1
|
Kakkadath M, Naidu D, Kanthlal SK, Sharun K. Combating Methotrexate Resistance in Cancer Treatment: A Review on Navigating Pathways and Enhancing Its Efficacy With Fat-Soluble Vitamins. SCIENTIFICA 2025; 2025:8259470. [PMID: 40270992 PMCID: PMC12017957 DOI: 10.1155/sci5/8259470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Methotrexate (MTX), a potent analogue and antagonist of folic acid, is a first-line treatment for rheumatoid arthritis, IBD and cancer. The development of MTX resistance contributes to the reduced efficacy and development of adverse reactions, forcing clinicians to withdraw treatment early. This drawback requires combinational approaches to combat the resistance and enhance the efficacy and safety of MTX. To provide a brief overview of MTX resistance and strategies to mitigate its aftereffects in cancer therapy, a literature-based search was conducted using keywords such as cancer pathology, MTX mechanism and resistance, S100A4, folate uptake, folate efflux, P-glycoprotein, beta-catenin and anticancer properties of Vitamins A, D, E and K. Investigations encompassing in vitro studies, in vivo studies and clinical trials were reviewed to identify the mechanisms of resistance induced by MTX and the potential benefits of coadministering fat-soluble vitamins with existing anticancer drugs. Derivates of Vitamin A could target cancer stem cells and increase chemotherapy sensitivity in non-small cell lung cancer. Similarly, calcitriol and cytotoxic medications exhibit additive or synergistic effects. Existing research revealed that fat-soluble vitamins can inhibit drug transporters, such as P-glycoprotein, which inhibit drug efflux, improving chemotherapy efficacy in cancer. As personalised medicine continues to evolve, incorporating combination approaches with MTX and fat-soluble vitamins holds promise for enhancing treatment efficacy, which can counteract MTX resistance via multiple pathways and improve the safety profile.
Collapse
Affiliation(s)
- Muhsina Kakkadath
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Disha Naidu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - S. K. Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Khan Sharun
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
2
|
Nicolaescu OE, Belu I, Mocanu AG, Manda VC, Rău G, Pîrvu AS, Ionescu C, Ciulu-Costinescu F, Popescu M, Ciocîlteu MV. Cyclodextrins: Enhancing Drug Delivery, Solubility and Bioavailability for Modern Therapeutics. Pharmaceutics 2025; 17:288. [PMID: 40142952 PMCID: PMC11945013 DOI: 10.3390/pharmaceutics17030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Cyclodextrins (CDs) have revolutionized the pharmaceutical industry with their ability to enhance the stability, solubility, and bioavailability of a wide range of active substances. These cyclic oligosaccharides, with a unique hydrophilic exterior and hydrophobic cavity, form inclusion complexes with poorly soluble drugs, improving their pharmacokinetic profiles and therapeutic efficacy. This review explores the multifaceted roles of cyclodextrins in pharmaceutical formulations, ranging from oral, ophthalmic, parenteral, and topical applications to their emerging use in targeted therapies, gene delivery, and treatment of neurodegenerative, cardiovascular, and infectious diseases. Cyclodextrins not only improve drug solubility and controlled release but also reduce toxicity and side effects, leading to safer and more effective treatments. Recent advancements, such as cyclodextrin-based nanoparticles, offer promising pathways for cancer therapy, chronic disease management, and personalized medicine. As research continues, cyclodextrins remain at the forefront of innovation in drug delivery systems, ensuring better patient outcomes and expanding the possibilities of modern therapeutics.
Collapse
Affiliation(s)
- Oana Elena Nicolaescu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Ionela Belu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Andreea Gabriela Mocanu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Valentin Costel Manda
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (V.C.M.); (M.V.C.)
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București Street, 200512 Craiova, Dolj County, Romania;
| | - Felicia Ciulu-Costinescu
- Department of Pharmacy, University Titu Maiorescu, 16 Gheorghe Șincai Street, 031593 București, Romania;
| | - Mariana Popescu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Maria Viorica Ciocîlteu
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (V.C.M.); (M.V.C.)
| |
Collapse
|
3
|
Nie W, Zhong W, Qian L, Zhong H, Hou Y, Xu H, Qi S, Dai L, Han X, Yang X, Xu R, He Y, Lin D, Gao F. Oral chitosan-cyclodextrin "shell-core" nanoparticles co-loaded Rhein and chlorogenic acid for ulcerative colitis treatment. Int J Biol Macromol 2025; 288:138493. [PMID: 39647762 DOI: 10.1016/j.ijbiomac.2024.138493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs). These nanoparticles utilize cyclodextrin-based polymers and folate-amantadine polymers to form a supramolecular core that targets macrophages for anti-inflammatory action with RH, while chitosan cross-link to CGA in the outer shell provides microenvironment-sensitive antioxidant release. The results indicate that CP@CGA-FA/TA@RH NPs could effectively inhibit the classical TLR4/MyD88/NF-κB-mediated anti-inflammatory pathway and activate the Nrf2/HO-1-mediated antioxidant pathway, offering a novel approach to UC treatment. Q-value analysis confirms the substantial co-medication effect between RH and CGA. This study is the first to develop a nano-system combining two food-derived ingredients for the integrated treatment of UC.
Collapse
Affiliation(s)
- Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Lin Qian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiyun Zhong
- Sichuan Vocational College of Health and Rehabilitation, Zigong 643000, China
| | - Yusen Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Xinyue Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Dasheng Lin
- Chengdu Huashen Technology Group Co., Ltd., Chengdu 611137, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
4
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wu S, Yan M, Liang M, Yang W, Chen J, Zhou J. Supramolecular host-guest nanosystems for overcoming cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:805-827. [PMID: 38263983 PMCID: PMC10804391 DOI: 10.20517/cdr.2023.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024]
Abstract
Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It is hoped that this review will provide more positive references for overcoming cancer drug resistance and promoting the development of supramolecular host-guest nanosystems.
Collapse
Affiliation(s)
- Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
6
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
7
|
Ziółkowski H, Szteyn K, Jędrzkiewicz D, Rasiński B, Jaroszewski J. Tigecycline Absorption Improved by Selected Excipients. Pharmaceuticals (Basel) 2023; 16:1111. [PMID: 37631025 PMCID: PMC10457872 DOI: 10.3390/ph16081111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
To investigate the effects of (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), tocopherol polyethylene glycol 1000 succinate (TPGS), sodium desoxycholate (SDOCH), trimethyl chitosan (TMC), and sodium caprate (C10) on the plasma concentration and the oral bioavailability of tigecycline in broiler chickens. To test the effects of the excipients on absorption of tigecycline, a tetracycline that is poorly absorbed from the gastrointestinal tract, broiler chickens were used as an animal model. Tigecycline (10 mg/kg body weight) was administered intravenously, orally, and orally with one of the excipients. Plasma samples were taken after administration. To measure tigecycline concentrations, high-performance liquid chromatography coupled with tandem mass spectrometry was used. Compartmental and non-compartmental analyses were used for pharmacokinetic analyses of mean plasma concentrations versus time. With the exception of sodium caprate, all the excipients significantly increased the area under the curve and bioavailability of tigecycline (p < 0.05). These parameters were approximately doubled by HP-β-CD, TPGS, and SDOCH, with 95% confidence intervals (95% CIs) for the difference that included only increases of 1.5-fold or higher (bioavailability: control, 1.67%; HP-β-CD, 3.24%; TPGS, 3.30%; and SDOCH, 3.24%). The increases in these parameters were smaller with DM-β-CD and TMC (DM-β-CD, 2.41%; TMC, 2.55%), and the 95% CIs ranged from close to no difference to nearly double the values in the control group. These results indicate that HP-β-CD, TPGS, and SDOCH substantially increase the area under the curve and oral bioavailability of tigecycline. They suggest that DM-β-CD and TMC may also substantially increase these parameters, but more research is needed for more precise estimates of their effects.
Collapse
Affiliation(s)
- Hubert Ziółkowski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (K.S.); (J.J.)
| | - Kalina Szteyn
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (K.S.); (J.J.)
| | - Dawid Jędrzkiewicz
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Bartosz Rasiński
- Waters Spółka z Ograniczoną Odpowiedzialnością, Wybrzeże Gdyńskie 6B, 01-531 Warszawa, Poland;
| | - Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (K.S.); (J.J.)
| |
Collapse
|
8
|
de Oliveira VA, Monteiro Fernandes ANR, Dos Santos Leal LM, Ferreira Lima PA, Silva Pereira AR, Pereira IC, Negreiros HA, Pereira-Freire JA, da Silva FCC, de Carvalho Melo Cavalcante AA, Torres-Leal FL, Azevedo AP, de Castro E Sousa JM. α-tocopherol as a selective modulator of toxicogenic damage induced by antineoplastic agents cyclophosphamide and doxorubicin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:87-102. [PMID: 36756732 DOI: 10.1080/15287394.2023.2168224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to determine the oxidative/antioxidative effects, modulatory and selective potential of α-tocopherol (vitamin E) on antineoplastic drug-induced toxicogenetic damage. The toxicity, cytotoxicity and genotoxicity induced by antineoplastic agents cyclophosphamide (CPA) and doxorubicin (DOX) was examined utilizing as models Saccharomyces cerevisiae, Allium cepa, Artemia salina and human peripheral blood mononuclear cells (PBMCs) in the presence of α-tocopherol. For these tests, concentrations of α- tocopherol 100 IU/ml (67mg/ml), CPA 20 µg/ml, DOX 2 µg/ml were used. The selectivity of α-tocopherol was assessed by the MTT test using human mammary gland non-tumor (MCF10A) and tumor (MCF-7) cell lines. Data showed cytoplasmic and mitochondrial oxidative damage induced by CPA or DOX was significantly diminished by α-tocopherol in S. cerevisiae. In addition, the toxic effects on A. salina and cytotoxic and mutagenic effects on A. cepa were significantly reduced by α-tocopherol. In PBMCs, α-tocopherol alone did not markedly affect these cells, and when treated in conjunction with CPA or DOX, α-tocopherol reduced the toxicogenetic effects noted after antineoplastic drug administration as evidenced by decreased chromosomal alterations and lowered cell death rate. In human mammary gland non-tumor and tumor cell lines, α-tocopherol produced selective cytotoxicity with 2-fold higher effect in tumor cells. Evidence indicates that vitamin E (1) produced anti-cytotoxic and anti-mutagenic effects against CPA and DOX (2) increased higher selectivity toward tumor cells, and (3) presented chemoprotective activity in PBMCs.
Collapse
Affiliation(s)
- Victor Alves de Oliveira
- Department of Nutrition, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | | | - Lauana Maria Dos Santos Leal
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Paloma Alves Ferreira Lima
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Ana Rafaela Silva Pereira
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Irislene Costa Pereira
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Helber Alves Negreiros
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Joilane Alves Pereira-Freire
- Department of Nutrition, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | | | - Ana Amélia de Carvalho Melo Cavalcante
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Adriana Paiva Azevedo
- Post-graduate program of Food and Nutrition, Federal University of Piauí - UFPI, Picos, Brazil
| | - João Marcelo de Castro E Sousa
- Post-graduate program of Biotechnology (RENORBIO), Federal University of Piauí - UFPI, Picos, Brazil
- Department of Biochemistry and Pharmacology, Post-graduate program of Pharmaceutical sciences, Federal University of Piauí - UFPI, Picos, Brazil
| |
Collapse
|
9
|
Fernandes RS, Arribada RG, Silva JO, Silva-Cunha A, Townsend DM, Ferreira LAM, Barros ALB. In Vitro and In Vivo Effect of pH-Sensitive PLGA-TPGS-Based Hybrid Nanoparticles Loaded with Doxorubicin for Breast Cancer Therapy. Pharmaceutics 2022; 14:2394. [PMID: 36365212 PMCID: PMC9696591 DOI: 10.3390/pharmaceutics14112394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 09/06/2023] Open
Abstract
Doxorubicin (DOX) is an antineoplastic agent clinically employed for treating breast cancer patients. Despite its effectiveness, its inherent adverse toxic side effects often limit its clinical application. To overcome these drawbacks, lipid-polymer hybrid nanoparticles (LPNP) arise as promising nanoplatforms that combine the advantages of both liposomes and polymeric nanoparticles into a single delivery system. Alpha-tocopherol succinate (TS) is a derivative of vitamin E that shows potent anticancer mechanisms, and it is an interesting approach as adjuvant. In this study, we designed a pH-sensitive PLGA-polymer-core/TPGS-lipid-shell hybrid nanoparticle, loaded with DOX and TS (LPNP_TS-DOX). Nanoparticles were physicochemically and morphologically characterized. Cytotoxicity studies, migration assay, and cellular uptake were performed in 4T1, MCF-7, and MDA-MB-231 cell lines. Antitumor activity in vivo was evaluated in 4T1 breast tumor-bearing mice. In vitro studies showed a significant reduction in cell viability, cell migration, and an increase in cellular uptake for the 4T1 cell line compared to free DOX. In vivo antitumor activity showed that LPNP-TS-DOX was more effective in controlling tumor growth than other treatments. The high cellular internalization and the pH-triggered payload release of DOX lead to the increased accumulation of the drugs in the tumor area, along with the synergic combination with TS, culminating in greater antitumor efficacy. These data support LPNP-TS-DOX as a promising drug delivery system for breast cancer treatment.
Collapse
Affiliation(s)
- Renata S. Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Raquel Gregório Arribada
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Juliana O. Silva
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Danyelle M. Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - André L. B. Barros
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
10
|
A Nanosized Codelivery System Based on Intracellular Stimuli-Triggered Dual-Drug Release for Multilevel Chemotherapy Amplification in Drug-Resistant Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14020422. [PMID: 35214154 PMCID: PMC8878749 DOI: 10.3390/pharmaceutics14020422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lacking nano-systems for precisely codelivering the chemotherapeutics paclitaxel (PTX) and the natural P-glycoprotein (P-gp) inhibitor, quercetin (QU), into cancer cells and controlling their intracellular release extremely decreased the anticancer effects in multidrug resistant (MDR) tumors. To overcome this hurdle, we constructed hybrid polymeric nanoparticles (PNPs) which consist of redox-sensitive PTX/polyethyleneimine-tocopherol hydrogen succinate-dithioglycollic acid PNPs and pH-sensitive hyaluronic acid-QU conjugates. The obtained hybrid PNPs can be internalized into drug-resistant breast cancer cells by the hyaluronic acid/CD44-mediated endocytosis pathway and escape from the lysosome through the “proton sponge effect”. Under the trigger of intracellular stimuli, the nanoplatform used the pH/glutathione dual-sensitive disassembly to release QU and PTX. The PTX diffused into microtubules to induce tumor cell apoptosis, while QU promoted PTX retention by down-regulating P-gp expression. Moreover, tocopherol hydrogen succinate and QU disturbed mitochondrial functions by generating excessive reactive oxygen species, decreasing the mitochondrial membrane potential, and releasing cytochrome c into the cytosol which consequently achieved intracellular multilevel chemotherapy amplification in MDR cancers. Importantly, the PNPs substantially suppressed tumors growth with an average volume 2.54-fold lower than that of the control group in the MCF-7/ADR tumor-bearing nude mice model. These presented PNPs would provide a valuable reference for the coadministration of natural compounds and anticarcinogens for satisfactory combination therapy in MDR cancers.
Collapse
|
11
|
Ribeiro AM, Estevinho BN, Rocha F. The progress and application of vitamin E encapsulation – A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Sun J, Tian Q, Liu M, Su Y, Liu X, Deng Y, Song Y. Evaluation of the Antitumor Effect and Immune Response of Micelles Modified with a Polysialic Acid-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate Conjugate. AAPS PharmSciTech 2021; 22:223. [PMID: 34409520 DOI: 10.1208/s12249-021-02047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) has shown potential applications in cancer therapy owing to its attractive properties, including reversal of multi-drug resistance and synergistic effects with antitumor drugs. However, its associated shortcomings cannot be underestimated, including activation of the body's immune response and acceleration of blood clearance of polyethylene glycolylated preparations. Polysialic acid (PSA) is a polysaccharide homopolymer, with the dual function of immune camouflage and tumor targeting. PSA and TPGS conjugates (PSA-TPGS) were synthesized to weaken the immune risks of TPGS. We developed PSA-TPGS and TPGS self-assembled mixed micelles and encapsulated the classical antineoplastic, docetaxel. The particle size of docetaxel-loaded mixed micelles was 16.3 ± 2.0 nm, with entrapment efficiency of 99.0 ± 0.9% and drug-loading efficiency of 3.20 ± 0.03%. Antitumor activity studies revealed that the mixed micelles showed better tumor inhibition than Tween 80 and TPGS micelles. Detection of the accelerated blood clearance (ABC) phenomenon demonstrated that insertion of PSA-TPGS into the micelles weakened the ABC phenomenon induced by TPGS. In summary, PSA-TPGS could be a potential nanocarrier to improve antitumor activity and weaken immune responses.
Collapse
|
13
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Enhancing in vitro cytotoxicity of doxorubicin against MCF-7 breast cancer cells in the presence of water-soluble β-cyclodextrin polymer as a nanocarrier agent. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03569-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020; 25:E3404. [PMID: 32731371 PMCID: PMC7435941 DOI: 10.3390/molecules25153404] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | | | | | | |
Collapse
|
18
|
Jiang T, Zhang C, Sun W, Cao X, Choi G, Choy JH, Shi X, Guo R. Doxorubicin Encapsulated in TPGS-Modified 2D-Nanodisks Overcomes Multidrug Resistance. Chemistry 2020; 26:2470-2477. [PMID: 31912555 DOI: 10.1002/chem.201905097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 01/06/2025]
Abstract
Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
19
|
Meng F, Kwon S, Wang J, Yeo Y. Immunoactive drug carriers in cancer therapy. BIOMATERIALS FOR CANCER THERAPEUTICS 2020:53-94. [DOI: 10.1016/b978-0-08-102983-1.00003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561:244-264. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Nanomedicines are now considered as the new-generation medication in the current era mainly because of their features related to nano size. The efficacy of many drugs in their micro/macro formulations is shown to have poor bioavailability and pharmacokinetics after oral administration. To overcome this predicament, use of natural/synthetic biodegradable polymeric nanoparticles (NPs) have gained prominence in the field of nanomedicine for targeted drug delivery to improve biocompatibility, bioavailability, safety, enhanced permeability, better retention time and lower toxicity. For drug delivery, it is essential to have biodegradable nanoparticle formulations for safe and efficient transport and release of drug at the intended site. Moreover, depending on the target organ, a suitable biodegradable polymer can be selected as the drug-carrier for target specific as well as for sustained drug delivery. The aim of this review is to present the current status and scope of natural biodegradable polymers as well as some emerging polymers with special characteristics as suitable carriers for drug delivery applications. The most widely preferred preparation methods are discussed along with their characterization using different analytical techniques. Further, the review highlights significant features of methods developed using natural polymers for drug entrapment and release studies.
Collapse
|