1
|
Chen C, Xie Z, Yang S, Wu H, Bi Z, Zhang Q, Xiao Y. Machine Learning Approach to Investigating Macrophage Polarization on Various Titanium Surface Characteristics. BME FRONTIERS 2025; 6:0100. [PMID: 40012846 PMCID: PMC11862448 DOI: 10.34133/bmef.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Objective: Current laboratory studies on the effect of biomaterial properties on immune reactions are incomplete and based on a single or a few combination features of the biomaterial design. This study utilizes intelligent prediction models to explore the key features of titanium implant materials in macrophage polarization. Impact Statement: This pilot study provided some insights into the great potential of machine learning in exploring bone immunomodulatory biomaterials. Introduction: Titanium materials are commonly utilized as bone replacement materials to treat missing teeth and bone defects. The immune response caused by implant materials after implantation in the body has a double-edged sword effect on osseointegration. Macrophage polarization has been extensively explored to understand early material-mediated immunomodulation. However, understanding of implant material surface properties and immunoregulations remains limited due to current experimental settings, which are based on trial-by-trial approaches. Artificial intelligence, with its capacity to analyze large datasets, can help explore complex material-cell interactions. Methods: In this study, the effect of titanium surface properties on macrophage polarization was analyzed using intelligent prediction models, including random forest, extreme gradient boosting, and multilayer perceptron. Additionally, data extracted from the newly published literature were further input into the trained models to validate their performance. Results: The analysis identified "cell seeding density", "contact angle", and "roughness" as the most important features regulating interleukin 10 and tumor necrosis factor α secretion. Additionally, the predicted interleukin 10 levels closely matched the experimental results from newly published literature, while the tumor necrosis factor α predictions exhibited consistent trends. Conclusion: The polarization response of macrophages seeded on titanium materials is influenced by multiple factors, and artificial intelligence can assist in extracting the key features of implant materials for immunoregulation.
Collapse
Affiliation(s)
- Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine,
Guangzhou Medical University, Guangzhou 510182, China
| | - Zhenhuan Xie
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine,
Guangzhou Medical University, Guangzhou 510182, China
| | - Songyu Yang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine,
Guangzhou Medical University, Guangzhou 510182, China
| | - Haitong Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine,
Guangzhou Medical University, Guangzhou 510182, China
| | - Zhisheng Bi
- School of Basic Medical Sciences,
Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine,
Guangzhou Medical University, Guangzhou 510182, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences,
Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Yin Xiao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine,
Guangzhou Medical University, Guangzhou 510182, China
- School of Medicine and Dentistry & Institute for Biomedicine and Glycomics,
Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
2
|
Sánchez-Bodón J, Moreno-Benitez I, Laza JM, Larrea-Sebal A, Martin C, Irastorza I, Silvan U, Vilas-Vilela JL. Multifunctional curcumin-based polymer coating: A promising platform against bacteria, inflammation and coagulation. Colloids Surf B Biointerfaces 2024; 241:114048. [PMID: 38954936 DOI: 10.1016/j.colsurfb.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The extensive use of polymers in the medical field has facilitated the development of various devices and implants, contributing to the restoration of organ function. However, despite their advantages such as biocompatibility and robustness, these materials often face challenges like bacterial contamination and subsequent inflammation, leading to implant-associated infections (IAI). Integrating implants effectively is crucial to prevent bacterial colonization and reduce inflammatory responses. To overcome these major issues, surface chemical modifications have been extensively explored. Indeed, click chemistry, and particularly, copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has emerged as a promising approach for surface functionalization without affecting material bulk properties. Curcumin, known for its diverse biological activities, suffers from low solubility and stability. To enhance its bioavailability, bioconjugation strategy has garnered attention in recent years. This study represents pioneering work in immobilizing curcumin derivative onto polyethylene terephthalate (PET) surfaces, aiming to combat bacterial adhesion, inflammation and coagulation. Before curcumin derivative bioconjugation, a fluorophore, dansyl derivative, was employed in order to monitor and determine the efficiency of the proposed methodology. Previous surface chemical modifications were required for the immobilization of both dansyl and curcumin derivatives. Ultraviolet-Visible (UV-Vis) demonstrated the amidation functionalization of PET surface. Other surface characterization techniques including X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance Fourier Transformed Infrared (ATR-FTIR), Scanning Electron Microscopy (SEM) and contact angle, among others, confirmed also the conjugation of both dansyl and curcumin derivatives. On the other hand, different biological assays corroborated that curcumin derivative immobilized PET surfaces do not exhibit cytotoxicity effect. Additionally, corresponding inflammation test were performed, indicating that these polymeric surfaces do not produce inflammation and, when curcumin derivative is immobilized, they decrease the inflammation marker level (IL-6). Moreover, the bacterial growth of both Gram positive and Gram negative bacteria were measured, demonstrating that the immobilization of curcumin derivative on PET provided antibacterial properties to the material. Finally, hemolysis rate analysis and whole blood clotting assay demonstrated the antithrombogenic effect of PET-Cur surfaces as well as no hemolysis concern in the fabricated functional surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain
| | - Isabel Moreno-Benitez
- Macromolecular Chemistry Group (LABQUIMAC), Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain.
| | - José Manuel Laza
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain
| | - Asier Larrea-Sebal
- University of the Basque Country (UPV/EHU), Department of Biochemistry and Molecular Biology, Leioa 48940, Spain; Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa 48940, Spain; Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Cesar Martin
- University of the Basque Country (UPV/EHU), Department of Biochemistry and Molecular Biology, Leioa 48940, Spain; Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa 48940, Spain; Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Igor Irastorza
- University of the Basque Country, (UPV/EHU), Department of Cell Biology and Histology, Faculty of Medicine, Leioa 48940, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
3
|
田 晨, 罗 锋, 李 洁, 何 学. [Preparation and Performance of a Novel Polyurethane Microporous Film on Polypropylene Medical Mesh Surface]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:853-860. [PMID: 39170003 PMCID: PMC11334284 DOI: 10.12182/20240760202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Objective This study aims to develop a medical patch surface material featuring a microporous polyurethane (PU) membrane and to assess the material's properties and biological performance. The goal is to enhance the clinical applicability of pelvic floor repair patch materials. Methods PU films with a microporous surface were prepared using PU prepolymer foaming technology. The films were produced by optimizing the PU prepolymer isocyanate index (R value) and the relative humidity (RH) of the foaming environment. The surface morphology of the PU microporous films was observed by scanning electron microscopy, and the chemical properties of the PU microporous films, including hydrophilicity, were analyzed using infrared spectroscopy, Raman spectroscopy, and water contact angle measurements. In vitro evaluations included testing the effects of PU microporous film extracts on the proliferation of L929 mouse fibroblasts and observing the adhesion and morphology of these fibroblasts. Additionally, the effect of the PU microporous films on RAW264.7 mouse macrophages was studied. Immune response and tissue regeneration were assessed in vivo using Sprague Dawley (SD) rats. Results The PU films exhibited a well-defined and uniform microporous structure when the R value of PU prepolymer=1.5 and the foaming environment RH=70%. The chemical structure of the PU microporous films was not significantly altered compared to the PU films, with a significantly lower water contact angle ([55.7±1.5]° ) compared to PU films ([69.5±1.7]° ) and polypropylene (PP) ([ 104.3±2.5]°), indicating superior hydrophilicity. The extracts from PU microporous films demonstrated good in vitro biocompatibility, promoting the proliferation of L929 mouse fibroblasts. The surface morphology of the PU microporous films facilitated fibroblast adhesion and spreading. The films also inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β by RAW264.7 macrophages while enhancing IL-10 and IL-4 secretion. Compared to 24 hours, after 72 hours of culture, the expression levels of TNF-α and IL-1β were reduced in both the PU film and PU microporous film groups and were significantly lower than those in the PP film group (P<0.05), with the most notable decreases observed in the PU microporous film group. IL-10 and IL-4 levels increased significantly in the PU microporous film group, surpassing those in the PP film group (P<0.01), with the most pronounced increase in IL-4. The PU microporous film induced mild inflammation with no significant fibrous capsule formation in vivo. After 60 days of implantation, the film partially degraded, showing extensive collagen fiber growth and muscle formation in its central region. Conclusion The PU microporous film exhibits good hydrophilicity and biocompatibility. Its surface morphology enhances cell adhesion, regulates the function of RAW264.7 macrophages, and promotes tissue repair, offering new insights for the design of pelvic floor repair and reconstruction patch materials.
Collapse
Affiliation(s)
- 晨旭 田
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - 锋 罗
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - 洁华 李
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - 学令 何
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Chen Y, Luo Z, Meng W, Liu K, Chen Q, Cai Y, Ding Z, Huang C, Zhou Z, Jiang M, Zhou L. Decoding the "Fingerprint" of Implant Materials: Insights into the Foreign Body Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310325. [PMID: 38191783 DOI: 10.1002/smll.202310325] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Foreign body reaction (FBR) is a prevalent yet often overlooked pathological phenomenon, particularly within the field of biomedical implantation. The presence of FBR poses a heavy burden on both the medical and socioeconomic systems. This review seeks to elucidate the protein "fingerprint" of implant materials, which is generated by the physiochemical properties of the implant materials themselves. In this review, the activity of macrophages, the formation of foreign body giant cells (FBGCs), and the development of fibrosis capsules in the context of FBR are introduced. Additionally, the relationship between various implant materials and FBR is elucidated in detail, as is an overview of the existing approaches and technologies employed to alleviate FBR. Finally, the significance of implant components (metallic materials and non-metallic materials), surface CHEMISTRY (charge and wettability), and physical characteristics (topography, roughness, and stiffness) in establishing the protein "fingerprint" of implant materials is also well documented. In conclusion, this review aims to emphasize the importance of FBR on implant materials and provides the current perspectives and approaches in developing implant materials with anti-FBR properties.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Luo
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weikun Meng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiqing Chen
- Department of Ultrasound, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Yongrui Cai
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zichuan Ding
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Huang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Jiang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liqiang Zhou
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
5
|
Pei D, Zeng Z, Geng Z, Cai K, Lu D, Guo C, Guo H, Huang J, Gao B, Yu S. Modulation of macrophage polarization by secondary cross-linked hyaluronan-dopamine hydrogels. Int J Biol Macromol 2024; 270:132417. [PMID: 38759857 DOI: 10.1016/j.ijbiomac.2024.132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The inflammatory response plays a critical role in standard tissue repair processes, wherein active modulation of macrophage polarization is necessary for wound healing. Dopamine, a mussel-inspired bioactive material, is widely involved in wound healing, neural/bone/myocardial regeneration, and more. Recent studies indicated that dopamine-modified biomaterials can potentially alter macrophages polarization towards a pro-healing phenotype, thereby enhancing tissue regeneration. Nevertheless the immunoregulatory activity of dopamine on macrophage polarization remains unclear. This study introduces a novel interpenetrating hydrogel to bridge this research gap. The hydrogel, combining varying concentrations of oxidized dopamine with hyaluronic acid hydrogel, allows precise regulation of mechanical properties, antioxidant bioactivity, and biocompatibility. Surprisingly, both in vivo and in vitro outcomes demonstrated that dopamine concentration modulates macrophage polarization, but not linearly. Lower concentration (2 mg/mL) potentially decrease inflammation and facilitate M2 type macrophage polarization. In contrast, higher concentration (10 mg/mL) exhibited a pro-inflammatory tendency in the late stages of implantation. RNA-seq analysis revealed that lower dopamine concentrations induced the M1/M2 transition of macrophages by modulating the NF-κB signaling pathway. Collectively, this research offers valuable insights into the immunoregulation effects of dopamine-integrated biomaterials in tissue repair and regeneration.
Collapse
Affiliation(s)
- Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China
| | - Zhijie Geng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Kehan Cai
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2008, Australia; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China.
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| |
Collapse
|
6
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Chato-Astrain J, Toledano-Osorio M, Alaminos M, Toledano M, Sanz M, Osorio R. Effect of functionalized titanium particles with dexamethasone-loaded nanospheres on macrophage polarization and activity. Dent Mater 2024; 40:66-79. [PMID: 37914549 DOI: 10.1016/j.dental.2023.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The aim of this study was to determine the effect of titanium micro particles (TiP) previously functionalized with nanoparticles doped with dexamethasone (Dex) and doxycycline (Dox), on macrophage polarization and activity. METHODS Macrophages RAW264.7 were cultured in the presence TiP loaded with dexamethasone -NPs (Dex)- and doxycycline -NPs (Dox)-, and as control, TiP with or without doped NPs. Cells were tested with and without previous bacterial lipopolysaccharide endotoxin (LPS) stimulation. Their morphology, proliferation, cytotoxicity, phenotypic change, and cytokines release were assessed by LIVE/DEAD, DNA release, metabolic activity, brightfield and scanning electron microscopy. The test Kruskall-Wallis was used for comparisons, while the cytokine expression profiles were examined by hierarchical clustering (p < 0.05). RESULTS Upon exposure with TiP macrophages were activated and polarized to M1, but without depicting cytotoxic effects. The particles were phagocytised, and vacuolized. When exposed to functionalised TiP with NPs(Dex) and NPs(Dox), the ratio M1/M2 was up to forty times lower compared to TiP alone. When exposed to LPS, TiP reduced cell viability in half. Functionalised TiP with NPs(Dex) inhibited the cytokine release exerted by TiP on macrophages. When macrophages were exposed to functionalised TiPs with NPs(Dex) with and without LPS, the effect of TiP on cytokine secretion was inhibited. SIGNIFICANCE Functionalised TiPs with NPs(Dex) and NPs(Dox) may potentially have beneficial effects on modulating titanium and LPS-related inflammatory reactions.
Collapse
Affiliation(s)
- Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain
| | - Manuel Toledano-Osorio
- Dental School, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada 18071, Spain..
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain
| | - Manuel Toledano
- Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain; Dental School, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group. University Complutense of Madrid, Madrid, Spain
| | - Raquel Osorio
- Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain; Dental School, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
8
|
Zhou L, Xing Y, Ou Y, Ding J, Han Y, Lin D, Chen J. Prolonged release of an antimicrobial peptide GL13K-loaded thermosensitive hydrogel on a titanium surface improves its antibacterial and anti-inflammatory properties. RSC Adv 2023; 13:23308-23319. [PMID: 37538512 PMCID: PMC10395452 DOI: 10.1039/d3ra03414c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The application of titanium in the orthopedic and dental fields is associated with bacterial infection and chronic inflammation, especially in the early stages after its implantation. In the present study, we investigated the antibacterial and anti-inflammatory activities of a titanium surface that was immobilized in a thermosensitive PLGA-PEG-PLGA hydrogel containing the antimicrobial peptide GL13K. The FTIR results confirmed the successful loading of GL13K. The degradation of the hydrogel and release of GL13K persisted for two weeks. The modified titanium surface exhibited a significant inhibitory effect on Porphyromonas gingivalis in contact with its surface, as well as an inhibitory effect on P.g in the surrounding environment by releasing GL13K antimicrobial peptides. The modified titanium surfaces were biocompatible with RAW264.7. Furthermore, the expression of pro-inflammatory cytokines IL-1β, TNF-α and iNOS was down-regulated, whereas anti-inflammatory cytokines Arg-1, IL-10 and VEGF-A were up-regulated on the modified titanium surfaces on days 3 and 5. This effect was attributed to the polarization of macrophages from the M1 to M2 phenotype, which was confirmed by the detection of macrophage M1/M2 biomarkers via immunofluorescence staining and flow cytometry. Thus, the thermosensitive PLGA-PEG-PLGA hydrogel release system carrying the antimicrobial peptide GL13K on a titanium surface exhibited antibacterial and anti-inflammatory properties and promoted macrophage polarization from the M1 to M2 phenotype, which may help create a favourable niche for bone formation under infective condition.
Collapse
Affiliation(s)
- Lin Zhou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| | - Yifeng Xing
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Yanjin Ou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Jiamin Ding
- Department of Oral Mucosa, Affiliated Stomatological Hospital of Fujian Medical University Fuzhou China
| | - Yu Han
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University Sendai City Japan
| | - Dong Lin
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
| | - Jiang Chen
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| |
Collapse
|
9
|
Yu H, Li Y, Pan Y, Wang H, Wang W, Ren X, Yuan H, Lv Z, Zuo Y, Liu Z, Lin W, Yao Q. Multifunctional porous poly (L-lactic acid) nanofiber membranes with enhanced anti-inflammation, angiogenesis and antibacterial properties for diabetic wound healing. J Nanobiotechnology 2023; 21:110. [PMID: 36973737 PMCID: PMC10041712 DOI: 10.1186/s12951-023-01847-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
With increased diabetes incidence, diabetic wound healing is one of the most common diabetes complications and is characterized by easy infection, chronic inflammation, and reduced vascularization. To address these issues, biomaterials with multifunctional antibacterial, immunomodulatory, and angiogenic properties must be developed to improve overall diabetic wound healing for patients. In our study, we prepared porous poly (L-lactic acid) (PLA) nanofiber membranes using electrospinning and solvent evaporation methods. Then, sulfated chitosan (SCS) combined with polydopamine-gentamicin (PDA-GS) was stepwise modified onto porous PLA nanofiber membrane surfaces. Controlled GS release was facilitated via dopamine self-polymerization to prevent early stage infection. PDA was also applied to PLA nanofiber membranes to suppress inflammation. In vitro cell tests results showed that PLA/SCS/PDA-GS nanofiber membranes immuomodulated macrophage toward the M2 phenotype and increased endogenous vascular endothelial growth factor secretion to induce vascularization. Moreover, SCS-contained PLA nanofiber membranes also showed good potential in enhancing macrophage trans-differentiation to fibroblasts, thereby improving wound healing processes. Furthermore, our in vitro antibacterial studies against Staphylococcus aureus indicated the effective antibacterial properties of the PLA/SCS/PDA-GS nanofiber membranes. In summary, our novel porous PLA/SCS/PDA-GS nanofiber membranes possessing enhanced antibacterial, anti-inflammatory, and angiogenic properties demonstrate promising potential in diabetic wound healing processes.
Collapse
Affiliation(s)
- Hao Yu
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yijia Li
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yining Pan
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Hongning Wang
- grid.268099.c0000 0001 0348 3990Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027 China
| | - Wei Wang
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Xiaobin Ren
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Hang Yuan
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Ziru Lv
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yijia Zuo
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Zhirong Liu
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Wei Lin
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Qingqing Yao
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| |
Collapse
|
10
|
Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128:67-82. [DOI: 10.1016/j.diff.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
11
|
Chen L, Yao Z, Zhang S, Tang K, Yang Q, Wang Y, Li B, Nie Y, Tian X, Sun L. Biomaterial-induced macrophage polarization for bone regeneration. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
13
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
14
|
Rakic M, Radunovic M, Petkovic-Curcin A, Tatic Z, Basta-Jovanovic G, Sanz M. Study on the immunopathological effect of titanium particles in peri-implantitis granulation tissue: a case-control study. Clin Oral Implants Res 2022; 33:656-666. [PMID: 35344630 PMCID: PMC9321593 DOI: 10.1111/clr.13928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Objectives To identify titanium particles (TPs) in biopsy specimens harvested from peri‐implantitis lesions and secondarily to study the histopathological characteristics in peri‐implantitis compared to periodontitis, in order to evaluate whether the presence of TPs could alter respective inflammatory patterns. Material and methods Biopsies containing granulation tissue were harvested during routine surgical treatment in 39 peri‐implantitis cases and 35 periodontitis controls. Serial sections were obtained using titanium‐free microtome blades. The first and last sections of the peri‐implantitis specimens were used for identification of TPs by scanning electron microscopy coupled with dispersive X‐ray spectrometry. Intermediate sections and periodontitis specimens were processed for descriptive histological study using haematoxylin–eosin staining and for immunohistochemical analysis using CD68, IL‐6, Nf‐kB and VEGF markers. Results TPs were identified in all peri‐implantitis specimens as free metal bodies interspersed within granulation tissue. However, presence of macrophages or multinucleated giant cells engulfing the TPs were not identified in any specimen. Peri‐implantitis granulations were characterized by a chronic inflammatory infiltrate rich in neutrophils. About half of peri‐implantitis patients exhibited a subacute infiltrate characterized with lymphocytes interweaved with neutrophils and eosinophils. When compared to periodontitis, peri‐implantitis tissues showed higher proportions of macrophages and a more intense neovascularization, based on significantly higher expression of CD68 and VEGF respectively. Conclusion TPs were identified in all peri‐implantitis specimens, but without evidencing any foreign body reaction suggestive for direct pathological effects of TPs. The peri‐implantitis granulation tissue was characterized by intense neovascularization and presence of a chronic inflammatory infiltrate dominated by plasma cells, neutrophils and macrophages.
Collapse
Affiliation(s)
- Mia Rakic
- Facultad de Odontologia, Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| | - Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | - Mariano Sanz
- Facultad de Odontologia, Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Weber F, Quach HQ, Reiersen M, Sarraj SY, Bakir DN, Jankowski VA, Nilsson PH, Tiainen H. Characterization of the foreign body response of titanium implants modified with polyphenolic coatings. J Biomed Mater Res A 2022; 110:1341-1355. [PMID: 35218127 PMCID: PMC9305744 DOI: 10.1002/jbm.a.37377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
The foreign body response is dictating the outcome of wound healing around any implanted materials. Patients who suffer from chronic inflammatory diseases and impaired wound healing often face a higher risk for implant failure. Therefore, functional surfaces need to be developed to improve tissue integration. For this purpose, we evaluated the impact of surface coatings made of antioxidant polyphenolic molecules tannic acid (TA) and pyrogallol (PG) on the host response in human blood. Our results showed that although the polyphenolic surface modifications impact the initial blood protein adsorption compared to Ti, the complement and coagulation systems are triggered. Despite complement activation, monocytes and granulocytes remained inactivated, which was manifested in a low pro-inflammatory cytokine expression. Under oxidative stress, both coatings were able to reduce intracellular reactive oxygen species in human gingival fibroblasts (hGFs). However, no anti-inflammatory effects of polyphenolic coatings could be verified in hGFs stimulated with lipopolysaccharide and IL-1β. Although polyphenols reportedly inhibit the NF-κB signaling pathway, phosphorylation of NF-κB p65 was observed. In conclusion, our results indicated that TA and PG coatings improved the hemocompatibility of titanium surfaces and have the potential to reduce oxidative stress during wound healing.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Huy Quang Quach
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Reiersen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sadaf Yosef Sarraj
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Dyala Nidal Bakir
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Per H Nilsson
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Classical Dichotomy of Macrophages and Alternative Activation Models Proposed with Technological Progress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9910596. [PMID: 34722776 PMCID: PMC8553456 DOI: 10.1155/2021/9910596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
Macrophages are important immune cells that participate in the regulation of inflammation in implant dentistry, and their activation/polarization state is considered to be the basis for their functions. The classic dichotomy activation model is commonly accepted, however, due to the discovery of macrophage heterogeneity and more functional and iconic exploration at different technologies; some studies have discovered the shortcomings of the dichotomy model and have put forward the concept of alternative activation models through the application of advanced technologies such as cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), and hyperspectral image (HSI). These alternative models have great potential to help macrophages divide phenotypes and functional genes.
Collapse
|
17
|
Zhang Y, Wang P, Jin J, Li L, He SY, Zhou P, Jiang Q, Wen C. In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnol Bioeng 2021; 119:591-604. [PMID: 34723387 DOI: 10.1002/bit.27976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
Recent evidence shows that the curvature of porous scaffold plays a significant role in guiding tissue regeneration. However, the underlying mechanism remains controversial to date. In this study, we developed an in silico model to simulate the effect of surface curvature on the osteoconduction of scaffold implants, which comprises the primary aspects of bone regeneration. Selective laser melting was used to manufacture a titanium scaffold with channels representative of different strut curvatures for in vivo assessment. The titanium scaffold was implanted in the femur condyles of rabbits to validate the mathematical model. Simulation results suggest that the curvature affected the distribution of growth factors and subsequently induced the migration of osteoblast lineage cells and bone deposition to the locations with higher curvature. The predictions of the mathematical model are in good agreement with the in vivo assessment results, in which newly formed bone first appeared adjacent to the vertices of the major axes in elliptical channels. The mechanism of curvature-guided osteoconduction may provide a guide for the design optimization of scaffold implants to achieve enhanced bone ingrowth.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiyong Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Si-Yuan He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cuie Wen
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Zhao DW, Ren B, Wang HW, Zhang X, Yu MZ, Cheng L, Sang YH, Cao SS, Thieringer FM, Zhang D, Wan Y, Liu C. 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis. Bone Joint Res 2021; 10:411-424. [PMID: 34259564 PMCID: PMC8333031 DOI: 10.1302/2046-3758.107.bjr-2020-0334.r4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aims The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Bing Ren
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China.,Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Hong-Wei Wang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Xiao Zhang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ming-Zhi Yu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan-Hua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Shuai-Shuai Cao
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Florian M Thieringer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Dong Zhang
- Institute of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Chao Liu
- Institute of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Yang Y, Lin Y, Zhang Z, Xu R, Yu X, Deng F. Micro/nano-net guides M2-pattern macrophage cytoskeleton distribution via Src-ROCK signalling for enhanced angiogenesis. Biomater Sci 2021; 9:3334-3347. [PMID: 33725044 DOI: 10.1039/d1bm00116g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implant surface topography has been proven to determine the fate of adhered macrophage polarization, which is closely related to the cytoskeletal arrangement during adhesion. Our purpose was to establish a topography that is favourable to M2 macrophage switching by regulating macrophage cytoskeleton distribution. Two micro/nano-net structures with different pore sizes were generated by alkali bathing at medium (SAM) or high (SAH) temperature based on the micro-level surface. Their surface characteristics, in vitro macrophage polarization and impact on endothelial cells were analysed. The in vivo macrophage response and osseointegration were also tested. The results showed that the micro/nano-net has high hydrophilicity and moderate roughness. In the SAH and SAM groups, macrophages exhibited an elongated cytoskeleton with tiny protrusions and had a high M2/M1 polarization ratio with enhanced angiogenic ability, and in vivo studies also showed faster angiogenesis and bone formation in these groups. SAH showed even better results than SAM. For cytoskeleton related pathway explanation, ROCK expression was upregulated and Src expression was downregulated at the early or late adhesion stage in both the SAH and SAM groups. These results indicated that the micro/nano-net structure guides elongated macrophage adhesion states via Src-ROCK signalling and switches macrophages towards the M2 phenotype, which provides a cytoskeleton-oriented topography design for an ideal immune response.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yujing Lin
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaoran Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| |
Collapse
|
20
|
Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. Expert Opin Ther Targets 2021; 25:191-209. [PMID: 33682588 DOI: 10.1080/14728222.2021.1901079] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a systemic disease with immune abnormalities that can affect the entire digestive tract. A high percentage of patients with IBD are unresponsive to current pharmacological agents, hence the need exists for novel therapeutic approaches. There is compelling evidence that macrophage polarization plays a key role in the remission of IBD patients and that it could open up future treatment options for patients.Areas covered: This paper highlights the crucial role of macrophage polarization in IBD. The authors shed light on the phenotype and function of macrophages and potential drug targets for polarization regulation. Existing approaches for regulating macrophage polarization are discussed and potential solutions for safety concerns are considered. We performed a literature search on the IBD and macrophage polarization mainly published in PubMed January 2010-July 2020.Expert opinion: Evidence indicates that there are fewer M2 macrophages and a high proportion of M1 macrophages in the intestinal tissues of individuals who are non- responsive to treatment. Regulating macrophage polarization is a potential novel targeted option for IBD treatment. Improved mechanistic insights are required to uncover more precise and effective targets for skewing macrophages into a proper phenotype.
Collapse
Affiliation(s)
- Yaoyao Du
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
22
|
Modeling osteoinduction in titanium bone scaffold with a representative channel structure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111347. [PMID: 32919693 DOI: 10.1016/j.msec.2020.111347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/12/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
Optimizing scaffold architecture for perfect osteointegration depends on good understanding of bone ingrowth in the porous space of implants. This study developed an immunoregulatory agent-based model to discover the osteoinduction mechanism in porous scaffolds. Immunoreaction, macrophage polarization, and the corresponding growth factors were combined in the model, and all played critical roles in recruiting osteogenic cells that migrated into the scaffolds. Angiogenesis was also considered in this model. The bone ingrowth predicted by the model coincides with results from published in vivo experiments. Simulation results suggested that the pore architecture affected the diffusion process of chemotactic factors in the scaffolds, subsequently influencing the complex reactions of diverse cells and the osteoinduction location. In flexural pore spaces, bone formation spread from the periphery into the center of scaffolds due to larger M2 phenotype macrophage populations colonizing boundary regions and the distribution of corresponding growth factors concentration. In straight channels, osteogenic cells migrated further inward and osteoinduction initiated in deeper position as a result of the deeper distribution of osteogenic cytokines concentration field.
Collapse
|
23
|
Toyama N, Tsuchiya S, Kamio H, Okabe K, Kuroda K, Okido M, Hibi H. The effect of macrophages on an atmospheric pressure plasma-treated titanium membrane with bone marrow stem cells in a model of guided bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:70. [PMID: 32705350 DOI: 10.1007/s10856-020-06412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Guided bone regeneration (GBR) is an established treatment. However, the mechanisms of GBR are not fully understood. Recently, a GBR membrane was identified that acts as a passive barrier to regenerate bone via activation and migration of macrophages (Mps) and bone marrow stem cells (BMSCs). Atmospheric pressure plasma treatment of the titanium membrane (APP-Ti) activated macrophages. The purpose of this study was to analyze whether macrophages attached to an APP-Ti membrane affected differentiation of BMSCs in a GBR model. Human THP-1 macrophages (hMps) were cultured on non-treated Ti (N-Ti) and APP-Ti membrane. Macrophage polarization was analyzed by RT-PCR and immunocytochemistry. Secreted proteins from hMps on N-Ti and APP-Ti were detected by LC/MS/MS. hBMSCs were co-cultured with hMps on N-Ti or APP-Ti and analyzed by osteogenic differentiation, Alizarin red S staining, and alkaline phosphatase (ALP) activity. N-Ti and APP-Ti membrane were also implanted into bone defects of rat calvaria. hMps on APP-Ti were polarized M2-like macrophages. hMps on N-Ti secreted plasminogen activator inhibitor-1 and syndecan-2, but hMps on APP-Ti did not. hBMSCs co-cultured with hMps on APP-Ti increased cell migration and gene expression of osteogenic markers, but suppressed mineralization, while ALP activity was similar to that of hMps on N-Ti in vitro. The volume of newly formed bone was not significantly different between N-Ti and APP-Ti membrane in vivo. M2 polarized hMps on APP-Ti suppressed osteogenic induction of hBMSCs in vitro. The indirect role of hMps on APP-Ti in newly formed bone was limited.
Collapse
Affiliation(s)
- Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shuhei Tsuchiya
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hisanobu Kamio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuto Okabe
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kensuke Kuroda
- Institute of Materials and Systems for sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Masazumi Okido
- Institute of Materials and Systems for sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
24
|
Wu ATH, Srivastava P, Yadav VK, Tzeng DTW, Iamsaard S, Su ECY, Hsiao M, Liu MC. Ovatodiolide, isolated from Anisomeles indica, suppresses bladder carcinogenesis through suppression of mTOR/β-catenin/CDK6 and exosomal miR-21 derived from M2 tumor-associated macrophages. Toxicol Appl Pharmacol 2020; 401:115109. [PMID: 32544403 DOI: 10.1016/j.taap.2020.115109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/22/2022]
Abstract
Bladder cancer (BCa) is the fourth leading cause of cancer deaths worldwide due to its aggressiveness and resistance against therapies. Intricate interactions between cancer cells and the tumor microenvironment (TME) are essential for both disease progression and regression. Thus, interrupting molecular communications within the TME could potentially provide improved therapeutic efficacies. M2-polarized tumor-associated macrophages (M2 TAMs) were shown to contribute to BCa progression and drug resistance. We attempted to provide evidence for ovatodiolide (OV) as a potential therapeutic agent that targets both TME and BCa cells. First, tumor-suppressing functions of OV were determined by cell viability, colony, and tumor-sphere formation assays using a coculture system composed of M2 TAMs/BCa cells. Subsequently, we demonstrated that extracellular vesicles (EVs) isolated from M2 TAMs containing oncomiR-21 and mRNAs, including Akt, STAT3, mTOR, and β-catenin, promoted cisplatin (CDDP) resistance, migration, and tumor-sphere generation in BCa cells, through increasing CDK6, mTOR, STAT3, and β-catenin expression. OV treatment also prevented M2 polarization and reduced EV cargos from M2 TAMs. Finally, in vivo data demonstrated that OV treatment overcame CDDP resistance. OV only and the OV + CDDP combination both resulted in significant reductions in mTOR, β-catenin, CDK6, and miR-21 expression in tumor samples and EVs isolated from serum. Collectively, we demonstrated that M2 TAMs induced malignant properties in BCa cells, in part via oncogenic EVs. OV treatment prevented M2 TAM polarization, reduced EV cargos derived from M2 TAMs, and suppressed β-catenin/mTOR/CDK6 signaling. These findings provide preclinical evidence for OV as a single or adjuvant agent for treating drug-resistant BCa.
Collapse
Affiliation(s)
- Alexander T H Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Prateeti Srivastava
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand; Research Institute for Human High Performance and Health Promotion (HHP&HP), Khon Kaen University, Khon Kaen, Thailand
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Che Liu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
25
|
Su J, Du Z, Xiao L, Wei F, Yang Y, Li M, Qiu Y, Liu J, Chen J, Xiao Y. Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110983. [PMID: 32487397 DOI: 10.1016/j.msec.2020.110983] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
Graphene oxide (GO) and its derivatives are currently being explored for the modification of bone biomaterials. However, the effect of GO coatings on immunoregulation and subsequent impacts on osteogenesis are not known. In this study, GO was coated on pure titanium using dopamine. GO-coated titanium (Ti-GO) surfaces exhibited good biocompatibility, with the ability to stimulate the expression of osteogenic genes, and extracellular matrix mineralization in human mesenchymal stromal cells (hMSCs). Interestingly, it was found that GO-coated surfaces could manipulate the polarization of macrophages and expression of inflammatory cytokines via the Toll-like receptor pathway. Under physiological conditions, Ti-GO activated macrophages and induced mild inflammation and a pro-osteogenic environment, characterized by a slight increase in the levels of proinflammatory cytokines, as well as increased expression of the TGF-β1 and oncostatin M genes. In an environment mimicking acute inflammatory conditions, Ti-GO attenuated inflammatory responses, as shown by the downregulation of proinflammatory cytokines. Conditioned medium collected from macrophages stimulated by Ti-GO played a significant stimulatory role in the osteogenic differentiation of hMSCs. In summary, GO-coated surfaces displayed beneficial immunomodulatory effects in osteogenesis, indicating that GO could be a potential substance for the modification of bone scaffolds and implants.
Collapse
Affiliation(s)
- Jiehua Su
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, China; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Yubei Qiu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Jiali Liu
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, China
| | - Jiang Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, China.
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
26
|
Duan Y, Zheng H, Li Z, Yao Y, Ding J, Wang X, Nakkala JR, Zhang D, Wang Z, Zuo X, Zheng X, Ling J, Gao C. Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. Biomaterials 2020; 246:120012. [PMID: 32276198 DOI: 10.1016/j.biomaterials.2020.120012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
The immune system responds immediately to tissue trauma and to biomaterial implants under the participation of M1/M2 macrophages polarization. The surface properties of biomaterials can significantly influence the tissue repair progress through modulating the macrophage functions. In this study, the surface of poly(propylene fumarate) polyurethane films (PPFU) is grafted with a same density of enantiomeric poly-l-lysine (PPFU-g-PLL) and poly-d-lysine (PPFU-g-PDL), leading to a similar level of enhanced surface wettability for the PPFU-g-PLL and PPFU-g-PDL. The polylysine-grafted PPFU can restrict the M1 polarization, whereas promote M2 polarization of macrophages in vitro, judging from the secretion of cytokines and expression of key M1 and M2 related genes. Comparatively, the PPFU-g-PDL has a stronger effect in inducing M2 polarization in vivo, resulting in a thinner fibrous capsule surrounding the implant biomaterials. The CD44 and integrins of macrophages participate in the polarization process probably by activating focal adhesion kinase (FAK) and Rho-associated protein kinase (ROCK), and downstream PI3K/Akt1/mTOR signal axis to up regulate M2 related gene expression. This study confirms for the first time that polylysine coating is an effective method to regulate the immune response of biomaterials, and the polylysine-modified thermoplastic PPFU with the advantage to promote M2 polarization may be applied widely in regenerative medicine.
Collapse
Affiliation(s)
- Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zehua Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuemei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Li D, Li Y, Shrestha A, Wang S, Wu Q, Li L, Guan C, Wang C, Fu T, Liu W, Huang Y, Ji P, Chen T. Effects of Programmed Local Delivery from a Micro/Nano-Hierarchical Surface on Titanium Implant on Infection Clearance and Osteogenic Induction in an Infected Bone Defect. Adv Healthc Mater 2019; 8:e1900002. [PMID: 30985090 DOI: 10.1002/adhm.201900002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/24/2019] [Indexed: 02/05/2023]
Abstract
The two major causes for implant failure are postoperative infection and poor osteogenesis. Initial period of osteointegration is regulated by immunocytes and osteogenic-related cells resulting in inflammatory response and tissue healing. The healing phase can be influenced by various environmental factors and biological cascade effect. To synthetically orchestrate bone-promoting factors on biomaterial surface, built is a dual delivery system coated on a titanium surface (abbreviated as AH-Sr-AgNPs). The results show that this programmed delivery system can release Ag+ and Sr2+ in a temporal-spatial manner to clear pathogens and activate preosteoblast differentiation partially through manipulating the polarization of macrophages. Both in vitro and in vivo assays show that AH-Sr-AgNPs-modified surface renders a microenvironment adverse for bacterial survival and favorable for macrophage polarization (M2), which further promotes the differentiation of preosteoblasts. Infected New Zealand rabbit femoral metaphysis defect model is used to confirm the osteogenic property of AH-Sr-AgNPs implants through micro-CT, histological, and histomorphometric analyses. These findings demonstrate that the programmed surface with dual delivery of Sr2+ and Ag+ has the potential of achieving an enhanced osteogenic outcome through favorable immunoregulation.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Yihan Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Annie Shrestha
- Faculty of DentistryUniversity of Toronto Toronto ON M5G 1G6 Canada
| | - Si Wang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Qingqing Wu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Chao Guan
- Jiaxing Hospital of Traditional Chinese Medicine Jiaxing 314001 P. R. China
| | - Chao Wang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Tiwei Fu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Wenzhao Liu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing 401147 P. R. China
| |
Collapse
|
28
|
Li T, Ma H, Ma H, Ma Z, Qiang L, Yang Z, Yang X, Zhou X, Dai K, Wang J. Mussel-Inspired Nanostructures Potentiate the Immunomodulatory Properties and Angiogenesis of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17134-17146. [PMID: 31008578 DOI: 10.1021/acsami.8b22017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs)-material constructs mainly come from the secretion of trophic factors from MSCs, especially the immunomodulatory and angiogenic cytokines. Recent findings indicate the significance of topographical cues from these materials in modulating paracrine functions of MSCs. Here, we developed functionalized three-dimensional-printed bioceramic (BC) scaffolds with a mussel-inspired surface coating in order to regulate the paracrine function of adipose-derived MSCs (Ad-MSCs). We found that Ad-MSCs cultured on polydopamine-modified BC scaffolds (DOPA-BC) significantly produced more immunomodulatory and pro-angiogenic factors when compared with those cultured on BC scaffolds or microplates. Functional assays, such as endothelial progenitor cells migration, tube formation, and macrophage polarization, were performed to confirm the enhanced paracrine functions of the secreted trophic factors from Ad-MSCs cultured on DOPA-BC scaffolds. Further investigation identified that both focal adhesion kinase- and extracellular signal-related kinase signaling were the required mechano-transduction pathways through which the mussel-inspired surface stimulated the paracrine effect of Ad-MSCs. In a diabetic skin-defect-healing model in rats, conditioned medium received from the Ad-MSCs cultured on DOPA-BC sped wound closure, enhanced vascularization, and promoted macrophage switching from a proinflammatory M1 to a pro-healing and anti-inflammatory M2 phenotype in the wound bed. These results demonstrate that a bio-inspired coating with polydopamine represents an effective method to enhance the paracrine function of MSCs. Our findings illustrate a novel strategy to accelerate tissue regeneration by guiding the paracrine-signaling network.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Hongshi Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Hongzhi Ma
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine , Central South University , Changsha 410006 , Hunan , China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Lei Qiang
- Southwest Jiaotong University College of Medicine , No. 111, North Section, 2nd Ring Road , Chengdu 610031 , Sichuan , China
| | - Zezheng Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Xiaoxiao Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Xiaojun Zhou
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| |
Collapse
|
29
|
Li Y, Yang C, Yin X, Sun Y, Weng J, Zhou J, Feng B. Inflammatory responses to micro/nano-structured titanium surfaces with silver nanoparticles in vitro. J Mater Chem B 2019. [DOI: 10.1039/c8tb03245a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabricated AgPD-MNT exhibited potent antibacterial activity and mediated the inflammatory response.
Collapse
Affiliation(s)
- Yiting Li
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Congling Yang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
- College of Chemistry and Materials Science, Sichuan Normal University
- Chengdu 610066
| | - Xianzhen Yin
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yuhua Sun
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Jie Weng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Jie Zhou
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
30
|
Trindade R, Albrektsson T, Galli S, Prgomet Z, Tengvall P, Wennerberg A. Bone Immune Response to Materials, Part I: Titanium, PEEK and Copper in Comparison to Sham at 10 Days in Rabbit Tibia. J Clin Med 2018; 7:E526. [PMID: 30544551 PMCID: PMC6307090 DOI: 10.3390/jcm7120526] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022] Open
Abstract
Bone anchored biomaterials have become an indispensable solution for the restoration of lost dental elements and for skeletal joint replacements. However, a thorough understanding is still lacking in terms of the biological mechanisms leading to osseointegration and its contrast, unwanted peri-implant bone loss. We have previously hypothesized on the participation of immune mechanisms in such processes, and later demonstrated enhanced bone immune activation up to 4 weeks around titanium implants. The current experimental study explored and compared in a rabbit tibia model after 10 days of healing time, the bone inflammation/immunological reaction at mRNA level towards titanium, polyether ether ketone (PEEK) and copper compared to a Sham control. Samples from the test and control sites were, after a healing period, processed for gene expression analysis (polymerase chain reaction, (qPCR)) and decalcified histology tissue analysis. All materials displayed immune activation and suppression of bone resorption, when compared to sham. The M1 (inflammatory)/M2 (reparative) -macrophage phenotype balance was correlated to the proximity and volume of bone growth at the implant vicinity, with titanium demonstrating a M2-phenotype at 10 days, whereas copper and PEEK were still dealing with a mixed M1- and M2-phenotype environment. Titanium was the only material showing adequate bone growth and proximity inside the implant threads. There was a consistent upregulation of (T-cell surface glycoprotein CD4) CD4 and downregulation of (T-cell transmembrane glycoprotein CD8) CD8, indicating a CD4-lymphocyte phenotype driven reaction around all materials at 10 days.
Collapse
Affiliation(s)
- Ricardo Trindade
- Department of Prosthodontics, Faculty of Odontology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Tomas Albrektsson
- Department of Biomaterials, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden.
- Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden.
| | - Silvia Galli
- Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden.
| | - Zdenka Prgomet
- Department of Oral Pathology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden.
| | - Pentti Tengvall
- Department of Biomaterials, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Ann Wennerberg
- Department of Prosthodontics, Faculty of Odontology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
31
|
A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater 2018; 79:1-22. [PMID: 30121373 DOI: 10.1016/j.actbio.2018.08.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Evolution of metal implants progressively shifted the focus from adequate mechanical strength to improved biocompatibility and absence of toxicity and, finally, to fast osseointegration. Recently, new frontiers and challenges of Ti implants have been addressed to improvement of bioactivity, fighting of bacterial infection and biofilm formation, as well as modulation of inflammation. This is closely related to the clinical demand of multifunctional implants able to simultaneously have a number of specific responses with respect to body fluids, cells (osteoblasts, fibroblasts, macrophages) and pathogenic agents (bacteria, viruses). This complex system of multiple biological stimuli and surface responses is a major arena of the current research on biomaterials and biosurfaces. This review covers the strategies explored to this purpose since 2010 in the case of Ti and Ti alloys, considering that the number of related papers doubled about in the last seven years and no review has comprehensively covered this engaging research area yet. The different approaches followed for producing multifunctional Ti-based surfaces involve the use of thick and thin inorganic coatings, chemical surface treatments, and functionalization strategies coupled with organic coatings. STATEMENT OF SIGNIFICANCE According to the clinical demand of multifunctional implants able to simultaneously have a number of specific responses with respect to body fluids, cells and pathogenic agents, new frontiers of Ti implants have been addressed to improvement of bioactivity, fighting of bacterial infection and biofilm formation, as well as modulation of inflammation. Literature since 2010 is here reviewed. Several strategies for getting bioactive and antibacterial actions on Ti surfaces have been suggested, but they still need to be optimized with respect to several concerns. A further step will be to combine on the same surface a proven ability of modulation of inflammatory response. The achievement of multifunctional surfaces able to modulate inflammation and to promote osteogenesis is a grand challenge.
Collapse
|