover, our results suggest the possible presence of stem cells in both halves of the follicle.
Collapse
Affiliation(s)
- Marco Toscani
- Department of Skin-Venereal Disease and Reconstructive and Plastic Surgery, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kloepper JE, Tiede S, Brinckmann J, Reinhardt DP, Meyer W, Faessler R, Paus R. Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 2008; 17:592-609. [PMID: 18558994 DOI: 10.1111/j.1600-0625.2008.00720.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the discovery of epithelial hair follicle stem cells (eHFSCs) in the bulge of human hair follicles (HFs) an important quest has started: to define useful markers. In the current study, we contribute to this by critically evaluating corresponding published immunoreactivity (IR) patterns, and by attempting to identify markers for the in situ identification of human eHFSCs and their niche. For this, human scalp skin cryosections of at least five different individuals were examined, employing standard immunohistology as well as increased sensitivity methods. Defined reference areas were compared by quantitative immunohistochemistry for the relative intensity of their specific IR. According to our experience, the most useful positive markers for human bulge cells turned out to be cytokeratin 15, cytokeratin 19 and CD200, but were not exclusive, while beta1 integrin and Lhx2 IR were not upregulated by human bulge keratinocytes. Absent IR for CD34, connexin43 and nestin on human bulge cells may be exploited as negative markers. alpha6 integrin, fibronectin, nidogen, fibrillin-1 and latent transforming growth factor (TGF)-beta-binding protein-1 were expressed throughout the connective tissue sheath of human HFs. On the other hand, tenascin-C was upregulated in the bulge and may thus constitute a component of the bulge stem cell niche of human HFs. These immunophenotyping results shed further light on the in situ expression patterns of claimed follicular 'stem cell markers' and suggest that not a single marker alone but only the use of a limited corresponding panel of positive and negative markers may offer a reasonable and pragmatic compromise for identifying human bulge stem cells in situ.
Collapse
|