1
|
Nikolaev VV, Lepekhina TB, Alliluev AS, Bidram E, Sokolov PM, Nabiev IR, Kistenev YV. Quantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1553. [PMID: 39404280 PMCID: PMC11478040 DOI: 10.3390/nano14191553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors.
Collapse
Affiliation(s)
- Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Tatiana B. Lepekhina
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Alexander S. Alliluev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
- Tomsk Phthisiopulmonology Medical Center, Rosa Luxemburg St., 634009 Tomsk, Russia
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Pavel M. Sokolov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor R. Nabiev
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Laboratoire BioSpecT (BioSpectroscopie Translationnelle), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| |
Collapse
|
2
|
Lozovoy K. Application of Nanostructures in Biology and Medicine. Int J Mol Sci 2024; 25:9931. [PMID: 39337418 PMCID: PMC11432499 DOI: 10.3390/ijms25189931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
At present, nanomaterials are used in a wide range of applications in all spheres of civil needs, including energy, medicine, and industry [...].
Collapse
Affiliation(s)
- Kirill Lozovoy
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Gil HM, Booth Z, Price TW, Lee J, Naylor-Adamson L, Avery M, Muravitskaya A, Hondow N, Allsup D, Schneider JE, Naseem K, Adawi AM, Bouillard JSG, Chamberlain TW, Calaminus SDJ, Stasiuk GJ. Impact of Surface Ligand on the Biocompatibility of InP/ZnS Quantum Dots with Platelets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304881. [PMID: 37946631 DOI: 10.1002/smll.202304881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Indexed: 11/12/2023]
Abstract
InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents. Analysis of platelet function indicates that platelet-QD interaction can occur at all concentrations and for all QD permutations tested. However, as the QD concentration increases, platelet aggregation is induced by QDs alone independent of natural platelet agonists. This study helps to define a range of concentrations and coatings (thioglycolic acid and penicillamine) that are biocompatible with platelet function. With this information, the platelet-QD interaction can be identified using multiple methods. Fluorescent lifetime imaging microscopy (FLIM) and confocal studies have shown QDs localize on the surface of the platelet toward the center while showing evidence of energy transfer within the QD population. It is believed that these findings are an important stepping point for the development of fluorescent probes for platelet imaging.
Collapse
Affiliation(s)
- Hélio M Gil
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Zoe Booth
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jessica Lee
- Centre for Biomedicine, University of Hull, Hull , HU6 7RX, UK
| | - Leigh Naylor-Adamson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Michelle Avery
- Centre for Biomedicine, University of Hull, Hull , HU6 7RX, UK
| | - Alina Muravitskaya
- Department of Physics and Mathematics, University of Hull, Hull , HU6 7RX, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - David Allsup
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | | | - Khalid Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Ali M Adawi
- Department of Physics and Mathematics, University of Hull, Hull , HU6 7RX, UK
| | | | - Thomas W Chamberlain
- Institute of Process Research and Development School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon D J Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| |
Collapse
|
5
|
Zhang Y, Wei H, Hua B, Hu C, Zhang W. Preparation and application of the thermo-/pH-/ ion-sensitive semi-IPN hydrogel based on chitosan. Int J Biol Macromol 2024; 258:128968. [PMID: 38154725 DOI: 10.1016/j.ijbiomac.2023.128968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Chitosan based hydrogels with multiple stimulus responses have broad application prospects in many fields. Considering the advantages of semi interpenetrating network (IPN) technology and the special temperature and ion responsiveness of polymers containing zwitterionic groups, a semi-IPN hydrogel was prepared through in situ free radical polymerization of N,N-dimethyl acrylamide and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide with polyethylene glycol dimethacrylate as a crosslinker and carboxymethyl chitosan as filler. The gel mass fraction and swelling ratio were measured, and the preparation conditions were optimized. The result indicated that the hydrogel possessed a unique thermo-/pH-/ ion-sensitive behavior. The swelling ratio increased with the increase of temperature and ion concentration, and showed a decreasing trend with the increase in pH. In addition, the hydrogel was stable when the stimuli changed. Adsorption behavior of the hydrogel to Eosin Y (EY) was systematically investigated. The adsorption process can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating that it was a chemical adsorption. The experiments indicated that the hydrogel exhibited good antifouling and reusability features. Therefore, the semi-IPN hydrogel with antifouling properties and thermo-/pH-/ion-sensitivity can be easily manufactured is expected to find applications in water treatment fields.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Bingya Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
6
|
Lozovoy KA, Douhan RMH, Dirko VV, Deeb H, Khomyakova KI, Kukenov OI, Sokolov AS, Akimenko NY, Kokhanenko AP. Silicon-Based Avalanche Photodiodes: Advancements and Applications in Medical Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3078. [PMID: 38063774 PMCID: PMC10707864 DOI: 10.3390/nano13233078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 09/11/2024]
Abstract
Avalanche photodiodes have emerged as a promising technology with significant potential for various medical applications. This article presents an overview of the advancements and applications of avalanche photodiodes in the field of medical imaging. Avalanche photodiodes offer distinct advantages over traditional photodetectors, including a higher responsivity, faster response times, and superior signal-to-noise ratios. These characteristics make avalanche photodiodes particularly suitable for medical-imaging modalities that require a high detection efficiency, excellent timing resolution, and enhanced spatial resolution. This review explores the key features of avalanche photodiodes, discusses their applications in medical-imaging techniques, and highlights the challenges and future prospects in utilizing avalanche photodiodes for medical purposes. Special attention is paid to the recent progress in silicon-compatible avalanche photodiodes.
Collapse
Affiliation(s)
- Kirill A. Lozovoy
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Rahaf M. H. Douhan
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Vladimir V. Dirko
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Hazem Deeb
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Kristina I. Khomyakova
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Olzhas I. Kukenov
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Arseniy S. Sokolov
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| | - Nataliya Yu. Akimenko
- Department of Engineering Systems and Technosphere Safety, Pacific National University, Tihookeanskaya St. 136, 680035 Khabarovsk, Russia;
| | - Andrey P. Kokhanenko
- Department of Quantum Electronics and Photonics, Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; (R.M.H.D.); (V.V.D.); (H.D.); (K.I.K.); (O.I.K.); (A.S.S.); (A.P.K.)
| |
Collapse
|
7
|
Xu Z, Guo Y, Chen L, Yan C, Guo Y, Xu G. Developing boron carbon nitride/boron carbon nitride-citric acid quantum dot metal-free photocatalyst and evaluating the degradation performance difference of photo-induced species for tetracycline via theoretical and experimental study. CHEMOSPHERE 2023; 320:138113. [PMID: 36773679 DOI: 10.1016/j.chemosphere.2023.138113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For opening a way to synthesize novel metal-free catalysts and clarifying the photodegradation performance difference of photoactive species (such as ·O2-, h+), a series of metal-free photocatalysts have been synthesized by using different existing forms of the same materials (boron carbon nitride (BCN) and boron carbon nitride-citric acid quantum dot (BCQD)) as precursors via calcinating their mixture at 350 °C. BCQD has good fluorescence and up-conversion fluorescence performance. BCN/BCQD-350 has the highest removal efficiency (90%, including adsorption 60% and photodegradation 30%) for tetracycline (TC) among all samples under visible light irradiation. TC adsorption by BCN/BCQD-350 conforms to pseudo-second-order kinetic and Langmuir isotherm models. TC photodegradation by BCN/BCQD-350 conforms to type II heterojunction mechanism. Photoactive species capture experiments suggest that·O2- makes a higher contribution for TC photodegradation, followed by h+, ·OH, 1O2 and e-. From LC-MS results, TC photodegradation is initiated by the dehydration step. TC dehydration activated by ·O2- has the lowest barrier (43.4 kcal/mol) than that (50.1 kcal/mol) activated by h+, that (64.8 kcal/mol) without the activation by photoactive species. TC removal rate of BCN/BCQD-350 (0.01563 min-1) is higher than that of g-C3N4, P25 (TiO2), BNPA, BCNPA, etc. Furthermore, BCN/BCQD-350 can also photodegrade TC under infrared light irradiation (λ > 800 nm).
Collapse
Affiliation(s)
- Zixuan Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lu Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Congcong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ying Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guowei Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
8
|
Nam TW, Choi MJ, Jung YS. Ultrahigh-resolution quantum dot patterning for advanced optoelectronic devices. Chem Commun (Camb) 2023; 59:2697-2710. [PMID: 36751869 DOI: 10.1039/d2cc05874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quantum dots have attracted significant scientific interest owing to their optoelectronic properties, which are distinct from their bulk counterparts. In order to fully utilize quantum dots for next generation devices with advanced functionalities, it is important to fabricate quantum dot colloids into dry patterns with desired feature sizes and shapes with respect to target applications. In this review, recent progress in ultrahigh-resolution quantum dot patterning technologies will be discussed, with emphasis on the characteristic advantages as well as the limitations of diverse technologies. This will provide guidelines for selecting suitable tools to handle quantum dot colloids throughout the fabrication of quantum dot based solid-state devices. Additionally, epitaxially fabricated single-particle level quantum dot arrays are discussed. These are extreme in terms of pattern resolution, and expand the potential application of quantum dots to quantum information processing.
Collapse
Affiliation(s)
- Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Min-Jae Choi
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
10
|
Singh A, Ujjwal RR, Naqvi S, Verma RK, Tiwari S, Kesharwani P, Shukla R. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of alzheimer disease. J Drug Target 2022; 30:777-791. [PMID: 35382657 DOI: 10.1080/1061186x.2022.2063297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyloid-beta (Aβ) aggregates deposition at extra neuronal sites induces neurotoxicity and major hallmarks of Alzheimer's disease (AD). To reduce the Aβ fibril toxicity multi-functional polyamidoamine (PAMAM) dendrimer was conjugated with tocopheryl polyethylene glycol succinate-1000 (TPGS) which acts as a carrier matrix for the delivery of neuroprotective molecule piperine (PIP). This PIP-TPGS-PAMAM dendrimer was fabricated to mitigate the Aβ 1-42 fibril toxicity on SHSY5Y cells. TPGS-PAMAM was fabricated through carbodiimide coupling reaction and PIP was encapsulated in dendrimer through solvent injection method to prepare PIP-TPGS-PAMAM. Antioxidant assay of PIP-TPGS-PAMAM showed 90.18% inhibition of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radicals compared to free PIP which was 28.27%. The SHSY5Y cells showed 37.25% for negative control group and 82.55% cell viability for PIP-TPGS-PAMAM treated group against Aβ 1-42 toxicity. PIP-TPGS-PAMAM reduced the ROS activity to 15.21% and 48.5% for free PIP treated in cell group. Similarly, extent of Aβ 1-42 induced apoptosis also reduced significantly from 38.2% to 12.36% in PIP-TPGS-PAMAM treated group. In addition, PIP-TPGS-PAMAM also disaggregated the Aβ 1-42 fibril in SHSY5Y cells. Our findings suggested that PIP-TPGS-PAMAM showed mitigation of Aβ 1-42 induced toxicity in neuronal cells which can offer excellent prospect of neuroprotection and AD therapy.
Collapse
Affiliation(s)
- Ajit Singh
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Rewati R Ujjwal
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Rahul K Verma
- Institute of Nano Science and Technology (INST), Phase X, Sector 64. Mohali, Punjab 160062, India
| | - Sanjay Tiwari
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rahul Shukla
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
11
|
He X, Lam JWY, Kwok RTK, Tang BZ. Real-Time Visualization and Monitoring of Physiological Dynamics by Aggregation-Induced Emission Luminogens (AIEgens). ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:413-435. [PMID: 34314222 DOI: 10.1146/annurev-anchem-090420-101149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Physiological dynamics in living cells and tissues are crucial for maintenance and regulation of their normal activities and functionalities. Tiny fluctuations in physiological microenvironments can leverage significant influences on cell growth, metabolism, differentiation, and apoptosis as well as disease evolution. Fluorescence imaging based on aggregation-induced emission luminogens (AIEgens) exhibits superior advantages in real-time sensing and monitoring of the physiological dynamics in living systems, including its unique properties such as high sensitivity and rapid response, flexible molecular design, and versatile nano- to mesostructural fabrication. The introduction of canonic AIEgens with long-wavelength, near-infrared, or microwave emission, persistent luminescence, and diversified excitation source (e.g., chemo- or bioluminescence) offers researchers a tool to evaluate the resulting molecules with excellent performance in response to subtle fluctuations in bioactivities with broader dimensionalities and deeper hierarchies.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou Development Distinct, Huangpu, Guangzhou 516530, China
| |
Collapse
|
12
|
Hagiwara K, Horikoshi S, Serpone N. Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chemistry 2021; 27:9466-9481. [PMID: 33877732 DOI: 10.1002/chem.202100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/22/2022]
Abstract
A number of synthetic methodologies and applications of carbon quantum dots (CQDs) have been reported since they were first discovered nearly two decades ago. Unlike metal-based or semiconductor-based (e. g., metal chalcogenides) quantum dots (MSQDs), CQDs have the unique feature of being prepared through a variety of synthetic protocols, which are typically understood from considerations of reaction models and photoluminescence mechanisms. Consequently, this brief review article describes quantum dots, in general, and CQDs, in particular, from various viewpoints: (i) their definition, (ii) their photophysical properties, and (iii) the superiority of CQDs over MSQDs. Where possible, comparisons are made between CQDs and MSQDs. First, however, the review begins with a general brief description of quantum dots (QDs) as nanomaterials (sizes≤10 nm), followed by a short description of MSQDs and CQDs. Described subsequently are the various top-down and bottom-up approaches to synthesize CQDs followed by their distinctive photophysical properties (emission spectra; quantum yields, Φs).
Collapse
Affiliation(s)
- Kenta Hagiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8552, Japan
| | - Satoshi Horikoshi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8552, Japan
| | - Nick Serpone
- PhotoGreen Laboratory, Dipartimento di Chimica, Università degli Studi di Pavia, via Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
13
|
Venkatachalam V, Ganapathy S, Subramani T, Perumal I. Aqueous CdTe colloidal quantum dots for bio-imaging of Artemia sp. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Jing H, Pálmai M, Saed B, George A, Snee PT, Hu YS. Cytosolic delivery of membrane-penetrating QDs into T cell lymphocytes: implications in immunotherapy and drug delivery. NANOSCALE 2021; 13:5519-5529. [PMID: 33688882 PMCID: PMC8029070 DOI: 10.1039/d0nr08362c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report single-particle characterization of membrane-penetrating semiconductor quantum dots (QDs) in T cell lymphocytes. We functionalized water-soluble CdSe/CdZnS QDs with a cell-penetrating peptide composed of an Asp-Ser-Ser (DSS) repeat sequence. DSS and peptide-free control QDs displayed concentration-dependent internalization. Intensity profiles from single-particle imaging revealed a propensity of DSS-QDs to maintain a monomeric state in the T cell cytosol, whereas control QDs formed pronounced clusters. Single-particle tracking showed a direct correlation between individual QD clusters' mobility and aggregation state. A significant portion of control QDs colocalized with an endosome marker inside the T cells, while the percentage of DSS-QDs colocalized dropped to 9%. Endocytosis inhibition abrogated the internalization of control QDs, while DSS-QD internalization only mildly decreased, suggesting an alternative cell-entry mechanism. Using 3D single-particle tracking, we captured the rapid membrane-penetrating activity of a DSS-QD. The ability to characterize membrane penetrating activities in live T cells creates inroads for the optimization of gene therapy and drug delivery through the use of novel nanomaterials.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| | - Marcell Pálmai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| | - Anne George
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612-7211, USA
| | - Preston T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| |
Collapse
|
15
|
|
16
|
Han Y, Han Y, Du G, Zhang T, Guo Q, Yang H, Li R, Xu Y. Physiological effect of colloidal carbon quantum dots on Bursaphelenchus xylophilus. RSC Adv 2021; 11:6212-6220. [PMID: 35423135 PMCID: PMC8694832 DOI: 10.1039/d0ra10144c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bursaphelenchus xylophilus (B. xylophilus) is a dangerous plant pest which could result in Pine Wild Disease (PWD).
Collapse
Affiliation(s)
- Yi Han
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Yaqian Han
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Guicai Du
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Tingting Zhang
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Qunqun Guo
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Hong Yang
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Ronggui Li
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| | - Yuanhong Xu
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
17
|
Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv Colloid Interface Sci 2020; 286:102297. [PMID: 33142210 DOI: 10.1016/j.cis.2020.102297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Food industry is always looking for more innovative and accurate ways to monitor the food safety and quality control of final products. Current detection techniques of analytes are costly and time-consuming, and occasionally require professional experts and specialized tools. The usage of nanomaterials in sensory systems has eliminated not only these drawbacks but also has advantages such as higher sensitivity and selectivity. This article first presents a general overview of the current studies conducted on the detection of spoilage and adulteration in foods from 2015 to 2020. Then, the sensory properties of nanomaterials including metal and magnetic nanoparticles, carbon nanostructures (nanotubes, graphene and its derivatives, and nanofibers), nanowires, and electrospun nanofibers are presented. The latest investigations and advancements in the application of nanomaterial-based sensors in detecting spoilage (food spoilage pathogens, toxins, pH changes, and gases) and adulterants (food additives, glucose, melamine, and urea) have also been discussed in the following sections. To conclude, these sensors can be applied in the smart packaging of food products to meet the demand of consumers in the new era.
Collapse
|
18
|
Anık Ü, Timur S, Dursun Z. Recent pros and cons of nanomaterials in drug delivery systems. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1655753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ülkü Anık
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Suna Timur
- Faculty of Science, Biochemistry Department, Ege University, Bornova, Izmir, Turkey
| | - Zekerya Dursun
- Faculty of Science, Chemistry Department, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
19
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
20
|
|
21
|
Mohsenian NB, Shanei A, Alavi SJ, Kheirollahi M, Nia AH, Tavakoli MB. Mn-doped ZnS quantum dots-chlorin e6 shows potential as a treatment for chondrosarcoma: an in vitro study. IET Nanobiotechnol 2019; 13:387-391. [PMID: 31171743 DOI: 10.1049/iet-nbt.2018.5387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chondrosarcoma is the second-most malignant cancer of the bone and routine treatments such as chemotherapy and radiotherapy have not responded to the treatment of this cancer. Due to the resistance of chondrosarcoma to radiotherapy, the combination of therapeutic methods has been considered in recent years. In this study, a novel combination approach is used that allows photodynamic therapy to be activated by X-rays. The synthesis of Mn-doped zinc sulphide (ZnS) quantum dots was carried out and chlorin e6 photosensitiser attached by covalent and non-covalent methods and their application as an intracellular light source for photodynamic activation was investigated. The toxicity of each nanoparticles was evaluated on chondrosarcoma cancer cells (SW1353) before and after radiation. Also, the effect nanoparticle-photosensitiser conjugated type was investigated in the therapeutic efficacy. The characterisation test (SEM, TEM, EDS, TGA, XRD and ICP analyses) was shown successful synthesis of Mn-doped ZnS quantum dots. Chondrosarcoma cancer cell viability was significantly reduced when cells were treated with MPA-capped Mn-doped ZnS quantum dots-chlorin e6 with spermine linker and with covalent attachment (P ≤ 0.001). These results indicate that X-ray can activate the quantum dot complexes for cancer treatment, which can be a novel method for treatment of chondrosarcoma.
Collapse
Affiliation(s)
- Neda Baradaran Mohsenian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Jamal Alavi
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Kheirollahi
- Department of Genetic and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Hashem Nia
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Bagher Tavakoli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Hanrahan MP, Chen Y, Blome-Fernández R, Stein JL, Pach GF, Adamson MAS, Neale NR, Cossairt BM, Vela J, Rossini AJ. Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials. J Am Chem Soc 2019; 141:15532-15546. [PMID: 31456398 DOI: 10.1021/jacs.9b05509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by 1-2 orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (h-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity in comparison to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with h-BN, and then impregnating the powdered mixture with radical solution leads to further 4-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor of 9 improvement in NMR sensitivity in comparison to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si, and Cd3P2 NPs. These experiments allow NMR signals from the surface, subsurface, and core sites to be observed and assigned. For example, we demonstrate the acquisition of DNP-enhanced 2D 113Cd-113Cd correlation NMR experiments on CdS NPs and natural isotropic abundance 2D 13C-29Si HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures.
Collapse
Affiliation(s)
- Michael P Hanrahan
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | - Yunhua Chen
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | | | - Jennifer L Stein
- University of Washington , Department of Chemistry , Seattle , Washington 98195 , United States
| | - Gregory F Pach
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Marquix A S Adamson
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States
| | - Nathan R Neale
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Brandi M Cossairt
- University of Washington , Department of Chemistry , Seattle , Washington 98195 , United States
| | - Javier Vela
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | - Aaron J Rossini
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| |
Collapse
|
23
|
Mansur AAP, Caires AJ, Carvalho SM, Capanema NSV, Carvalho IC, Mansur HS. Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 184:110507. [PMID: 31542643 DOI: 10.1016/j.colsurfb.2019.110507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 01/25/2023]
Abstract
Glioblastoma (GBM) is the utmost aggressive and lethal primary brain cancer, which has a poor prognosis and remains virtually incurable. Nanomedicine with emerging disruptive nanotechnology alternatives, including designed supramolecular nanohybrids has excellent potential as multimodal tools against cancer by combining nanomaterials, biomacromolecules, and drugs. Thus, we developed and constructed for the first time quantum dot-biopolymer-drug nanohybrids based on host-guest chemistry for simultaneous bioimaging, targeting, and anti-cancer drug delivery against GBM cells in vitro. ZnS fluorescent quantum dots (ZnS-QDs) were produced using chemically modified polysaccharide, carboxymethylcellulose (CMC), as water-soluble capping ligand and biofunctional layer via a facile one-step eco-friendly aqueous colloidal process at room temperature and physiological pH. These hybrid inorganic-organic nanocolloids (ZnS@CMC) were electrostatically conjugated with doxorubicin (DOX) anti-cancer drug forming innovative supramolecular complexes (ZnS@CMC-DOX) for amalgamating bioimaging and killing cancer cells. These nanoconjugates were characterized regarding their optical and physicochemical properties combined with morphological and structural features. The cytocompatibility was evaluated by MTT assay using healthy and GBM cells. The results showed that ultra-small ZnS-QDs were expertly produced uniform nanocolloids (average size = 3.6 nm). They demonstrated photoluminescence emission within the visible range of spectra. The cell viability results in vitro showed no cytotoxicity of ZnS@CMC nanohybrids towards both cell types. In summary, the novelty of this research relies on using a nanotheranostic strategy for developing ZnS@CMC-DOX nanohybrids with supramolecular vesicle-like structures. They behaved simultaneously as active fluorescent nanoprobes and nanocarriers with modulated drug release for bioimaging and killing malignant glioma cells proving the high potential for applications in cancer nanomedicine.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Anderson J Caires
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| | - Nadia S V Capanema
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil.
| |
Collapse
|
24
|
Ge XL, Huang B, Zhang ZL, Liu X, He M, Yu Z, Hu B, Cui R, Liang XJ, Pang DW. Glucose-functionalized near-infrared Ag 2Se quantum dots with renal excretion ability for long-term in vivo tumor imaging. J Mater Chem B 2019; 7:5782-5788. [PMID: 31482937 DOI: 10.1039/c9tb01112a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-toxic and long-term fluorescent probes for tumor imaging are in urgent need for non-invasively obtaining information about tumor genesis and metastasis in vivo. Here, we present a biocompatible near-infrared fluorescent probe for in vivo long-term imaging of tumor by modifying glucose (Glc), which experiences high uptake in cancer cells, on the surface of near-infrared Ag2Se quantum dots (NIR Ag2Se QDs). The fluorescence of glucose-functionalized Ag2Se QDs (Glc-Ag2Se QDs) from the targeted tumor can be observed in vivo for at least 7 days. In addition, this probe could be excreted through kidneys and the renal excretion ability is favorable for in vivo imaging applications. Moreover, Glc-Ag2Se QDs could be used for tumor targeted imaging of not only human breast cancer cells (MCF-7), but also SW1990 pancreatic cancer cells since glucose is highly taken up in almost all kinds of tumors. Glc-Ag2Se QDs could be a promising general tool for in vivo long-term observation of tumor evolution.
Collapse
Affiliation(s)
- Xiao-Lei Ge
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Biao Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiaolan Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Zili Yu
- Key Laboratory of Oral Biomedicine (Ministry of Education) and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China.
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
25
|
Pang C, Gong Y. Current Status and Future Prospects of Semiconductor Quantum Dots in Botany. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7561-7568. [PMID: 31246021 DOI: 10.1021/acs.jafc.9b00730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of botanical applications of nanomaterials has produced a new generation of technologies that can profoundly impact botanical research. Semiconductor quantum dots (QDs) are an archetype nanomaterial and have received significant interest from diverse research communities, owing to their unique and optimizable optical properties. In this review, we describe the most recent progress on QD-based botanical research and discuss the uptake, translocation, and effects of QDs on plants and the potential applications of QDs in botany. A critical evaluation of the current limitations of QD technologies is discussed, along with the future prospects in QD-based botanical research.
Collapse
Affiliation(s)
- Chunhua Pang
- School of Life Sciences , Shanxi Normal University , Linfen , Shanxi 041004 , People's Republic of China
- Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen , Shanxi 041004 , People's Republic of China
| | - Yan Gong
- School of Life Sciences , Shanxi Normal University , Linfen , Shanxi 041004 , People's Republic of China
| |
Collapse
|
26
|
Cotton Cellulose-CdTe Quantum Dots Composite Films with Inhibition of Biofilm-Forming S. aureus. FIBERS 2019. [DOI: 10.3390/fib7060057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cellulose-cadmium (Cd)-tellurium (TE) quantum dots (QDs) composite film was successfully synthesized by incorporating CdTe QDs onto a cellulose matrix derived from waste cotton linters. Cellulose-CdTe QDs composite film was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The antibacterial activity of the prepared composite film was investigated using the multidrug-resistance (MTR) Staphylococcus aureus bacteria. In vitro antibacterial assays demonstrated that CdTe QDs composite film can efficiently inhibit biofilm formation. Our results showed that the cellulose-CdTe QDs composite film is a promising candidate for biomedical applications including wound dressing, medical instruments, burn treatments, implants, and other biotechnology fields.
Collapse
|
27
|
He X, Xiong LH, Zhao Z, Wang Z, Luo L, Lam JWY, Kwok RTK, Tang BZ. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019; 9:3223-3248. [PMID: 31244951 PMCID: PMC6567968 DOI: 10.7150/thno.31844] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria, fungi and viruses pose serious threats to the human health under appropriate conditions. There are many rapid and sensitive approaches have been developed for identification and quantification of specific pathogens, but many challenges still exist. Culture/colony counting and polymerase chain reaction are the classical methods used for pathogen detection, but their operations are time-consuming and laborious. On the other hand, the emergence and rapid spread of multidrug-resistant pathogens is another global threat. It is thus of utmost urgency to develop new therapeutic agents or strategies. Luminogens with aggregation-induced emission (AIEgens) and their derived supramolecular systems with unique optical properties have been developed as fluorescent probes for turn-on sensing of pathogens with high sensitivity and specificity. In addition, AIE-based supramolecular nanostructures exhibit excellent photodynamic inactivation (PDI) activity in aggregate, offering great potential for not only light-up diagnosis of pathogen, but also image-guided PDI therapy for pathogenic infection.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
He X, Yin F, Wang D, Xiong LH, Kwok RTK, Gao PF, Zhao Z, Lam JWY, Yong KT, Li Z, Tang BZ. AIE Featured Inorganic-Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring. NANO LETTERS 2019; 19:2272-2279. [PMID: 30829039 DOI: 10.1021/acs.nanolett.8b04677] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) is demonstrated as one of the most powerful technologies for sequence-specific suppression of genes in disease therapeutics. Exploration of novel vehicles for small interfering RNA (siRNA) delivery with high efficiency, low cytotoxicity, and self-monitoring functionality is persistently pursued. Herein, by taking advantage of aggregation-induced emission luminogen (AIEgen), we developed a novel class of Ag@AIE core@shell nanocarriers with regulable and uniform morphology. It presented excellent efficiencies in siRNA delivery, target gene knockdown, and cancer cell inhibition in vitro. What's more, an anticancer efficacy up to 75% was achieved in small animal experiments without obvious toxicity. Attributing to the unique AIE properties, real-time intracellular tracking of siRNA delivery and long-term tumor tissue imaging were successfully realized. Compared to the commercial transfection reagents, significant improvements were obtained in biocompatibility, delivery efficiency, and reproducibility, representing a promising future of this nanocarrier in RNAi-related cancer therapeutics.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Feng Yin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Ling-Hong Xiong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Peng Fei Gao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
29
|
Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm Res 2019; 36:78. [PMID: 30945009 DOI: 10.1007/s11095-019-2608-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.
Collapse
|
30
|
Abstract
Biomolecule-nanoparticle hybrids have proven to be one of most promising frontiers in biomedical research. In recent years, there has been an increased focus on the development of hybrid lipid-nanoparticle complexes (HLNCs) which inherit unique properties of both the inorganic nanoparticles and the lipid assemblies (i.e. liposomes, lipoproteins, solid lipid nanoparticles, and nanoemulsions) that comprise them. In combination of their component parts, HLNCs also gain new functionalities which are utilized for numerous biomedical applications (i.e. stimuli-triggered drug release, photothermal therapy, and bioimaging). The localization of nanoparticles within the lipid assemblies largely dictates the attributes and functionalities of the hybrid complexes and are classified as such: (i) liposomes with surface-bound nanoparticles, (ii) liposomes with bilayer-embedded nanoparticles, (iii) liposomes with core-encapsulated nanoparticles, (iv) lipid assemblies with hydrophobic core-encapsulated nanoparticles, and (v) lipid bilayer-coated nanoparticles. Herein, we review the properties of each hybrid and the rational design of HLNCs for biomedical applications as reported by recent investigations. Future directions in advancing and expanding the scope of HLNCs are also proposed.
Collapse
Affiliation(s)
- Kevin M Vargas
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840-9507, USA
| | - Young-Seok Shon
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840-9507, USA
| |
Collapse
|
31
|
Cellular Uptake Mechanisms and Detection of Nanoparticle Uptake by Advanced Imaging Methods. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Pidenko SA, Burmistrova NA, Shuvalov AA, Chibrova AA, Skibina YS, Goryacheva IY. Microstructured optical fiber-based luminescent biosensing: Is there any light at the end of the tunnel? - A review. Anal Chim Acta 2018; 1019:14-24. [DOI: 10.1016/j.aca.2017.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022]
|
33
|
Wang G, Li Z, Ma N. Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors. ACS Chem Biol 2018; 13:1705-1713. [PMID: 29257662 DOI: 10.1021/acschembio.7b00887] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-functionalized quantum dots (DNA-QDs) have found considerable application in biosensing and bioimaging. Different from the first generation (I-G) DNA-QDs prepared via conventional bioconjugation chemistry, the second generation (II-G) DNA-QDs prepared via one-step DNA-templated QD synthesis features a defined number of DNA valencies (usually monovalency), which is preferable for controlled assembly and biological targeting. In this review, we summarize recent progress in designing QD probes based on II-G DNA-QDs for advanced sensing and imaging applications. It opens up new avenues for highly sensitive and intelligent sensing of a range of disease-relevant biomolecules in vitro and in living cells.
Collapse
Affiliation(s)
- Ganglin Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhi Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Nan Ma
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
34
|
Nowroozi F, Dadashzadeh S, Soleimanjahi H, Haeri A, Shahhosseini S, Javidi J, Karimi H. Theranostic niosomes for direct intratumoral injection: marked enhancement in tumor retention and anticancer efficacy. Nanomedicine (Lond) 2018; 13:2201-2219. [PMID: 29993311 DOI: 10.2217/nnm-2018-0091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM For simultaneous bioimaging and drug delivery via direct intratumoral injection, doxorubicin and Ag2S quantum dots co-loaded multifunctional niosomes were prepared and fully characterized. MATERIALS & METHODS Various theranostic niosomes were prepared and investigated regarding cytotoxicity, in vivo imaging, drug accumulation in breast cancer tumor and antitumor activity. RESULTS Niosomes composed of Tween-60, Tween-80 or Span 60 produced strong and more durable detectable fluorescence signals. Despite a higher accumulation of Tween-60 niosomes in tumor, the Span 60 formulation showed the highest antitumor efficacy when compared with the free drug (71.7 and 20.3% inhibition in tumor growth, respectively). CONCLUSION Direct intratumoral injection of theranostic niosomes with appropriate composition could be a powerful tool for combined multimodal imaging and therapy.
Collapse
Affiliation(s)
- Fatemeh Nowroozi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences Tarbiat Modares University Tehran, 331-14115, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Jaber Javidi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences Tarbiat Modares University Tehran, 331-14115, Iran
| |
Collapse
|
35
|
Umakoshi T, Udaka H, Uchihashi T, Ando T, Suzuki M, Fukuda T. Quantum-dot antibody conjugation visualized at the single-molecule scale with high-speed atomic force microscopy. Colloids Surf B Biointerfaces 2018; 167:267-274. [PMID: 29677598 DOI: 10.1016/j.colsurfb.2018.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
Conjugates of semiconductor quantum dots (QDs) and antibodies have emerged as a promising bioprobes due to their great combination of QD's efficient fluorescence and the high specificity of antigen-antibody reactions. For further developments in this field, it is essential to understand the molecular conformation of the QD-antibody conjugates at the single-molecule scale. Here, we report on the direct imaging of QD-antibody conjugates at the single-molecule scale by using high-speed atomic force microscopy (HS-AFM). Owing to the high spatiotemporal resolution of HS-AFM, we observed the dynamic splitting of individual antibodies during the conjugation process. QD-antibody conjugates were also clearly visualized at the single-molecule scale details. Several important features were even discovered through dynamic observation of the QD-antibody conjugates. We observed an intermediate state of conjugation, where the antibodies attached and detached to QDs repeatedly. We also revealed that the attached antibodies were not steady but drastically fluctuated in their recognition areas due to the Brownian motion. We also demonstrated that HS-AFM observation is useful for the quantitative analysis of fabricated conjugates.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita Osaka 565-0871, Japan
| | - Hikari Udaka
- Department of Functional Materials, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miho Suzuki
- Department of Functional Materials, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takeshi Fukuda
- Department of Functional Materials, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
36
|
Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Zherdeva V, Kazachkina NI, Shcheslavskiy V, Savitsky AP. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29500873 DOI: 10.1117/1.jbo.23.3.035002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.
Collapse
Affiliation(s)
- Victoria Zherdeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| | - Natalia I Kazachkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| | | | - Alexander P Savitsky
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| |
Collapse
|
38
|
Freyria FS, Cordero JM, Caram JR, Doria S, Dodin A, Chen Y, Willard AP, Bawendi MG. Near-Infrared Quantum Dot Emission Enhanced by Stabilized Self-Assembled J-Aggregate Antennas. NANO LETTERS 2017; 17:7665-7674. [PMID: 29148805 DOI: 10.1021/acs.nanolett.7b03735] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Enhancing photoluminescent emission (PL) in the near-infrared-infrared (NIR-IR) spectral region has broad applications from solar energy conversion to biological imaging. We show that self-assembled molecular dye J-aggregates (light-harvesting nanotubes, LHNs) can increase the PL emission of NIR PbS quantum dots (QDs) in both liquid and solid media more than 8-fold, promoted primarily by a long-range antenna effect and efficient Förster resonance energy transfer (FRET) from donor to acceptor. To create this composite material and preserve the optical properties of the nanocrystals, we performed an in situ ligand substitution followed by a functionalization reaction using click-chemistry. This resulted in PbS QDs soluble in an aqueous environment compatible with the molecular J-aggregates (LHNs). Theoretical and experimental results demonstrate that long-range diffusive exciton transport in LHNs enables efficient energy transfer to low concentrations of QDs despite there being no direct binding between molecular donors and QD acceptors. This suggests a broad application space for mixed light harvesting and photophysically active nanocomposite materials based on self-assembling molecular aggregates.
Collapse
Affiliation(s)
- Francesca S Freyria
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - José M Cordero
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Justin R Caram
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Sandra Doria
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Sesto Fiorentino, Florence, 50019 Italy
| | - Amro Dodin
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yue Chen
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. NANO TODAY 2017; 15:91-106. [PMID: 29225665 PMCID: PMC5720147 DOI: 10.1016/j.nantod.2017.06.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the advent of technology, the role of nanomaterials in medicine has grown exponentially in the last few decades. The main advantage of such materials has been exploited in drug delivery applications, due to their effective targeting that in turn reduces systemic toxicity compared to the conventional routes of drug administration. Even though these materials offer broad flexibility based on targeting tissue, disease, and drug payload, the demand for more effective yet highly biocompatible nanomaterial-based drugs is increasing. While therapeutically improved and safe materials have been introduced in nanomedicine platforms, issues related to their degradation rates and bio-distribution still exist, thus making their successful translation for human use very challenging. Researchers are constantly improving upon novel nanomaterials that are safer and more effective not only as therapeutic agents but as diagnostic tools as well, making the research in the field of nanomedicine ever more fascinating. In this review stress has been made on the evolution of nanomaterials that have been approved for clinical applications by the United States Food and Drug Administration Agency (FDA).
Collapse
Affiliation(s)
- Shabir Hassan
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aycabal Ozturk
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saghi Saghazadeh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad Farhan Sohail
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mehmet Dockmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
40
|
CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids Surf B Biointerfaces 2017; 155:497-506. [DOI: 10.1016/j.colsurfb.2017.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
|
41
|
Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng Y. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 2017; 12:3899-3911. [PMID: 28579776 PMCID: PMC5446962 DOI: 10.2147/ijn.s133166] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma. Therefore, these achievements facilitate the use of tumor-targeted fluorescence imaging in the diagnosis, surgical resection, and postoperative examination of glioma.
Collapse
Affiliation(s)
- Jiaze Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University
| | - Xiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging
| | - Tao Zhou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
| | - Ying Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University.,Institute of Life Sciences, Chongqing Medical University
| | - Jiangli Pi
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| | - Li Pi
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University
| | - Si Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Huzhi Zheng
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
42
|
Jin Q, Gubu A, Chen X, Tang X. A Photochemical Avenue to Photoluminescent N-Dots and their Upconversion Cell Imaging. Sci Rep 2017; 7:1793. [PMID: 28496204 PMCID: PMC5431983 DOI: 10.1038/s41598-017-01663-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/15/2023] Open
Abstract
A photochemical avenue to synthesize nitrogen-rich quantum dots (N-dots) using 2-azido imidazole as the starting material was established for the first time. A production yield of up to 92.7% was obtained. The N-dots were then fully characterized by elemental analysis, IR, XPS, XRD, AFM and TEM. On the basis of the N2 production and in situ IR results, the underlying mechanism for the photochemical formation of N-dots was proposed. These N-dots showed promising optical properties including wavelength-dependent upconversion photoluminescence, and were successfully used in upconversion cell imaging.
Collapse
Affiliation(s)
- Qingqing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China
| | - Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China
| | - Xiuxian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, NO. 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
43
|
Jatana S, Palmer BC, Phelan SJ, Gelein R, DeLouise LA. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Part Fibre Toxicol 2017; 14:12. [PMID: 28410606 PMCID: PMC5391571 DOI: 10.1186/s12989-017-0191-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. RESULTS Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. CONCLUSIONS Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
| | - Brian C. Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Sarah J. Phelan
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
- Department of Dermatology, University of Rochester Medical Center, Dermatology and Biomedical Engineering, 601 Elmwood Avenue, Box 697, Rochester, NY 14642 USA
| |
Collapse
|
44
|
Gui W, Chen X, Ma Q. A novel detection method of human serum albumin based on CuInZnS quantum dots-Co 2+ sensing system. Anal Bioanal Chem 2017; 409:3871-3876. [PMID: 28374131 DOI: 10.1007/s00216-017-0332-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023]
Abstract
We developed a novel "turn off-on" sensor for human serum albumin (HSA) detection based on CuInZnS quantum dots (CIZS QDs). The photoluminescence (PL) of QDs can be "turned off" by Co(II) first. Because of the strong binding ability of HSA with Co2+, Co2+ can be removed from CIZS QDs with the addition of HSA. As a result, the PL of CIZS QDs probe can be "turned on" with an increased concentration of HSA over a wide range. The analyte HSA concentration had a proportional linear relationship with the recovered PL intensity of CIZS QDs. The detection limit for HSA was 4.5 × 10-8 mol L-1. The results indicated that the CIZS QDs- Co2+-BSA sensing system possessed higher sensitivity and better practicability for HSA detection.
Collapse
Affiliation(s)
- Wenying Gui
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, Jilin, 130012, China
| | - Xueqian Chen
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, Jilin, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, Jilin, 130012, China.
| |
Collapse
|
45
|
Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm 2017; 521:346-356. [DOI: 10.1016/j.ijpharm.2017.02.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
46
|
Čadková M, Kovářová A, Dvořáková V, Bílková Z, Korecká L. Optimization of anodic stripping voltammetry conditions for efficient detection of quantum dots at micro flow-cell electrodes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1922-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Medically translatable quantum dots for biosensing and imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Uhl B, Hirn S, Immler R, Mildner K, Möckl L, Sperandio M, Bräuchle C, Reichel CA, Zeuschner D, Krombach F. The Endothelial Glycocalyx Controls Interactions of Quantum Dots with the Endothelium and Their Translocation across the Blood-Tissue Border. ACS NANO 2017; 11:1498-1508. [PMID: 28135073 DOI: 10.1021/acsnano.6b06812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advances in the engineering of nanoparticles (NPs), which represent particles of less than 100 nm in one external dimension, led to an increasing utilization of nanomaterials for biomedical purposes. A prerequisite for their use in diagnostic and therapeutic applications, however, is the targeted delivery to the site of injury. Interactions between blood-borne NPs and the vascular endothelium represent a critical step for nanoparticle delivery into diseased tissue. Here, we show that the endothelial glycocalyx, which constitutes a glycoprotein-polysaccharide meshwork coating the luminal surface of vessels, effectively controls interactions of carboxyl-functionalized quantum dots with the microvascular endothelium. Glycosaminoglycans of the endothelial glycocalyx were found to physically cover endothelial adhesion and signaling molecules, thereby preventing endothelial attachment, uptake, and translocation of these nanoparticles through different layers of the vessel wall. Conversely, degradation of the endothelial glycocalyx promoted interactions of these nanoparticles with microvascular endothelial cells under the pathologic condition of ischemia-reperfusion, thus identifying the injured endothelial glycocalyx as an essential element of the blood-tissue border facilitating the targeted delivery of nanomaterials to diseased tissue.
Collapse
Affiliation(s)
- Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Stephanie Hirn
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Karina Mildner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine , 48149 Münster, Germany
| | - Leonhard Möckl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Christoph Bräuchle
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine , 48149 Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| |
Collapse
|
49
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
50
|
Ramasamy P, Kim B, Lee MS, Lee JS. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications. NANOSCALE 2016; 8:17159-17168. [PMID: 27540861 DOI: 10.1039/c6nr04713k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We demonstrate that the presence of a small amount of water as an impurity during the hot-injection synthesis can significantly decrease the emission lines full width at half-maximum (FWHM) and improve the quantum yield (QY) of InP/ZnS quantum dots (QDs). By utilizing the water present in the indium precursor and solvent, we obtained InP/ZnS QDs emitting around 530 nm with a FWHM as narrow as 46 nm and a QY up to 45%. Without water, the synthesized QDs have emission around 625 nm with a FWHM of 66 nm and a QY of about 33%. Absorption spectra, XRD and XPS analyses revealed that when water is present, an amorphous phosphate layer is formed over the InP QDs and inhibits the QD growth. This amorphous layer favors the formation of a very thick ZnS shell by decreasing the lattice mismatch between the InP core and the ZnS shell. We further show the possibility to tune the emission wavelengths of InP/ZnS QDs by simply adjusting the amount of water present in the system while keeping all the other reaction parameters (i.e., precursor concentration, reaction temperature and time) constant. As an example of their application in light-emitting diodes (LEDs), the green and red InP/ZnS QDs are combined with a blue LED chip to produce white light.
Collapse
Affiliation(s)
- Parthiban Ramasamy
- Department of Energy Systems Engineering, DGIST, Daegu 711-873, Republic of Korea.
| | | | | | | |
Collapse
|