1
|
Sharma G, George Joy J, Sharma AR, Kim JC. Accelerated full-thickness skin wound tissue regeneration by self-crosslinked chitosan hydrogel films reinforced by oxidized CNC-AgNPs stabilized Pickering emulsion for quercetin delivery. J Nanobiotechnology 2024; 22:323. [PMID: 38849931 PMCID: PMC11162036 DOI: 10.1186/s12951-024-02596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jomon George Joy
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Singh M, Thakur V, Kumar V, Raj M, Gupta S, Devi N, Upadhyay SK, Macho M, Banerjee A, Ewe D, Saurav K. Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress. Molecules 2022; 27:5587. [PMID: 36080353 PMCID: PMC9457915 DOI: 10.3390/molecules27175587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Wounds are structural and functional disruptions of skin that occur because of trauma, surgery, acute illness, or chronic disease conditions. Chronic wounds are caused by a breakdown in the finely coordinated cascade of events that occurs during healing. Wound healing is a long process that split into at least three continuous and overlapping processes: an inflammatory response, a proliferative phase, and finally the tissue remodeling. Therefore, these processes are extensively studied to develop novel therapeutics in order to achieve maximum recovery with minimum scarring. Several growth hormones and cytokines secreted at the site of lesions tightly regulates the healing processes. The traditional approach for wound management has been represented by topical treatments. Metal nanoparticles (e.g., silver, gold and zinc) are increasingly being employed in dermatology due to their favorable effects on healing, as well as in treating and preventing secondary bacterial infections. In the current review, a brief introduction on traditional would healing approach is provided, followed by focus on the potential of wound dressing therapeutic techniques functionalized with Ag-NPs.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Vanita Thakur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Mayank Raj
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Shivani Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Nisha Devi
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Markéta Macho
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Avik Banerjee
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Kumar Saurav
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| |
Collapse
|
3
|
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022; 10:1598. [PMID: 35884903 PMCID: PMC9312866 DOI: 10.3390/biomedicines10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.
Collapse
Affiliation(s)
- Agata M. Gawel
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Portela LCPN, Cahú TB, Bezerra TS, Santos DKDDN, Sousa GF, Portela RWS, Melo CML, Bezerra RDS. Biocompatibility and immunostimulatory properties of fish collagen and shrimp chitosan towards peripheral blood mononuclear cells (PBMCs). Int J Biol Macromol 2022; 210:282-291. [PMID: 35533847 DOI: 10.1016/j.ijbiomac.2022.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
Several naturally occurring biopolymers are commercially produced from livestock and farmed animals processing wastes, including aquatic organisms. These wastes are considered valuable coproducts of fishery processing industry, from which biopolymers may be recovered and exploited for their bioactive potential. The aim of this work was to prepare polymeric films from collagen and chitosan solutions, extracted from fishery discards, and investigate the cytotoxicity and immunomodulatory activity towards human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy donors and treated with Chitosan, Collagen, Chitosan+Collagen solutions and Chitosan+Collagen film in order to measure the changes in cell viability, cytosolic calcium concentration ([Ca2+]cyt), mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) levels, differentiation and activation of T CD8+ and CD4+ lymphocytes, and cytokine production. Results showed that collagen and chitosan preparations did not show cytotoxic effect, while cellular IL-6, IL-10, and TNF-α release was observed. Chitosan and collagen were able to promote non-cytotoxic PBMCs activation through cytosolic and mitochondrial ROS production. There was a noteworthy phenotyping of lymphocytes T CD8+ and CD4+ counting and an increase of [Ca2+] cyt and ΔΨm levels. These results suggest that chitosan/collagen-based biomaterials produce immunostimulatory effects on PBMC with potential to biomedical approaches.
Collapse
Affiliation(s)
- Lidiane Cristina Pinho Nascimento Portela
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Thiago Barbosa Cahú
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Thaís Santos Bezerra
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Dayane Kelly Dias do Nascimento Santos
- Laboratório de Análises Imunológicas e Antitumorais (LAIA), Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Georon Ferreira Sousa
- Laboratório de Análises Imunológicas e Antitumorais (LAIA), Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Rogério William Santos Portela
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Cristiane Moutinho Lagos Melo
- Laboratório de Análises Imunológicas e Antitumorais (LAIA), Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Ranilson de Souza Bezerra
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil.
| |
Collapse
|
5
|
Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2021; 210:112254. [PMID: 34896692 DOI: 10.1016/j.colsurfb.2021.112254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
Nanomaterials have emerged as promising candidates for cancer therapy and diagnosis as they can solve long-term issues such as drug solubility, systemic distribution, tumor acquired resistance, and improve the performance of diagnostic methods. Among inorganic nanomaterials, AgNPs have been extensively studied in the context of cancer treatment and the reported results have raised exciting expectations. In this review, we provide an overview of the recent research on AgNPs antitumoral properties, their application in different cancer treatment modalities, their potential in biosensors development, and also highlight the main challenges and possible strategies to enable its translation to clinical use.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| | - Isabella Sampaio
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Bienia A, Wiecheć-Cudak O, Murzyn AA, Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer. Pharmaceutics 2021; 13:1147. [PMID: 34452108 PMCID: PMC8399393 DOI: 10.3390/pharmaceutics13081147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death in humans. Despite the progress in cancer treatment, and an increase in the effectiveness of diagnostic methods, cancer is still highly lethal and very difficult to treat in many cases. Combination therapy, in the context of cancer treatment, seems to be a promising option that may allow minimizing treatment side effects and may have a significant impact on the cure. It may also increase the effectiveness of anti-cancer therapies. Moreover, combination treatment can significantly increase delivery of drugs to cancerous tissues. Photodynamic therapy and hyperthermia seem to be ideal examples that prove the effectiveness of combination therapy. These two kinds of therapy can kill cancer cells through different mechanisms and activate various signaling pathways. Both PDT and hyperthermia play significant roles in the perfusion of a tumor and the network of blood vessels wrapped around it. The main goal of combination therapy is to combine separate mechanisms of action that will make cancer cells more sensitive to a given therapeutic agent. Such an approach in treatment may contribute toward increasing its effectiveness, optimizing the cancer treatment process in the future.
Collapse
Affiliation(s)
| | | | | | - Martyna Krzykawska-Serda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (A.B.); (O.W.-C.); (A.A.M.)
| |
Collapse
|
7
|
Meher MK, Poluri KM. Anticoagulation and antibacterial properties of heparinized nanosilver with different morphologies. Carbohydr Polym 2021; 266:118124. [PMID: 34044940 DOI: 10.1016/j.carbpol.2021.118124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 01/05/2023]
Abstract
Synthesis and characterization of nanoparticles with different morphologies coupled to minimal chemical interventions for sustainable applications is one of the contemporary topics in the field of nanotechnology. In the current study, heparinized silver nanoparticles were synthesized using a chemical reduction method. Different concentrations of heparin were used to investigate its role in the stability and morphological properties of silver nanoparticles. Interestingly, it has been observed that the concentration of the stabilizing agent heparin plays a pivotal role in dictating the size and shape of the nanosilver. As visualized under a transmission electron microscope, nanosilver with different morphological states such as triangles, truncated triangles, hexagon, and spheres has been experimentally trapped. Such modular property of heparin coated nanosilver has also exhibited substantial differences in their anticoagulation and antimicrobial activities.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
8
|
Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite-Potential Coating for Grapes. Foods 2020; 9:foods9121801. [PMID: 33291604 PMCID: PMC7761909 DOI: 10.3390/foods9121801] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.
Collapse
|
9
|
Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. Int J Biol Macromol 2020; 163:959-969. [DOI: 10.1016/j.ijbiomac.2020.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
|
10
|
Synthesis of Pluronic-based silver nanoparticles/methylene blue nanohybrids: Influence of the metal shape on photophysical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110987. [DOI: 10.1016/j.msec.2020.110987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
|
11
|
Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A, Sochor J, Narayanan VHB, Kizek R. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics 2020; 12:E821. [PMID: 32872234 PMCID: PMC7557923 DOI: 10.3390/pharmaceutics12090821] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.
Collapse
Affiliation(s)
- Priya Dharshini Krishnan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Dominik Banas
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno-Bohunice, Czech Republic; (D.B.); (D.K.)
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
| | - Ramya Devi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Daniil Kabanov
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno-Bohunice, Czech Republic; (D.B.); (D.K.)
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
| | - Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Branislav Ruttkay-Nedecky
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| | - Hoai Viet Nguyen
- Research Center for Environmental Monitoring and Modeling, University of Science, Vietnam National University, 334 Nguyen Trai Street, Hanoi 100000, Vietnam;
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Room 4412, Clear Water Bay, Kowloon, Hong Kong, China;
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
| | - Vedha Hari B. Narayanan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Rene Kizek
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Alvarez‐Lorenzo C, Mayo‐Olveira F, Barbosa S, Taboada P, Concheiro A. Poly(vinyl alcohol) triggers Au nanoparticles formation for near‐infrared radiation‐responsive gels and nanofibers. J Appl Polym Sci 2020. [DOI: 10.1002/app.48811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carmen Alvarez‐Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma Group (GI‐1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de Compostela 15872 Santiago de Compostela Spain
| | - Fátima Mayo‐Olveira
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma Group (GI‐1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de Compostela 15872 Santiago de Compostela Spain
| | - Silvia Barbosa
- Área de Física de la Materia Condensada, Facultad de Física and Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Pablo Taboada
- Área de Física de la Materia Condensada, Facultad de Física and Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma Group (GI‐1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de Compostela 15872 Santiago de Compostela Spain
| |
Collapse
|
13
|
Muchintala D, Suresh V, Raju D, Sashidhar R. Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110712. [DOI: 10.1016/j.msec.2020.110712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
|
14
|
Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr Polym 2020; 232:115784. [DOI: 10.1016/j.carbpol.2019.115784] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 12/26/2019] [Indexed: 01/04/2023]
|
15
|
Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr Polym 2020; 231:115696. [DOI: 10.1016/j.carbpol.2019.115696] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
|
16
|
Abdallah OM, EL-Baghdady KZ, Khalil MMH, El Borhamy MI, Meligi GA. Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02050-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Hussain Z, Thu HE, Sohail M, Khan S. Hybridization and functionalization with biological macromolecules synergistically improve biomedical efficacy of silver nanoparticles: Reconceptualization of in-vitro, in-vivo and clinical studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Hajji S, Khedir SB, Hamza-Mnif I, Hamdi M, Jedidi I, Kallel R, Boufi S, Nasri M. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochim Biophys Acta Gen Subj 2019; 1863:241-254. [DOI: 10.1016/j.bbagen.2018.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
|
19
|
Current Status and Prospects of Chitosan: Metal Nanoparticles and Their Applications as Nanotheranostic Agents. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chi Z, Lin H, Li W, Zhang X, Zhang Q. In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32373-32380. [PMID: 30229494 DOI: 10.1007/s11356-018-3217-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
This work reports the toxicity of small silver nanoparticles (nanoAg, 20 nm) and silver ions (Ag+) to the red blood cells with the silver concentration level of 10-6 g/mL. Results show that red blood cells (RBCs) start hemolysis when treated by nanoAg of 1.5 × 10-5 g/mL or Ag+ of 2.9 × 10-7 g/mL. A low ATPase activity of 30% has been observed after RBCs being treated with Ag+ of 2.6 × 10-7 g/mL, while the nanoAg does not obviously affect the ATPase activity. In molecular level, Ag+ is more toxic to the amino acid residues than nanoAg according to the change of fluorescence characteristics of hemoglobin (Hb). However, the nanoAg has been found to be more toxic than Ag+ to the secondary structure of Hb in terms of the loss of α-helix content.
Collapse
Affiliation(s)
- Zhenxing Chi
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China.
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Hongwei Lin
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| | - Xunuo Zhang
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| | - Qiang Zhang
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| |
Collapse
|
22
|
Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 2018; 115:165-175. [DOI: 10.1016/j.ijbiomac.2018.04.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
|
23
|
Dong F, Li S. Wound Dressings Based on Chitosan-Dialdehyde Cellulose Nanocrystals-Silver Nanoparticles: Mechanical Strength, Antibacterial Activity and Cytotoxicity. Polymers (Basel) 2018; 10:polym10060673. [PMID: 30966707 PMCID: PMC6404142 DOI: 10.3390/polym10060673] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022] Open
Abstract
The present work envisages a simple approach to synthesize a new wound dressing based on chitosan-dialdehyde cellulose nanocrystal-silver nanoparticles (CS-DCNC-AgNPs). Silver nanoparticles (AgNPs) were generated in-situ by periodate oxidation of cellulose nanocrystals to generate aldehyde functions, which were used to reduce Ag+ into Ag0 in mild alkaline conditions. Subsequently, the dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs) were added to chitosan (CS) to form the wound dressings by solution casting method. The aim was to enhance the antibacterial effect of CS by incorporation of AgNPs and to improve the mechanical strength and hydrophobicity of CS by incorporation of DCNC that cross-linked by hydrogen bonds. The antibacterial activities were evaluated against five gram-negative bacteria, one gram-positive bacteria, and three fungi. The in vitro cytotoxicity assay was performed using the NIH3T3 cell lines by Sulforhodamine B assay. Research outputs signified that CS-DCNC-AgNPs possessed good mechanical strength and hydrophobicity, high antibacterial activity and less cytotoxicity. Our results propose that CS-DCNC-AgNPs can be a promising, safe antibacterial to be incorporated in wound dressings.
Collapse
Affiliation(s)
- Feng Dong
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Light Industry and Textile School, Qiqihar University, Qiqihar 161006, China.
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
24
|
Mandla S, Davenport Huyer L, Radisic M. Review: Multimodal bioactive material approaches for wound healing. APL Bioeng 2018; 2:021503. [PMID: 31069297 PMCID: PMC6481710 DOI: 10.1063/1.5026773] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a highly complex process of tissue repair that relies on the synergistic effect of a number of different cells, cytokines, enzymes, and growth factors. A deregulation in this process can lead to the formation of a non-healing chronic ulcer. Current treatment options, such as collagen wound dressings, are unable to meet the demand set by the wound environment. Therefore, a multifaceted bioactive dressing is needed to elicit a targeted affect. Wound healing strategies seek to develop a targeted effect through the delivery of a bioactive molecule to the wound by a hydrogel or a polymeric scaffold. This review examines current biomaterial and small molecule-based approaches that seek to develop a bioactive material for targeted wound therapy and accepted wound healing models for testing material efficacy.
Collapse
Affiliation(s)
- Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | - Milica Radisic
- Author to whom correspondence should be addressed: . Tel.: +1-416-946-5295. Fax: +1-416-978-4317
| |
Collapse
|
25
|
Qu X, Liu H, Zhang C, Lei Y, Lei M, Xu M, Jin D, Li P, Yin M, Payne GF, Liu C. Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomater 2018; 73:190-203. [PMID: 29505893 DOI: 10.1016/j.actbio.2018.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication. STATEMENT OF SIGNIFICANCE We believe this work is novel because this is the first report (to our knowledge) that electronic signals enable the fabrication of advanced antimicrobial dressings with controlled structure and biological performance. We believe this work is significant because electrofabrication enables rapid, controllable and sustainable materials construction with reduced adverse environmental impacts while generating high performance materials for healthcare applications. More specifically, we report an electrofbrication of antimicrobial film that can promote wound healing.
Collapse
|
26
|
Urie R, Ghosh D, Ridha I, Rege K. Inorganic Nanomaterials for Soft Tissue Repair and Regeneration. Annu Rev Biomed Eng 2018; 20:353-374. [PMID: 29621404 DOI: 10.1146/annurev-bioeng-071516-044457] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inorganic nanomaterials have witnessed significant advances in areas of medicine including cancer therapy, imaging, and drug delivery, but their use in soft tissue repair and regeneration is in its infancy. Metallic, ceramic, and carbon allotrope nanoparticles have shown promise in facilitating tissue repair and regeneration. Inorganic nanomaterials have been employed to improve stem cell engraftment in cellular therapy, material mechanical stability in tissue repair, electrical conductivity in nerve and cardiac regeneration, adhesion strength in tissue approximation, and antibacterial capacity in wound dressings. These nanomaterials have also been used to improve or replace common surgical materials and restore functionality to damaged tissue. We provide a comprehensive overview of inorganic nanomaterials in tissue repair and regeneration, and discuss their promise and limitations for eventual translation to the clinic.
Collapse
Affiliation(s)
- Russell Urie
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA;
| | - Deepanjan Ghosh
- Department of Biological Design, Arizona State University, Tempe, Arizona 85287-6106, USA
| | - Inam Ridha
- Department of Biomedical Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA
| | - Kaushal Rege
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA;
| |
Collapse
|
27
|
Kim TH, Jung Y, Kim SH. Nanofibrous Electrospun Heart Decellularized Extracellular Matrix-Based Hybrid Scaffold as Wound Dressing for Reducing Scarring in Wound Healing. Tissue Eng Part A 2018; 24:830-848. [PMID: 29048241 DOI: 10.1089/ten.tea.2017.0318] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Produced through electrospinning, poly(l-lactide-co-caprolactone) (PLCL) membranes, which have a porous structure and are biodegradable, are of interest in various medical fields. The porous-structured electrospun membrane is particularly interesting because of several favorable properties as follows: it exudes fluid from the wound, does not build up under the wound covering, and does not cause wound desiccation. Moreover, extracellular matrix (ECM)-based structures derived by tissue decellularization have application as engineered tissue scaffolds and as supports for cellular regeneration. In particular, heart decellularized ECM (hdECM) has various pro-angiogenic factors that can induce angiogenesis for wound healing. In this regard, a nanofibrous electrospun hdECM-based hybrid scaffold (NEhdHS), which is a PLCL membrane, including hdECM as an active agent, was tested as a wound dressing to assess its fundamental biochemical and physical features in wound healing. Use of NEhdHS with its porous structure and pro-angiogenic factors is expected to provide an effective wound dressing and reduced scarring. We first demonstrate the effectiveness of a proposed decellularization protocol through analysis of dECM components and describe the mechanical properties of the fabricated NEhdHS. Next, we present an in vitro angiogenesis analysis of the NEhdHS, using a coculture system with human dermal fibroblasts and human umbilical vein endothelial cells; the results of which confirm its biocompatibility and show that the NEhdHS can significantly enhance angiogenesis over that obtained from PLCL or gelatin-containing PLCL scaffolds. We also studied the effectiveness of the NEhdHS in vivo. Using a rat excisional wound-splinting model, we show that covering the upper part of the wound with NEhdHS significantly reduces scarring in the wound healing process compared to that with PLCL or gelatin-containing PLCL scaffolds. Based upon its properties, we conclude that the NEhdHS has potential for application in wound dressing.
Collapse
Affiliation(s)
- Tae Hee Kim
- 1 Biomaterials Research Center, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul, Republic of Korea
| | - Youngmee Jung
- 1 Biomaterials Research Center, Korea Institute of Science and Technology , Seoul, Republic of Korea.,3 Department of Biomedical Engineering, Korea University of Science and Technology , Seoul, Republic of Korea
| | - Soo Hyun Kim
- 1 Biomaterials Research Center, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul, Republic of Korea.,3 Department of Biomedical Engineering, Korea University of Science and Technology , Seoul, Republic of Korea
| |
Collapse
|
28
|
Kaygusuz H, Torlak E, Akın-Evingür G, Özen İ, von Klitzing R, Erim FB. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing. Int J Biol Macromol 2017; 105:1161-1165. [DOI: 10.1016/j.ijbiomac.2017.07.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 07/23/2017] [Indexed: 01/25/2023]
|
29
|
Li Q, Lu F, Zhou G, Yu K, Lu B, Xiao Y, Dai F, Wu D, Lan G. Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules 2017; 18:3766-3775. [DOI: 10.1021/acs.biomac.7b01180] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qing Li
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Fei Lu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guofang Zhou
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Kun Yu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Bitao Lu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Yang Xiao
- Sericulture and Agri-Food Research Institute of Guangdong Academy of Agriculture Science, Guangzhou 510610, China
| | - Fangying Dai
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Dayang Wu
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- College
of Textile and Garments, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| |
Collapse
|
30
|
Chen Y, Wang F, Zhang N, Li Y, Cheng B, Zheng Y. Preparation of a 6-OH quaternized chitosan derivative through click reaction and its application to novel thermally induced/polyelectrolyte complex hydrogels. Colloids Surf B Biointerfaces 2017; 158:431-440. [DOI: 10.1016/j.colsurfb.2017.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 07/08/2017] [Indexed: 01/29/2023]
|
31
|
Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater 2017; 4:325-334. [PMID: 29026647 PMCID: PMC5633688 DOI: 10.1093/rb/rbx025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023] Open
Abstract
Treatment of acute and chronic wounds is one of the primary challenges faced by doctors. Bioderived materials have significant potential clinical value in tissue injury treatment and defect reconstruction. Various strategies, including drug loading, addition of metallic element(s), cross-linking and combining two or more distinct types of materials with complementary features, have been used to synthesize more suitable materials for wound healing. In this review, we describe the recent developments made in the processing of bioderived materials employed for cutaneous wound healing, including newly developed materials such as keratin and soy protein. The focus was on the key properties of the bioderived materials that have shown great promise in improving wound healing, restoration and reconstruction. With their good biocompatibility, nontoxic catabolites, microinflammation characteristics, as well as their ability to induce tissue regeneration and reparation, the bioderived materials have great potential for skin tissue repair.
Collapse
Affiliation(s)
- Lin-Cui Da
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
32
|
|
33
|
Alginate/chitosan polyelectrolyte complexes: A comparative study of the influence of the drying step on physicochemical properties. Carbohydr Polym 2017; 172:142-151. [DOI: 10.1016/j.carbpol.2017.05.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/24/2017] [Accepted: 05/06/2017] [Indexed: 12/27/2022]
|
34
|
Stabilized cationic dipeptide capped gold/silver nanohybrids: Towards enhanced antibacterial and antifungal efficacy. Colloids Surf B Biointerfaces 2017; 158:397-407. [PMID: 28719861 DOI: 10.1016/j.colsurfb.2017.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/23/2023]
Abstract
The nanoparticles of silver/gold and cationic peptides have been recognized as potent antimicrobials for long, but their combined effect has so far not been explored. The present study reports the green synthesis of short cationic dipeptide stabilized AuNPs/AgNPs based nanohybrid materials. It thoroughly investigates the effect of conjugation of short cationic peptides on the antimicrobial properties of metallic nanoparticles. In the context of the antimicrobial evaluation of synthesized nanoconjugates, it was observed that peptide capped AgNPs exhibited higher antimicrobial activity as compared to peptide capped AuNPs as well as native peptides and unconjugated metallic nanoparticles. Specifically, l-His-l-Arg-OMe capped AgNPs exhibited MIC of 0.50, 0.37 and 0.25μM against E.coli, S. aureus and S. typhimurium respectively and MIC of 0.80 and 10.00μM against C. albicans and C. glabrata respectively. These results indicate that synthetic dipeptides render AgNPs as better antimicrobial agents in comparison to the native AgNPs and positively charged dipeptides. In addition, the time kill profile of cationic peptide (l-His-l-Arg-OMe) capped AgNPs was found to be even better than the known antibiotics. The cytotoxic behavior of all synthesized nanoconjugates of cationic peptides was studied and was found to be within acceptable limits. The present study opens a completely new class of antimicrobials for combating a wide range of bacterial and fungal pathogens. Another interesting and crucial finding was that dipeptide capped AgNPs displayed maximum antimicrobial activity with observed approximate 2-10 fold reduction in nano formulation dosage against tested microbes.
Collapse
|
35
|
Sun Q, You Q, Pang X, Tan X, Wang J, Liu L, Guo F, Tan F, Li N. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials 2017; 122:188-200. [DOI: 10.1016/j.biomaterials.2017.01.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 01/21/2023]
|
36
|
Abdel-Mohsen AM, Jancar J, Abdel-Rahman RM, Vojtek L, Hyršl P, Dušková M, Nejezchlebová H. A novel in situ silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: In vitro and in vivo evaluations. Int J Pharm 2017; 520:241-253. [PMID: 28163228 DOI: 10.1016/j.ijpharm.2017.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/31/2022]
Abstract
In-situ formed hyaluronan/silver (HA/Ag) nanoparticles (NPs) were used to prepare composite fibers/fabrics for the first time. Different concentrations of silver nitrate (1, 2mg/100ml) were added at ambient temperature to sodium hyaluronate solution (40mg/ml), then the pH was increased to 8 by adding sodium hydroxide. The in-situ formed HA/Ag-NPs were used to prepare fibers/nonwoven fabrics by wet-dry-spinning technique (WDST). UV/vis spectroscopy, SEM, TEM, DLS, XPS, XRD and TGA were employed to characterize the structure and composition of the nanocomposite, surface morphology of fiber/fabrics, particle size of Ag-NPs, chemical interactions of Ag0 and HA functional groups, crystallinity and thermal stability of the wound dressing, respectively. The resultant HA/Ag-NPs1 and HA/Ag-NPs2 composite showed uniformly dispersed throughout HA fiber/fabrics (SEM), an excellent distribution of Ag-NPs with 25±2, nm size (TEM, DLS) and acceptable mechanical properties. The XRD analysis showed that the in-situ preparation of Ag-NPs increased the crystallinity of the resultant fabrics as well as the thermal stability. The antibacterial performance of medical HA/Ag-NPs fabrics was evaluated against gram negative bacteria E. coli K12, exhibiting significant bactericidal activity. The fibers did not show any cytotoxicity against human keratinocyte cell line (HaCaT). In-vivo animal tests indicated that the prepared wound dressing has strong healing efficacy (non-diabetics/diabetics rat model) compared to the plain HA fabrics and greatly accelerated the healing process. Based on our results, the new HA/Ag-NPs-2mg nonwoven wound dressing fabrics can be used in treating wounds and chronic ulcers as well as cell carrier in different biological research and tissue engineering.
Collapse
Affiliation(s)
- A M Abdel-Mohsen
- CEITECCentral European Institute of Technology, Brno University of Technology, Brno, Czechia; SCITEG, a.s., Brno, Czechia; Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.
| | - J Jancar
- CEITECCentral European Institute of Technology, Brno University of Technology, Brno, Czechia; SCITEG, a.s., Brno, Czechia; Faculty of Chemistry, Institute of Materials Chemistry, Brno University of Technology, Brno, Czechia
| | - R M Abdel-Rahman
- CEITECCentral European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - L Vojtek
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| | - P Hyršl
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| | - M Dušková
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| | - H Nejezchlebová
- Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czechia
| |
Collapse
|
37
|
Bui VKH, Park D, Lee YC. Chitosan Combined with ZnO, TiO₂ and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends. Polymers (Basel) 2017; 9:E21. [PMID: 30970696 PMCID: PMC6432267 DOI: 10.3390/polym9010021] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/04/2017] [Indexed: 01/19/2023] Open
Abstract
Chitosan is a natural polymer that has been widely utilized for many purposes in the food, textile, agriculture, water treatment, cosmetic and pharmaceutical industries. Based on its characteristics, including biodegradability, non-toxicity and antimicrobial properties, it has been employed effectively in wound healing applications. Importantly, however, it is necessary to improve chitosan's capacities by combination with zinc oxide (ZnO), titanium dioxide (TiO₂) and silver (Ag) nanoparticles (NPs). In this review of many of the latest research papers, we take a closer look at the antibacterial effectiveness of chitosan combined with ZnO, TiO₂ and Ag NPs and also evaluate the specific wound healing application potentials.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si 16105, Gyeonggi-do, Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.
| |
Collapse
|
38
|
Peng Y, Song C, Yang C, Guo Q, Yao M. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int J Nanomedicine 2017; 12:295-304. [PMID: 28115847 PMCID: PMC5221798 DOI: 10.2147/ijn.s122357] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silver nanoparticles (AgNPs) are being widely applied as topical wound materials; however, accumulated deposition of silver in the liver, spleen, and other main organs may lead to organ damage and dysfunction. We report here that low molecular weight chitosan-coated silver nanoparticles (LMWC-AgNPs) are effective against methicillin-resistant Staphylococcus aureus (MRSA), have better biocompatibility, and have lower body absorption characteristics when compared with polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) and silver nanoparticles without surface stabilizer (uncoated-AgNPs) in a dorsal MRSA wound infection mouse model. LMWC-AgNPs were synthesized by reducing silver nitrate with low molecular weight chitosan as a stabilizer and reducing agent, while PVP-AgNPs were synthesized using polyvinylpyrrolidone as a stabilizer and ethanol as a reducing agent. AgNPs with different surface stabilizers were identified by UV-visible absorption spectrometry, and particle size was determined by transmission electron microscopy. UV-visible absorption spectra of LMWC-AgNPs, PVP-AgNPs and uncoated-AgNPs were similar and their sizes were in the range of 10–30 nm. In vitro experiments showed that the three types of AgNPs had similar MRSA-killing effects, with obvious effect at 4 μg/mL and 100% effect at 8 μg/mL. Bacteriostatic annulus experiments also showed that all the three types of AgNPs had similar antibacterial inhibitory effect at 10 μg/mL. Cell counting kit-8 assay and Hoechst/propidium iodide (PI) staining showed that LMWC-AgNPs were significantly less toxic to human fibroblasts than PVP-AgNPs and uncoated-AgNPs. Treatment of mice with MRSA wound infection demonstrated that the three types of AgNPs effectively controlled MRSA wound infection and promoted wound healing. After continuous application for 14 days, LMWC-AgNPs-treated mice showed significantly reduced liver dysfunction as demonstrated by the reduced alanine aminotransferase and aspartate aminotransferase levels and liver deposition of silver, in comparison to mice treated with uncoated-AgNPs or PVP-AgNPs. Our results demonstrated that LMWC-AgNPs had good anti-MRSA effects, while harboring a better biocompatibility and lowering the body’s absorption characteristics.
Collapse
Affiliation(s)
- Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chenlu Song
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuanfeng Yang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qige Guo
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Min Yao
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
39
|
Shi A, Chen X, Liu L, Hu H, Liu H, Wang Q, Agyei D. Synthesis and characterization of calcium-induced peanut protein isolate nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra07987g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A convenient and green synthetic route using calcium ion induction was first used to prepare peanut protein isolate (PPI) nanoparticles.
Collapse
Affiliation(s)
- Aimin Shi
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Xue Chen
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Li Liu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Hui Hu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Hongzhi Liu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Qiang Wang
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Dominic Agyei
- Department of Food Science
- University of Otago
- Dunedin
- New Zealand
| |
Collapse
|
40
|
Xia G, Liu Y, Tian M, Gao P, Bao Z, Bai X, Yu X, Lang X, Hu S, Chen X. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J Mater Chem B 2017; 5:3172-3185. [DOI: 10.1039/c7tb00479f] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds.
Collapse
Affiliation(s)
- Guixue Xia
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Ya Liu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Meiping Tian
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Ping Gao
- First Institute of Oceanography SOA
- Qingdao 266061
- China
| | - Zixian Bao
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiaoyu Bai
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiaoping Yu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xuqian Lang
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Shihao Hu
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| | - Xiguang Chen
- College of Marine Life Science
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
41
|
Demina TS, Zaytseva-Zotova DS, Akopova TA, Zelenetskii AN, Markvicheva EA. Macroporous hydrogels based on chitosan derivatives: Preparation, characterization, andin vitroevaluation. J Appl Polym Sci 2016. [DOI: 10.1002/app.44651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences; Moscow 117393 Russia
| | - Daria S. Zaytseva-Zotova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Moscow 117997 Russia
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences; Moscow 117393 Russia
| | - Alexander N. Zelenetskii
- Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences; Moscow 117393 Russia
| | - Elena A. Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Moscow 117997 Russia
| |
Collapse
|
42
|
Mishra SK, Raveendran S, Ferreira JMF, Kannan S. In Situ Impregnation of Silver Nanoclusters in Microporous Chitosan-PEG Membranes as an Antibacterial and Drug Delivery Percutaneous Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10305-10316. [PMID: 27685160 DOI: 10.1021/acs.langmuir.6b02844] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An in situ synthesis method for preparing silver nanoclusters (AgNCs) embedded in chitosan-polyethylene glycol (CS-PEG) membranes is disclosed. The aim is to develop implantable multifunctional devices for biofilm inhibition and drug release to reduce percutaneous device related complications (PDRCs). A multiple array of characterization techniques confirmed the formation of fluorescent AgNCs with sizes of ∼3 nm uniformly distributed in CS-PEG matrix and their active role in determining the fraction and interconnectivity of the microporous membranes. The presence and increasing contents of AgNCs enhanced the mechanical stability of membranes and decreased their susceptibility to degradation in the presence of lysozyme and H2O2. Moreover, the presence and increasing concentrations of AgNCs hindered biofilm formation against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) and enabled a sustainable release of an anti-inflammatory drug naproxen in vitro until 24 h. The overall results gathered and reported in this work make the AgNCs impregnated CS-PEG membranes highly promising multifunctional devices combining efficient antibacterial activity and biocompatibility with active local drug delivery.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| | - Subina Raveendran
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| | - J M F Ferreira
- Department of Materials and Ceramics Engineering, University of Aveiro, CICECO , Aveiro 3810 193, Portugal
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| |
Collapse
|