1
|
Danilova D, Ostroverkhov P, Medvedev D, Grin M, Selektor S. Novel approach for fast comparative evaluation of the potency of new photosensitizers using model lipid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 265:113123. [PMID: 39978086 DOI: 10.1016/j.jphotobiol.2025.113123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The novel approach for fast comparative evaluation of the potency of new photosensitizers using model lipid membranes is described and substantiated. For this purpose, mixed Langmuir monolayers and Langmuir-Blodgett films containing one of the typical relatively easy photodegradable lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and one of the examined photosensitizers (PSs) are proposed as the models. The changes in the macroscopic properties of such model PS + POPC membranes upon irradiation with visible light (the photo-destruction processes) were recorded using two different methods: commonly used water contact angle measurements and new express method based on the estimation of the changes of the model mixed monolayer mechanical characteristics. The study have been carried out for two series of PSs, cationic and neutral ones. The results of water contact angel measurements have clearly demonstrated that this method can be used for studying the photodestruction of artificial lipid membranes on solid substrates and for comparison of the efficiency of new PSs. However, since model making and measurements are complex and time-consuming, it restricts the preliminary analysis of PSs efficiency. In this work, we suggest rather a simple method for the rapid comparative evaluation of new PSs based on easy and fast measurements, such as recording the surface pressure during irradiation of a PS-containing monolayer directly at an aqueous subphase and determining the mechanical properties of a model monolayer by the oscillating barrier method. The results have demonstrated that the proposed methods are quite valid for studying the photodegradation of artificial lipid membranes and comparing the efficiency of new PSs. In particular, we have shown that these methods can be used not only for multiparametric monitoring of the photodegradation kinetics but also for comparing the efficiency of PSs in lipid structures. The universality of the proposed methods for assessing the effectiveness of PDT at the use of PSs of various structures was demonstrated. The results of this study indicate that cationic PSs exhibit superior activity compared to neutral and anionic ones.
Collapse
Affiliation(s)
- Daria Danilova
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia
| | - Petr Ostroverkhov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571 Moscow, Russia.
| | - Dmitry Medvedev
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia; Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571 Moscow, Russia
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571 Moscow, Russia
| | - Sofiya Selektor
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Yordanov G, Minkov I, Balashev K. The Langmuir Monolayer as a Model Membrane System for Studying the Interactions of Poly(Butyl Cyanoacrylate) Nanoparticles with Phospholipids at the Air/Water Interface. MEMBRANES 2024; 14:254. [PMID: 39728704 DOI: 10.3390/membranes14120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase. Atomic force microscopy (AFM) was employed to visualize Langmuir-Blodgett (LB) films of these nanoparticles. Additionally, we examined the state of a monolayer of Pluronic F68, a stabilizer of PBCA nanoparticles in suspension, by measuring the changes in relative surface area and surface potential over time in the barostatic regime following PBCA suspension spreading. Based on these findings, we propose a molecular mechanism for nanoparticle reorganization at the air-water interface.
Collapse
Affiliation(s)
- Georgi Yordanov
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 "James Bourchier" Blvd., 1164 Sofia, Bulgaria
| | - Ivan Minkov
- Department of Chemistry, Biochemistry, Physiology, and Pathophysiology, Faculty of Medicine, Sofia University, 1407 Sofia, Bulgaria
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Konstantin Balashev
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 "James Bourchier" Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
3
|
Raghavendra, Kumar B, Chari SN. Effect of γ-Oryzanol on the LE-LC Phase Coexistence Region of DPPC Langmuir Monolayer. J Membr Biol 2023; 256:413-422. [PMID: 37269365 DOI: 10.1007/s00232-023-00288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023]
Abstract
We have studied the effect of relative composition of γ-Oryzanol (γ-Or) on the liquid expanded-liquid condensed phase coexistence region in the mixed Langmuir monolayer of γ-Or and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) molecules at air-water interface. The surface manometry studies at a fixed temperature show that the mixture of γ-Or and DPPC forms a stable monolayer at air-water interface. As the relative composition of γ-Or increases the range of area per molecule over which the coexistence of liquid expanded (LE)-liquid condensed (LC) phases exists reduces. Although the LE-LC phase coexistence corresponds to the first-order phase transition, the slope of the surface pressure-area per molecule isotherm is non-zero. Earlier studies have attributed the non-zero slope in LE-LC phase coexistence region to the influence of the strain between the ordered LC phase and disordered LE phase. The effect of strain on the coexistence of LE-LC phases can be studied in terms of molecular density-strain coupling. Our analysis of the liquid condensed-liquid expanded coexistence region in the isotherms of mixed monolayers of DPPC and γ-Or shows that with the increase in the mole fraction of sterol in the mixed monolayer the molecular lateral density-strain coupling increases. However, at 0.6 mole fraction of γ-Or in the mixed monolayer the coupling decreases. This is corroborated by the observation of minimum Gibb's free energy of the mixed monolayer at this relative composition of γ-Or indicating better packing of molecules.
Collapse
Affiliation(s)
- Raghavendra
- Department of Physics, Central University of Karnataka, Aland Road, Kadaganchi, Kalaburagi, Karnataka, 585102, India
| | - Bharat Kumar
- Department of Physics, Central University of Karnataka, Aland Road, Kadaganchi, Kalaburagi, Karnataka, 585102, India.
| | - Siva N Chari
- Department of Physics, Central University of Karnataka, Aland Road, Kadaganchi, Kalaburagi, Karnataka, 585102, India
| |
Collapse
|
4
|
Wang W, Xu X, Feng F, Shao Y, Jian H, Liu H, Dong XH, Ge A, Yang S. Interfacial Behaviors of Giant Amphiphilic Molecules Composed of Hydrophobic Isobutyl POSS and Hydrophilic POSS Bearing Carboxylic Acid Groups at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16854-16862. [PMID: 37956463 DOI: 10.1021/acs.langmuir.3c02378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The behavior of giant amphiphilic molecules at the air-water interface has become a subject of concern to researchers. Small changes in the molecular structure can cause obvious differences in the molecular arrangement and interfacial properties of the monolayer. In this study, we have systematically investigated the interfacial behaviors of the giant amphiphilic molecules with different number of hydrophobic BPOSS blocks and one hydrophilic ACPOSS block ((BPOSS)n-ACPOSS (n = 1-5)) at the air-water interface by the surface pressure-area (π-A) isotherm, Brewster angle microscopy (BAM), compression modulus measurement, and hysteresis measurement. We found that both the number of BPOSS blocks and the compression rate can significantly influence the interfacial behaviors of giant molecules. The π-A isotherms of giant molecules (BPOSS)n-ACPOSS (n = 2-5) exhibit a "cusp" phenomenon which can be attributed to the transition from monolayer to multilayer. However, the cusp is dramatically different from the "collapse" of the monolayer studied in other molecular systems, which is highly dependent on the compression rate of the monolayer. In addition, the compression modulus and hysteresis measurements reveal that the number of BPOSS blocks of (BPOSS)n-ACPOSS plays an important role in the static elasticity, stability, and reversibility of the Langmuir films.
Collapse
Affiliation(s)
- Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- School of Rehabilitation Sciences and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Xian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fengfeng Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Shao
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanxin Jian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Aimin Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Geng Y, Cao Y, Li Y, Zhao Q, Liu D, Fan G, Tian S. A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health. MEMBRANES 2022; 13:33. [PMID: 36676840 PMCID: PMC9864691 DOI: 10.3390/membranes13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphorcholine (POPC) are important components in pulmonary surfactants (PSs), of which the relative content is related to lung compliance. Herein, the phase behavior and thermodynamic structure of mixed DPPC/POPC monolayers were studied to elucidate the intermolecular interaction between DPPC and POPC molecules. Surface pressure-molecular area isotherms demonstrated that POPC significantly affected the phase behavior of the lipid domain structure as a function of its concentration. The compression modulus of the mixed monolayers reduced with the increase in POPC proportion, which can be attributed to the intermolecular repulsion between DPPC and POPC. Brewster angle microscopy analysis showed that the ordered structure of the monolayers trended toward fluidization in the presence of POPC. Raman spectroscopy results revealed that the change in C-C skeleton stretching vibration was the main cause of the decrease in the monolayer packing density. These findings provide new insights into the role of different phospholipid components in the function of PS film at a molecular level, which can help us to understand the synergy effects of the proportional relationship between DPPC and POPC on the formation and progression of lung disease and provide some references for the synthesis of lung surfactants.
Collapse
Affiliation(s)
- Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Faculty of Civil and Hydraulic Engineering, Xichang University, Xichang 615013, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ge Fan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Rytel K, Kędzierski K, Barszcz B, Biadasz A, Majchrzycki Ł, Wróbel D. The influence of zinc phthalocyanine on the formation and properties of multiwalled carbon nanotubes thin films on the air–solid and air–water interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. MEMBRANES 2021; 11:membranes11090707. [PMID: 34564524 PMCID: PMC8471293 DOI: 10.3390/membranes11090707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The amounts of antibiotics of anthropogenic origin released and accumulated in the environment are known to have a negative impact on local communities of microorganisms, which leads to disturbances in the course of the biodegradation process and to growing antimicrobial resistance. This mini-review covers up-to-date information regarding problems related to the omnipresence of antibiotics and their consequences for the world of bacteria. In order to understand the interaction of antibiotics with bacterial membranes, it is necessary to explain their interaction mechanism at the molecular level. Such molecular-level interactions can be probed with Langmuir monolayers representing the cell membrane. This mini-review describes monolayer experiments undertaken to investigate the impact of selected antibiotics on components of biomembranes, with particular emphasis on the role and content of individual phospholipids and lipopolysaccharides (LPS). It is shown that the Langmuir technique may provide information about the interactions between antibiotics and lipids at the mixed film surface (π–A isotherm) and about the penetration of the active substances into the phospholipid monolayer model membranes (relaxation of the monolayer). Effects induced by antibiotics on the bacterial membrane may be correlated with their bactericidal activity, which may be vital for the selection of appropriate bacterial consortia that would ensure a high degradation efficiency of pharmaceuticals in the environment.
Collapse
|
8
|
Surface Dilatational Rheology of Carboxyl-Containing Dimethylsiloxane Oligomers in Langmuir Films at the Air-Water Interface. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zhang Z, Hao C, Liu H, Zhang X, Sun R. Cholesterol mediates spontaneous insertion of Lycium barbarum polysaccharides in biomembrane model. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Skrzypiec M, Weiss M, Dopierała K, Prochaska K. Langmuir-Blodgett films of membrane lipid in the presence of hybrid silsesquioxane, a promising component of biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110090. [PMID: 31546436 DOI: 10.1016/j.msec.2019.110090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Functionalized polyhedral oligomeric silsesquioxanes (POSS) derivatives have great potential in biomedical applications such as tissue engineering, drug delivery, biosensors, dental composites and biomedical devices. Having the above in mind, in this paper, the study of the surface characteristics of binary Langmuir-Blodgett films consisting of an open cage silsesquioxane POSS-poly (ethylene glycol) (POSS-PEG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), as a representative of phospholipid was conducted based on contact angle measurements of three liquids. The measured values of the contact angle (with water, formamide and diiodomethane as the wetting liquids) allowed to calculate surface free energy of the films from van Oss et al. approach. The film structure of the deposited layers was evaluated using an atomic force microscope. Analysis of the obtained results led to the conclusion, that the pure DMPE molecules create agglomerates onto a solid substrate, whereas the POSS-PEG molecules form a homogenous monolayer. After an addition of POSS-PEG to lipid film, changes in the surface properties are visible. The wettability as well as surface free energy depend on the molar ratio of both components. The AFM images shed more light on the changes of the DMPE monolayer topography caused by the POSS-PEG addition.
Collapse
Affiliation(s)
- Marta Skrzypiec
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Marek Weiss
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
11
|
Biadasz A, Rytel K, Kędzierski K, Adamski A, Kotkowiak M, Stachowiak A, Barszcz B, Jeong HY, Kim TD. The liquid crystal induced J-type aggregation of diketopyrrolopyrrole derivatives in monolayer. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Langmuir film formation of amphiphilic hybrid block copolymers based on poly(ethylene glycol) and poly(methacrylo polyhedral oligomeric silsesquioxane). Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04517-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Zhang Z, Hao C, Qu H, Sun R. Studied on the dynamic adsorption process of Lycium barbarum polysaccharide in the POPC/DPPC monolayers. Colloids Surf B Biointerfaces 2019; 178:38-43. [DOI: 10.1016/j.colsurfb.2019.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
|
14
|
Rojewska M, Skrzypiec M, Prochaska K. The wetting properties of Langmuir-Blodgett and Langmuir-Schaefer films formed by DPPC and POSS compounds. Chem Phys Lipids 2019; 221:158-166. [PMID: 30954535 DOI: 10.1016/j.chemphyslip.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
The possibility of modification of surface wettability is especially desirable in implantology. This effect is achieved by coating a given material with thin films containing nanoparticles of different chemical properties. In recent years, much interest has been paid to supported phospholipid bilayers (SPBs), because they can be exploited in novel biotechnological devices such as biosensors and mimetic membrane-coated implants. In view of the above, we decided to study the modification of wetting properties of phospholipid layer by two types of polyhedral oligomeric silsesquioxanes (POSS) with different functional groups attached to the silica open-cage. The POSS and phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) were vertically (Langmuir-Blodgett; LB) and horizontally (Langmuir-Schaefer; LS) deposited on quartz substrates to form a thin layer structure. The advancing contact angles on the modified surface coated with thin films were measured. The surface free energy (SFE) of DPPC, POSS and their mixed DPPC/POSS films was estimated by using Owens-Wendt-Rabel-Käelbe (OWRK) method. It was shown that the chemical structure of POSS used as a modifier influence the wetting properties of modified quartz surface. Incorporation fluoroalkyl-POSS into DPPC monolayer leads to obtaining a more hydrophobic film, while the addition of polyethylene glycol-POSS creates a more hydrophilic film. The transfer of the film with a more condensed structure led to a more hydrophobic material. The deposition technique (horizontal or vertical) had a particular impact on the modification of wettability of quartz surface coated with monocomponent fluoroalkyl-POSS film, whereas for the modification with mixed DPPC/POSS systems the choice of transfer method was not so significant.
Collapse
Affiliation(s)
- M Rojewska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland
| | - M Skrzypiec
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland
| | - K Prochaska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland.
| |
Collapse
|
15
|
Xu Z, Hao C, Xie B, Sun R. Effect of Fe 3O 4 Nanoparticles on Mixed POPC/DPPC Monolayers at Air-Water Interface. SCANNING 2019; 2019:5712937. [PMID: 30944689 PMCID: PMC6421766 DOI: 10.1155/2019/5712937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Fe3O4 nanoparticles (NPs) as a commonly used carrier in targeted drug delivery are widely used to carry drugs for the treatment of diseases. However, the mechanism of action of between Fe3O4 NPs and biological membranes is still unclear. Therefore, this article reports the influence of hydrophilic and hydrophobic Fe3O4 NPs on mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) that were studied using the Langmuir-Blodgett (LB) film technique and an atomic force microscope (AFM). From surface pressure-area (π-A) isotherms, we have calculated the compression modulus. The results showed that hydrophobic Fe3O4 NPs enlarged the liquid-expanded (LE) and liquid-condensed (LC) phase of the mixed POPC/DPPC monolayers. The compressibility modulus of the mixed POPC/DPPC monolayer increases for hydrophilic Fe3O4 NPs, but the opposite happens for the hydrophobic Fe3O4 NPs. The adsorption of hydrophobic Fe3O4 NPs in mixed POPC/DPPC monolayers was much more than the hydrophilic Fe3O4 NPs. The interaction of hydrophilic Fe3O4 NPs with the head polar group of the mixed lipids increased the attraction force among the molecules, while the interaction of hydrophobic Fe3O4 NPs with the tail chain of the mixed lipids enhanced the repulsive force. The morphology of the monolayers was observed by AFM for validating the inferred results. This study is of great help for the application of Fe3O4 NPs in biological systems.
Collapse
Affiliation(s)
- Zhuangwei Xu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Xie
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
16
|
Li J, Li S, Cheng S, Tsona NT, Du L. Emerging investigator series: exploring the surface properties of aqueous aerosols coated with mixed surfactants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1500-1511. [PMID: 30371711 DOI: 10.1039/c8em00419f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mixed Langmuir monolayers of cholesterol with both saturated and unsaturated fatty acids, stearic acid (SA), and oleic acid (OA) spread at the air-seawater surface were studied. The phase behavior, molecular interaction, and conformational order of the monolayers were investigated by surface pressure-area (π-A) isotherms and infrared reflection-absorption spectroscopy (IRRAS) measurements. The thermodynamic parameters of the mixed films, including excess molecular area and excess Gibbs free energy were calculated by using the isotherm data. The interaction between SA (or OA) and cholesterol varied with the molar fraction of the fatty acids and surface pressure. OA/chol monolayers showed the characteristics of miscibility, but they acted as nonideal systems. Cholesterol has been observed to have a stabilizing effect on OA monolayers. The negative values of the excess Gibbs free energy in the entire composition range demonstrated that mixed OA/chol monolayers were thermodynamically stable. IRRAS spectra showed that mixing with cholesterol changes the ordering of fatty acid monolayers at the air-seawater surface. The findings provide general information regarding the structural changes in the monolayer induced by lateral packing. These results help in the understanding of the mixing behavior of fatty acids and cholesterol and provide insights into the fate of the mixed-monolayer-coated sea salt aerosol in the ocean environment.
Collapse
Affiliation(s)
- Junyao Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | | | | | | | | |
Collapse
|
17
|
Detailed characterization of POSS-poly(ethylene glycol) interaction with model phospholipid membrane at the air/water interface. Colloids Surf B Biointerfaces 2018; 171:167-175. [DOI: 10.1016/j.colsurfb.2018.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
|
18
|
Li S, Du L, Zhang Q, Wang W. Stabilizing mixed fatty acid and phthalate ester monolayer on artificial seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:626-633. [PMID: 30014940 DOI: 10.1016/j.envpol.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Phthalate esters which are widely used as industrial chemicals have become widespread contaminants in the marine environment. However, little information is available on the interfacial behavior of phthalate esters in the seawater, where contaminants generally occur at elevated concentrations and have the potential to transfer into the atmosphere through wave breaking on sea surface. We used artificial seawater coated with fatty acids to simulate sea surface microlayer in a Langmuir trough. The interactions of saturated fatty acids (stearic acid (SA) and palmitic acid (PA)) with one of the most abundant phthalate esters (di-(2-ethylhexyl) phthalate (DEHP)), were investigated under artificial seawater and pure water conditions. Pure DEHP monolayer was not stable, while more stable mixed monolayers were formed by SA and DEHP on the artificial seawater at relatively low surface pressure. Sea salts in the subphase can lower the excess Gibbs free energy to form more stable mixed monolayer. Among the ten components in the sea salts, Ca2+ ions played the major role in condensation of mixed monolayer. The condensed characteristic of the mixed SA (or PA)/DEHP monolayers suggested that the hydrocarbon chains were ordered on artificial seawater. By means of infrared reflection-absorption spectroscopy (IRRAS), we found that multiple sea salt mixtures induced deprotonated forms of fatty acids at the air-water interface. Sea salts can improve the stability and lifetime of mixed fatty acid and phthalate ester monolayer on aqueous droplets in the atmosphere. Interfacial properties of mixed fatty acid and phthalate ester monolayers at the air-ocean interface are important to help understand their behavior and fate in the marine environment.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| |
Collapse
|
19
|
Seslija S, Spasojević P, Panić V, Dobrzyńska-Mizera M, Immirzi B, Stevanović J, Popović I. Physico-chemical evaluation of hydrophobically modified pectin derivatives: Step toward application. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Bhattacharya G, Giri RP, Dubey A, Mitra S, Priyadarshini R, Gupta A, Mukhopadhyay MK, Ghosh SK. Structural changes in cellular membranes induced by ionic liquids: From model to bacterial membranes. Chem Phys Lipids 2018; 215:1-10. [PMID: 29944866 DOI: 10.1016/j.chemphyslip.2018.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022]
Abstract
Ionic liquids (ILs) have generated considerable attention recently because of their cytotoxicity and application as antibiotics. However, the mechanism of how they damage cell membranes is not currently well understood. In this paper, the antibacterial activities of two imidazolium-based ILs, namely 1-butyl- 3-methylimidazolium tetrafluroborate ([BMIM][BF4]) and 1-ethyl- 3-methylimidazolium tetrafluroborate ([EMIM][BF4]) have been investigated. The activity of [BMIM][BF4] on gram negative bacteria E. coli is observed to be stronger compared with the short chained [EMIM][BF4]. To explain this observation, the effects of these ILs on the self-assembled structures of model cellular membranes have been investigated. The in-plane elasticity of a monolayer formed at air-water interface by 1,2-dipalmitoyl- sn-glycero- 3-phosphocholine (DPPC) lipids was reduced in the presence of the ILs. The x-ray reflectivity studies on polymer supported lipid bilayer have shown the bilayer to shrink and correspondingly exhibit an increase in electron density. The presence of a certain mol% of negatively charged lipid, 1,2-dipalmitoyl-rac-glycero-3-phospho-L-serine (DPPS), in DPPC mono- and bi-layers enhances the effect considerably.
Collapse
Affiliation(s)
- G Bhattacharya
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - R P Giri
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, 700064, India
| | - A Dubey
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - S Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - R Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - A Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - M K Mukhopadhyay
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, 700064, India
| | - S K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
21
|
Interaction of polyhedral oligomeric silsesquioxanes and dipalmitoylphosphatidylcholine at the air/water interface: Thermodynamic and rheological study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [DOI: 10.1016/j.bbamem.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|