1
|
Veerapandian M, Ramasundaram S, Jerome P, Chellasamy G, Govindaraju S, Yun K, Oh TH. Drug Delivery Application of Functional Nanomaterials Synthesized Using Natural Sources. J Funct Biomater 2023; 14:426. [PMID: 37623670 PMCID: PMC10455391 DOI: 10.3390/jfb14080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nanomaterials (NMs) synthesized from natural sources have been attracting greater attention, due to their intrinsic advantages including biocompatibility, stimuli-responsive property, nontoxicity, cost-effectiveness, and non-immunogenic characteristics in the biological environment. Among various biomedical applications, a breakthrough has been achieved in the development of drug delivery systems (DDS). Biocompatibility is necessary for treating a disease safely without any adverse effects. Some components in DDS respond to the physiological environment, such as pH, temperature, and functional group at the target, which facilitates targeted drug release. NM-based DDS is being applied for treating cancer, arthritis, cardiovascular diseases, and dermal and ophthalmic diseases. Metal nanomaterials and carbon quantum dots are synthesized and stabilized using functional molecules extracted from natural sources. Polymers, mucilage and gums, exosomes, and molecules with biological activities are directly derived from natural sources. In DDS, these functional components have been used as drug carriers, imaging agents, targeting moieties, and super disintegrants. Plant extracts, biowaste, biomass, and microorganisms have been used as the natural source for obtaining these NMs. This review highlights the natural sources, synthesis, and application of metallic materials, polymeric materials, carbon dots, mucilage and gums, and exosomes in DDS. Aside from that, challenges and future perspectives on using natural resources for DDS are also discussed.
Collapse
Affiliation(s)
- Mekala Veerapandian
- Department of Bionanotechnology, Gachon University, Soengnam 13120, Republic of Korea; (M.V.); (G.C.); (S.G.)
| | - Subramaniyan Ramasundaram
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea; (S.R.); (P.J.)
| | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea; (S.R.); (P.J.)
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Soengnam 13120, Republic of Korea; (M.V.); (G.C.); (S.G.)
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Soengnam 13120, Republic of Korea; (M.V.); (G.C.); (S.G.)
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Soengnam 13120, Republic of Korea; (M.V.); (G.C.); (S.G.)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea; (S.R.); (P.J.)
| |
Collapse
|
2
|
Zhang Y, Poon K, Masonsong GSP, Ramaswamy Y, Singh G. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics 2023; 15:922. [PMID: 36986783 PMCID: PMC10056188 DOI: 10.3390/pharmaceutics15030922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Significant progress in nanotechnology has enormously contributed to the design and development of innovative products that have transformed societal challenges related to energy, information technology, the environment, and health. A large portion of the nanomaterials developed for such applications is currently highly dependent on energy-intensive manufacturing processes and non-renewable resources. In addition, there is a considerable lag between the rapid growth in the innovation/discovery of such unsustainable nanomaterials and their effects on the environment, human health, and climate in the long term. Therefore, there is an urgent need to design nanomaterials sustainably using renewable and natural resources with minimal impact on society. Integrating sustainability with nanotechnology can support the manufacturing of sustainable nanomaterials with optimized performance. This short review discusses challenges and a framework for designing high-performance sustainable nanomaterials. We briefly summarize the recent advances in producing sustainable nanomaterials from sustainable and natural resources and their use for various biomedical applications such as biosensing, bioimaging, drug delivery, and tissue engineering. Additionally, we provide future perspectives into the design guidelines for fabricating high-performance sustainable nanomaterials for medical applications.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Kingsley Poon
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | | | - Yogambha Ramaswamy
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| |
Collapse
|
3
|
Zeng Q, Zhu J. Analysis of Adhesion at the Interface of Steamed Bread and Eggshell. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238179. [PMID: 36500271 PMCID: PMC9737473 DOI: 10.3390/molecules27238179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
The adhesion phenomenon of polymers occurs in nature and in human activity. In the present paper, an adhesion system of steamed bread and eggshell was observed in formation when steamed bread and eggshells were placed in close contact and cooled slightly in the ambient air. The adhesion phenomena and mechanism of the adhesion interface between the steamed bread and eggshell were investigated and systematically discussed. Strong-bond interfaces were observed by scanning electron microscope (SEM). The formation process and mechanism of the strong-bond adhesion were also analyzed molecular dynamics simulation technology, and the results are discussed. The simulation analyses showed that the starch molecules at the calcite (104) crystal face were diffused in a water vapor environment, and the formation and solidification of multiple hydrogen bonds in the starch chain and oxygen atoms in the calcium carbonate were observed in detail during cooling. The diffusion rate of hydrogen atoms in hydroxyl groups on the calcite surface decreased gradually with the decrease of the cooling temperature of the steamed bread's upper surface. The strong adhesion of the steamed bread and eggshell is attributed to the synthetic effect of the absorption, diffusion, surface chemistry, and the formation of multiple hydrogen bonds between the starch from the steamed bread and the calcium carbonate crystals in eggshell. The interesting findings are helpful for the design of strong bonds, and provide an idea for new environmentally friendly adhesive materials.
Collapse
|
4
|
Kumar TSS, Madhumathi K, Jayasree R. Eggshell Waste: A Gold Mine for Sustainable Bioceramics. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00291-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Mahdavi S, Amirsadeghi A, Jafari A, Niknezhad SV, Bencherif SA. Avian Egg: A Multifaceted Biomaterial for Tissue Engineering. Ind Eng Chem Res 2021; 60:17348-17364. [PMID: 35317347 PMCID: PMC8935878 DOI: 10.1021/acs.iecr.1c03085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair. It is a suitable precursor for the synthesis of hydroxyapatite and calcium phosphate, which are particularly relevant for bone tissue engineering. The eggshell membrane is a thin protein-based layer with a fibrous structure and is constituted of several valuable biopolymers, such as collagen and hyaluronic acid, that are also found in the human extracellular matrix. As a result, the eggshell membrane has found several applications in skin tissue repair and regeneration. The egg white is a protein-rich material that is under investigation for the design of functional protein-based hydrogel scaffolds. The egg yolk, mostly composed of lipids but also diverse essential nutrients (e.g., proteins, minerals, vitamins), has potential applications in wound healing and bone tissue engineering. This review summarizes the advantages and status of each egg component in tissue engineering and regenerative medicine, but also covers their current limitations and future perspectives.
Collapse
Affiliation(s)
- Shahriar Mahdavi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Arman Jafari
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| |
Collapse
|
6
|
Rohmadi R, Harwijayanti W, Ubaidillah U, Triyono J, Diharjo K, Utomo P. In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis. Polymers (Basel) 2021; 13:3223. [PMID: 34641039 PMCID: PMC8512377 DOI: 10.3390/polym13193223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conducted to observe the weight loss and viable cells of hydroxyapatite when used for implants. METHOD Based on the Population, Intervention, Comparison, and Outcome (PICO) strategy, the articles used for literature review were published in English on SCOPUS, PubMed, and Google Scholar from 1 January 2012 to 22 May 2021. Data regarding existing experiments in the literature articles the in vitro degradation and cytotoxicity testing of eggshell-based hydroxyapatite determined the biocompatibility of the materials. A meta-analysis was conducted to calculate the mean difference between the solutions and soaking times used for degradation and the stem cells used for cytotoxicity. RESULTS From 231 relevant studies, 71 were chosen for full-text analysis, out of which 33 articles met the inclusion criteria for degradation and cytotoxicity analysis. A manual search of the field of study resulted in three additional articles. Thus, 36 articles were included in this systematic review. SIGNIFICANCE The aim of this study was to highlight the importance of the biocompatibility of eggshell-based hydroxyapatite. The weight loss and viability cells of eggshell-based hydroxyapatite showed optimum results for viable cells requirements above 70%, and there is a weight loss of eggshell-based hydroxyapatite for a material implant. The meta-analysis indicated significant differences in the weight loss of eggshell-based hydroxyapatite materials with different soaking times and solutions used. The various kinds of stem cells for incubation of cultured cells in contact with a device, either directly or through diffusions with various kinds of stem cells from animals and humans, yielded viability cells above 70%.
Collapse
Affiliation(s)
- Rohmadi Rohmadi
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Widyanita Harwijayanti
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Ubaidillah Ubaidillah
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Joko Triyono
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Kuncoro Diharjo
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Pamudji Utomo
- Department Orthopaedic Traumatology, Prof Dr. R. Soeharso Orthopaedic Hospital Surakarta/Faculty of Medicine, Universitas Sebelas Maret Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia;
| |
Collapse
|
7
|
Chen W, Wen Y, Fan X, Sun M, Tian C, Yang M, Xie H. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery. J Mater Chem B 2021; 9:1030-1039. [PMID: 33398321 DOI: 10.1039/d0tb02384a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small intestine-targeted drug delivery by oral administration has aroused the growing interest of researchers. In this work, the child-parent microrobot (CPM) as a vehicle protects the child microrobots (CMs) under a gastric acid environment and releases them in the small intestinal environment. The intelligent hydrogel-based CPMs with sphere, mushroom, red blood cell, and teardrop shapes are fabricated by an extrusion-dripping method. The CPMs package uniform CMs, which are fabricated by designed microfluidic (MF) devices. The fabrication mechanism and tunability of CMs and CPMs with different sizes and shapes are analyzed, modeled, and simulated. The shape of CPM can affect its drug release efficiency and kinetic characteristics. A vision-feedback magnetic driving system (VMDS) actuates and navigates CPM along the predefined path to the destination and continuously releases drug in the simulated intestinal fluid (SIF, a low Reynolds number (Re) regime) using a new motion control method with the tracking-learning-detection (TLD) algorithm. The newly designed CPM combines the advantages of powerful propulsion, good biocompatibility, and remarkable drug loading and release capacity at the intestinal level, which is expected to be competent for oral administration of small intestine-targeted therapy in the future.
Collapse
Affiliation(s)
- Weinan Chen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei D, Rezai Rad M, Khojasteh A. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:564-575. [PMID: 30948093 DOI: 10.1016/j.msec.2019.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/31/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Recent exciting findings of the particular properties of Carbon dot (CDs) have shed light on potential biomedical applications of CDs-containing composites. While CDs so far have been widely used as biosensors and bioimaging agents, in the present study for the first time, we evaluate the osteoconductivity of CDs in poly (ε-caprolactone) (PCL)/polyvinyl alcohol (PVA) [PCL/PVA] nanofibrous scaffolds. Moreover, further studies were performed to evaluate egg shell-derived calcium phosphate (TCP3) and its cellular responses, biocompatibility and in vitro osteogenesis. Scaffolds were fabricated by simultaneous electrospinning of PCL with three different types of calcium phosphate, PVA and CDs. Fabricated scaffolds were characterized by Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), contact angle measurement and degradation assessment. SEM, the methyl thiazolyl tetrazolium (MTT) assay, and alkaline phosphatase (ALP) activity test were performed to evaluate cell morphology, proliferation and osteogenic differentiation, respectively. The results demonstrated that while the addition of just 1 wt% CDs and TCP3 individually into PCL/PVA nanocomposite enhanced ALP activity and cell proliferation rate (p < 0.05), the synergetic effect of CDs/TCP3 led to highest osteogenic differentiation and proliferation rate compared to other scaffolds (p < 0.05). Hence, CDs and PCL/PVA-TCP3 could serve as a potential candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Shervin Shafiei
- Oral and maxillofacial surgery resident, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Fatemeh Nasehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, Canada
| | | | - Maryam Rezai Rad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Hassan AF, Hrdina R. Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies. Int J Biol Macromol 2018; 109:507-516. [DOI: 10.1016/j.ijbiomac.2017.12.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 01/12/2023]
|
10
|
Prasad SR, Kumar TSS, Jayakrishnan A. Ceramic core with polymer corona hybrid nanocarrier for the treatment of osteosarcoma with co-delivery of protein and anti-cancer drug. NANOTECHNOLOGY 2018; 29:015101. [PMID: 29130895 DOI: 10.1088/1361-6528/aa9a21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For the treatment of metastatic bone cancer, local delivery of therapeutic agents is preferred compared to systemic administration. Delivery of an anti-cancer drug and a protein that helps in bone regeneration simultaneously is a challenging approach. In this study, a nanoparticulate carrier which delivers a protein and an anti-cancer drug is reported. Bovine serum albumin (BSA) as a model protein was loaded into hydroxyapatite (HA) nanoparticles (NPs) and methotrexate (MTX) conjugated to poly(vinyl alcohol) was coated onto BSA-loaded HA NPs. Coating efficiency was in the range of 10-17 wt%. In vitro drug release showed that there was a steady increase in the release of both BSA and MTX with 76% of BSA and 88% of MTX being released in 13 days. Cytotoxicity studies of the NPs performed using human osteosarcoma (OMG-63) cell line showed the NPs were highly biocompatible and exhibited anti-proliferative activity in a concentration-dependent manner.
Collapse
Affiliation(s)
- S Ram Prasad
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India. Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | | | | |
Collapse
|
11
|
Pekkanen AM, Zawaski C, Stevenson AT, Dickerman R, Whittington AR, Williams CB, Long TE. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12324-12331. [PMID: 28329442 DOI: 10.1021/acsami.7b01777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca2+, Mg2+, and Zn2+) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.
Collapse
Affiliation(s)
- Allison M Pekkanen
- School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Callie Zawaski
- Department of Mechanical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - André T Stevenson
- Department of Materials Science and Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Ross Dickerman
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Abby R Whittington
- School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Department of Mechanical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
12
|
A honeycomb composite of mollusca shell matrix and calcium alginate. Colloids Surf B Biointerfaces 2016; 139:100-6. [DOI: 10.1016/j.colsurfb.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022]
|