1
|
Guo Z, Song Y, Liu Z, Dai J, Chen Z, Feng X, Gao W, Zeng L, Song H. Development of FK506-loaded maleimide-functionalized cationic niosomes for prolonged retention and therapeutic efficacy in dry eye disease. Drug Deliv Transl Res 2025; 15:2087-2098. [PMID: 39438428 DOI: 10.1007/s13346-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Tacrolimus (FK506) is widely used in ocular diseases such as corneal transplantation-host disease, uveitis, conjunctivitis, and dry eye disease (DED). However, its low aqueous solubility and poor ocular retention pose challenges for its application in the eye diseases. This study developed a novel FK506-loaded maleimide-functionalized cationic niosomes (FK506 M-CNS), aiming to prolong the retention time of FK506 in the eye and enhance its therapeutic efficacy. FK506 M-CNS had a particle size of 87.69 ± 1.05 nm and zeta potential of 22.06 ± 1.01 mV. Results of histological evaluation through H&E staining and in vitro cytotoxicity of human corneal epithelial cells consistently revealed the excellent biocompatibility of FK506 M-CNS. FK506 M-CNS exhibited superior ocular retention compared to the market product Talymus®. FK506 M-CNS significantly alleviated the symptoms of DED and promoted the recovery of corneal epithelia. FK506 M-CNS group had the lowest expression levels of inflammatory factors associated with DED. These superiorities might be due to the electrostatic interaction between cationic niosomes and negatively charged mucin in the eye, and the covalent binding of maleimide with the thiol group in the mucin. The maleimide group improved the ocular retention and efficacy of FK506, but did not increase the toxicity. Results indicated that FK506 M-CNS had great potential as a nanopharmaceutical in the treatment of ocular diseases, and M-CNS could be a promising drug carrier for ophthalmic drug delivery systems.
Collapse
Affiliation(s)
- Zhixin Guo
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Yutong Song
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Jiansheng Dai
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China.
| |
Collapse
|
2
|
A Samra T, Elbahwy IA, A Mowafy H, I Afouna M. Enhancing ocular drug delivery: development and in vivo evaluation of mucoadhesive nanostructured lipid carriers for terbinafine. Pharm Dev Technol 2025:1-13. [PMID: 40184488 DOI: 10.1080/10837450.2025.2488999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/31/2025] [Indexed: 04/06/2025]
Abstract
This study investigated incorporating Terbinafine Hydrochloride (TH) into chitosan-coated nanostructured lipid carrier (NLCs) to improve ocular treatment for fungal keratitis. Solubility studies were conducted to determine the most suitable lipids for NLCs formulation. TH-loaded NLCs were prepared via emulsification followed by ultrasonication. The impact of various lipids and surfactants on the formulation was investigated. The optimal formulation (TH-NLC10) was coated with chitosan (0.5% w/v), resulting in the coated TH-NLC10-CS 0.05% formulation. This formulation was evaluated for physicochemical properties, morphology, in-vitro release, mucoadhesion, permeation, and in vivo efficacy in treating ocular fungal keratitis in rabbits. Results revealed variations in lipids and surfactants significantly affected particle size. All prepared TH-NLCs formulations within the nanometer range. Physicochemical characterizations of the coated TH-NLC10-CS 0.05% showed 88.37 ± 2.41 nm size, 20.2 ± 1.4 mV zeta potential, 93.3 ± 1.5% w/w entrapment efficiency, and spherical morphology. TH-NLC10-CS 0.05% exhibited sustained TH release (66.65 ± 4.3% over 8 h) and strong mucoadhesion as indicated by a decrease in zeta potential from +20.2 ± 1.4 mV to +2.9 ± 0.7 mV. TH-NLC10-CS 0.05% demonstrated a 2.4-fold increase in TH permeation compared to plain TH, along with effective in vivo antifungal activity. This study confirms that mucoadhesive NLCs with TH are promising for the treatment of ocular fungal keratitis.
Collapse
Affiliation(s)
- Tarek A Samra
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Armed Forces, Egyptian Doping Control Laboratory
| | - Ibrahim A Elbahwy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hammam A Mowafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohsen I Afouna
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Velasco S, Gallego I, Olivares-González L, Puras G, Castro MC, Salom D, Pedraz JL, Rodrigo R. Noninvasive ocular delivery of adalimumab-loaded nanostructured lipid carriers for targeted retinitis pigmentosa therapy. Biomed Pharmacother 2025; 185:117962. [PMID: 40073744 DOI: 10.1016/j.biopha.2025.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Retinitis pigmentosa is a genetically heterogeneous retinal degeneration process. There is hardly any treatment available. It is associated with extensive chronic inflammation and the release of proinflammatory cytokines such as TNFα. The blockade of TNFα through systemic or intraocular routes slows retinal degeneration. They are invasive routes with possible side effects. Herein, we propose a noninvasive approach to address the inflammatory component of retinitis pigmentosa. This approach is based on the development of eye drops of nanostructured lipid carriers (NLCs) loaded with the monoclonal antibody against TNFα, adalimumab (ADA). We physicochemically characterized NLC-ADA. We evaluated retinal and corneal toxicity; corneal permeation; diffusion to the retina; and effects on retinal dysfunction, degeneration and inflammation. These results prove that NLC-ADA eye drops exhibit excellent corneal permeation, no toxicity and high retinal distribution in mice. These compounds improve retinal function, reduce retinal degeneration and ameliorate the inflammatory process. In particular, NLC-ADA eye drops reduce M1 microglial activation, macrophage infiltration and the levels of some components of the NLRP3 inflammasome in rd10 mice, a model of retinitis pigmentosa. This strategy offers a noninvasive route that circumvents the bloodretinal barrier in a safe and efficient manner. Hence, this approach could offer a promising therapeutic option for treating retinitis pigmentosa regardless of genetic defects. This approach could be useful for other inflammation-related retinal diseases.
Collapse
Affiliation(s)
- Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Ma Carmen Castro
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - David Salom
- Service of Ophthalmology, Manises Hospital, Generalitat Valenciana, 50, Manises, Valencia 46940, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| |
Collapse
|
5
|
Sarkar T, Gogoi NR, Jana BK, Mazumder B. Formulation Advances in Posterior Segment Ocular Drug Delivery. J Ocul Pharmacol Ther 2025; 41:101-130. [PMID: 39842469 DOI: 10.1089/jop.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release. Traditional therapeutic approaches, such as intravitreal injections, pose significant drawbacks, including patient discomfort, poor compliance, and potential complications. Therefore, understanding the physiology and clearance mechanism of eye could aid in the design of novel formulations that could be noninvasive and deliver drugs to reach the target site is pivotal for effective treatment strategies. This review focuses on recent advances in formulation strategies for posterior segment ocular drug delivery, highlighting their potential to overcome these limitations. Furthermore, the potential of nanocarrier systems such as in-situ gel, niosomes, hydrogels, dendrimers, liposomes, nanoparticles, and nanoemulsions for drug delivery more effectively and selectively is explored, and supplemented with illustrative examples, figures, and tables. This review aims to provide insights into the current state of posterior segment drug delivery, emphasizing the need for interdisciplinary approaches to develop patient-centric, minimally invasive, and effective therapeutic solutions.
Collapse
Affiliation(s)
- Tumpa Sarkar
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
6
|
Baghban R, Bamdad S, Attar A, Mortazavi M. Implications of nanotechnology for the treatment of Dry Eye Disease: Recent advances. Int J Pharm 2025; 672:125355. [PMID: 39954973 DOI: 10.1016/j.ijpharm.2025.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Managing Dry Eye Disease (DED), a prevalent condition affecting the ocular surface, remains challenging despite advancements in diagnostics and therapies. Current treatments primarily involve lubricating eye drops and anti-inflammatory medications, which often require prolonged use and generally provide only symptomatic relief. The current study focuses on improving DED treatments through nano-drug delivery technologies and advanced formulations. These systems aim to address the limitations of conventional therapies by providing extended, targeted, and sustained drug release. The development of innovative nanomaterials offers improved precision, control, and customization for DED management. By enabling controlled and sustained drug release, these nano-drug delivery systems could offer longer-lasting relief, addressing the chronic nature of DED more effectively than current symptomatic therapies. Future research should focus on integrating multiple therapeutic agents within these systems to simultaneously target inflammation and tear film instability. This review examines the potential of nano-based materials for DED treatment, with a particular emphasis on lipid-based, polymer-based and polysaccharide-based systems.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Bamdad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
7
|
Altaf S, Zeeshan M, Ali H, Zeb A, Afzal I, Imran A, Mazhar D, Khan S, Shah FA. pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Eur J Pharm Biopharm 2024; 204:114461. [PMID: 39306199 DOI: 10.1016/j.ejpb.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 10/27/2024]
Abstract
Inflammatory Bowel Disease is the chronic tissue inflammation of the lower part of the Gastrointestinal tract (GIT). Conventional therapeutic approaches face numerous challenges, often making the delivery system inadequate for treating the disease. This study aimed to integrate a pH-sensitive polymer and nanostructured lipid carriers (NLCs) to develop a hybrid nanocarrier system. Tacrolimus-loaded NLCs coated with Eudragit® FS100 (TAC-NLCs/E FS100) nanoparticles were prepared via double emulsion technique followed by an aqueous enteric coating technique. Various parameters, such as particle size, entrapment efficiency, and zeta potential were optimized using Design Expert software®. Cetyltrimethyl ammonium bromide (CTAB) was used as a cationic surfactant which induces a positive charge on the nanoparticles. These cationic NLCs can adhere to the mucosal surface, thereby enabling prolonged retention. In vitro drug release was assessed, and the results demonstrated that drug release was retarded at pH 1.2 corresponding to upper GIT pH and maximum drug was released at pH 7.4 (colonic pH). Moreover, we evaluated TAC-NLCs/E FS100 nanoparticles in murine colitis models to gauge the efficacy of both coated and uncoated NLCs formulation. The TAC-NLCs/E FS100 showed a pronounced reduction in induced colitis, as evident from the restoration of morphological features, improved histopathological scores, antioxidant levels, and decreased the levels of proinflammatory cytokines. Thus, pH-sensitive TAC-NLCs/EFS 100 are attributed to the enhanced localization and targeted delivery at the specific site.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan; Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Ahmed Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Ayesha Imran
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology of Pharmacy, Prince Sattam Bin Abdul Aziz University Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Cimino C, Sánchez López E, Bonaccorso A, Bonilla L, Musumeci T, Badia J, Baldomà L, Pignatello R, Marrazzo A, Barbaraci C, García ML, Carbone C. In vitro and in vivo studies of ocular topically administered NLC for the treatment of uveal melanoma. Int J Pharm 2024; 660:124300. [PMID: 38851409 DOI: 10.1016/j.ijpharm.2024.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Uveal melanoma is one of the most common and aggressive intraocular malignancies, and, due to its great capability of metastasize, it constitutes the most incident intraocular tumor in adults. However, to date there is no effective treatment since achieving the inner ocular tissues still constitutes one of the greatest challenges in actual medicine, because of the complex structure and barriers. Uncoated and PEGylated nanostructured lipid carriers were developed to achieve physico-chemical properties (mean particle size, homogeneity, zeta potential, pH and osmolality) compatible for the ophthalmic administration of (S)-(-)-MRJF22, a new custom-synthetized prodrug for the potential treatment of uveal melanoma. The colloidal physical stability was investigated at different temperatures by Turbiscan® Ageing Station. Morphology analysis and mucoadhesive studies highlighted the presence of small particles suitable to be topically administered on the ocular surface. In vitro release studies performed using Franz diffusion cells demonstrated that the systems were able to provide a slow and prolonged prodrug release. In vitro cytotoxicity test on Human Corneal Epithelium and Human Uveal Melanoma cell lines and Hen's egg-chorioallantoic membrane test showed a dose-dependent cytotoxic effect of the free prodrug on corneal cells, whose cytocompatibility improved when encapsulated into nanoparticles, as also confirmed by in vivo studies on New Zealand albino rabbits. Antiangiogenic capability and preventive anti-inflammatory properties were also investigated on embryonated eggs and rabbits, respectively. Furthermore, preliminary in vivo biodistribution images of fluorescent nanoparticles after topical instillation in rabbits' eyes, suggested their ability to reach the posterior segment of the eye, as a promising strategy for the treatment of choroidal uveal melanoma.
Collapse
Affiliation(s)
- Cinzia Cimino
- PhD in Biotechnology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania
| | - Agostino Marrazzo
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carla Barbaraci
- Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Present address: Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania.
| |
Collapse
|
9
|
Sawatphakdee G, Yostawonkul J, Oontawee S, Rodprasert W, Sawangmake C, Kornsuthisopon C, Yata T, Tabtieang SP, Nowwarote N, Pirarat N. Feasibility of Nanostructured Lipid Carrier Loaded with Alpha-Mangostin and Clove Oil for Canine Periodontal Therapy. Animals (Basel) 2024; 14:2084. [PMID: 39061546 PMCID: PMC11273492 DOI: 10.3390/ani14142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Nanostructured lipid carriers (NLC) represent the second generation of nanoparticles, offering numerous advantages over conventional delivery systems. These include improved stability, enhanced drug-loading capacity, and controlled release profiles, making them highly attractive candidates for a wide range of therapeutic applications. Their suitability for hydrophobic drugs like a traditional medicinal plant of Thailand as clove oil and alpha-mangostin. We investigated into nanostructured lipid carriers loaded with Alpha-Mangostin and clove oil (NLC-AMCO) into the physicochemical and biological characteristics to identify the formulation with the highest efficacy for treatment. The particle size, charge, polydispersity index, and other characterizations were recorded. The realtime ex vivo penetration was explored using canine gingival tissue. Drug sustained release was assessed by HPLC. Moreover, the antibacterial properties were tested by conventional methods. The NLC-AMCO can be stored at up to 40 °C for 60 days without any alterations in particle characteristics. Gingival tissue penetration and sustained drug release were superior compared to unencapsulated counterparts. It exhibited greater effectiveness in inhibiting bacterial growth than the antibiotics tested, particularly against bacteria from the oral cavities of dogs. Therefore, this alternative treatment approach offers cost-effectiveness and ease of administration for pet owners and reduces discomfort for the animals during restraint.
Collapse
Affiliation(s)
- Gotchagorn Sawatphakdee
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jakarwan Yostawonkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand;
| | - Saranyou Oontawee
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.O.); (W.R.); (C.S.)
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.O.); (W.R.); (C.S.)
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.O.); (W.R.); (C.S.)
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand;
| | - Teerapong Yata
- The Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand;
| | - Sirinun Pisamai Tabtieang
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cite, 75006 Paris, France;
| | - Nopadon Pirarat
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
10
|
Tang B, Wang Q, Zhang G, Zhang A, Zhu L, Zhao R, Gu H, Meng J, Zhang J, Fang G. OCTN2- and ATB 0,+-targeted nanoemulsions for improving ocular drug delivery. J Nanobiotechnology 2024; 22:130. [PMID: 38532399 DOI: 10.1186/s12951-024-02402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Lu Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rongrong Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hongwei Gu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jie Meng
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Comprehensive Review. Pharmaceutics 2023; 15:1167. [PMID: 37111652 PMCID: PMC10142951 DOI: 10.3390/pharmaceutics15041167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Over the past decade, the field of mesenchymal stem cell (MSC) therapy has exhibited rapid growth. Due to their regenerative, reparatory, and immunomodulatory capacities, MSCs have been widely investigated as therapeutic agents in the cell-based treatment of chronic ophthalmic pathologies. However, the applicability of MSC-based therapy is limited by suboptimal biocompatibility, penetration, and delivery to the target ocular tissues. An emerging body of research has elucidated the role of exosomes in the biological functions of MSCs, and that MSC-derived extracellular vesicles (EVs) possess anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties similar to MSCs. The recent advances in MSCs-derived exosomes can serve as solutions to the challenges faced by MSCs-therapy. Due to their nano-dimensions, MSC-derived exosomes can rapidly penetrate biological barriers and reach immune-privileged organs, allowing for efficient delivery of therapeutic factors such as trophic and immunomodulatory agents to ocular tissues that are typically challenging to target by conventional therapy and MSCs transplantation. In addition, the use of EVs minimizes the risks associated with mesenchymal stem cell transplantation. In this literature review, we focus on the studies published between 2017 and 2022, highlighting the characteristics of EVs derived from MSCs and their biological functions in treating anterior and posterior segment ocular diseases. Additionally, we discuss the potential use of EVs in clinical settings. Rapid advancements in regenerative medicine and exosome-based drug delivery, in conjunction with an increased understanding of ocular pathology and pharmacology, hold great promise for the treatment of ocular diseases. The potential of exosome-based therapies is exciting and can revolutionize the way we approach these ocular conditions.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Hamza Ahmad
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Grace Lin
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Marjorie Carbonneau
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
12
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|
13
|
Sharma DS, Wadhwa S, Gulati M, Kumar B, Chitranshi N, Gupta VK, Alrouji M, Alhajlah S, AlOmeir O, Vishwas S, Khursheed R, Saini S, Kumar A, Parveen SR, Gupta G, Zacconi F, Chellappan DK, Morris A, Loebenberg R, Dua K, Singh SK. Chitosan modified 5-fluorouracil nanostructured lipid carriers for treatment of diabetic retinopathy in rats: A new dimension to an anticancer drug. Int J Biol Macromol 2023; 224:810-830. [PMID: 36302483 DOI: 10.1016/j.ijbiomac.2022.10.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Diabetic retinopathy (DR) is one of the chronic complications of diabetes. It includes retinal blood vessels' damage. If untreated, it leads to loss of vision. The existing treatment strategies for DR are expensive, invasive, and need expertise during administration. Hence, there is a need to develop a non-invasive topical formulation that can penetrate deep to the posterior segment of retina and treat the damaged retinal vessels. In addition, it should also provide sustained release. In recent years, novel drug delivery systems (NDDS) have been explored for treating DR and found successful. In this study, chitosan (CS) modified 5-Fluorouracil Nanostructured Lipid Carriers (CS-5-FU-NLCs) were prepared by modified melt emulsification-ultrasonication method and optimized by Box-Behnken Design. The size, polydispersity index, zeta potential and entrapment efficiency of CS-5-FU-NLCs were 163.2 ± 2.3 nm, 0.28 ± 1.52, 21.4 ± 0.5 mV and 85.0 ± 0.2 %, respectively. The in vitro drug release and ex vivo permeation study confirmed higher and sustained drug release in CS-5-FU-NLCs as compared to 5-FU solution. HET-CAM Model ensured the non-irritant nature of CS-5-FU-NLCs. In vivo ocular studies of CS-5-FU-NLCs confirmed antiangiogenic effect of 5-FU by CAM model and diabetic retinopathy induced rat model, indicating successful delivery of 5-FU to the retina.
Collapse
Affiliation(s)
- Deep Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Vivek Kumar Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Shaik Rahana Parveen
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Andrew Morris
- Swansea University Medical School, Swansea University, Singleton Park, Room 262, 1st Floor, Grove Building, Swansea, Wales SA2 8PP, UK
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton AB T6G2N8, Alberta, Canada
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
14
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
15
|
Sun X, Sheng Y, Li K, Sai S, Feng J, Li Y, Zhang J, Han J, Tian B. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater 2022; 138:193-207. [PMID: 34757228 DOI: 10.1016/j.actbio.2021.10.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Topical eye drops still face challenges of low-drug treatment effects and frequent dosing in ophthalmic applications due to the low preocular retention rate and low transcorneal permeability. Thus, we designed and synthesized a phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer (PBA-CS-VE) for use in mucoadhesive voriconazole (VRC)-loaded nanomicelles for fungal keratitis. In vitro mucin binding and ex vivo eyeball adhesion tests show that the copolymer has strong mucoadhesion. The transportation of coumarin-6 (C6) across a monolayer of HCE-T cells and 3D cell spheroids confirm the strong corneal penetration ability of PBA-CS-VE. The mechanism of promoting corneal penetration was studied in terms of intracellular calcium-ion concentration, cell membrane potential, cell membrane fluidity, and the tight junctions of cells. The pharmacokinetics in the aqueous humor were examined to evaluate the ability of nanomicelles in promoting corneal penetration and prolonging ocular retention. VRC-loaded PBA-CS-VE nanomicelles (PBA-CS-VE-VRC) yielded a very favorable therapeutic effect on a rabbit model of fungal keratitis in vivo as compared to the free drug. Overall, the results indicate that PBA-CS-VE nanomicelles are a mucoadhesive candidate with enhanced transcorneal permeability and prolonged preocular retention for efficient delivery of topical ocular drugs. STATEMENT OF SIGNIFICANCE: Although eye drops are widely used in ocular drug delivery, the disadvantages such as short retention time and weak corneal penetrating ability still seriously affect the therapeutic effect of the drug. Therefore, the mucoadhesive carrier seems to be an interesting strategy for ocular drug delivery. Herein, a novel phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer was designed and constructed as mucoadhesive nanomicelles loaded with voriconazole for fungal keratitis. These nanomicelles were able to improve the in vitro mucin binding and to prolong the residence time of the drug on the surface of the eyeball. Moreover, the nanomicelles exhibited an enhanced drug permeability in cell monolayer models and 3D cell culture models. This work provides a promising ocular drug delivery system.
Collapse
|
16
|
Zoratto N, Forcina L, Matassa R, Mosca L, Familiari G, Musarò A, Mattei M, Coviello T, Di Meo C, Matricardi P. Hyaluronan-Cholesterol Nanogels for the Enhancement of the Ocular Delivery of Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13111781. [PMID: 34834195 PMCID: PMC8619261 DOI: 10.3390/pharmaceutics13111781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
The anatomy and physiology of the eye strongly limit the bioavailability of locally administered drugs. The entrapment of therapeutics into nanocarriers represents an effective strategy for the topical treatment of several ocular disorders, as they may protect the embedded molecules, enabling drug residence on the ocular surface and/or its penetration into different ocular compartments. The present work shows the activity of hyaluronan-cholesterol nanogels (NHs) as ocular permeation enhancers. Thanks to their bioadhesive properties, NHs firmly interact with the superficial corneal epithelium, without penetrating the stroma, thus modifying the transcorneal penetration of loaded therapeutics. Ex vivo transcorneal permeation experiments show that the permeation of hydrophilic drugs (i.e., tobramycin and diclofenac sodium salt), loaded in NHs, is significantly enhanced when compared to the free drug solutions. On the other side, the permeation of hydrophobic drugs (i.e., dexamethasone and piroxicam) is strongly dependent on the water solubility of the entrapped molecules. The obtained results suggest that NHs formulations can improve the ocular bioavailability of the instilled drugs by increasing their preocular retention time (hydrophobic drugs) or facilitating their permeation (hydrophilic drugs), thus opening the route for the application of HA-based NHs in the treatment of both anterior and posterior eye segment diseases.
Collapse
Affiliation(s)
- Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.F.); (A.M.)
| | - Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (R.M.); (G.F.)
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy;
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (R.M.); (G.F.)
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.F.); (A.M.)
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
- Correspondence:
| |
Collapse
|
17
|
Solís AC, Bento D, Nunes S, Valente A, Pais A, Vitorino C. Rethinking transdermal drug delivery using PVA-NLC based films. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
González-Fernández FM, Bianchera A, Gasco P, Nicoli S, Pescina S. Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics 2021; 13:447. [PMID: 33810399 PMCID: PMC8067198 DOI: 10.3390/pharmaceutics13040447] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotherapeutics based on biocompatible lipid matrices allow for enhanced solubility of poorly soluble compounds in the treatment of ophthalmic diseases, overcoming the anatomical and physiological barriers present in the eye, which, despite the ease of access, remains strongly protected. Micro-/nanoemulsions, solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) combine liquid and/or solid lipids with surfactants, improving drug stability and ocular bioavailability. Current research and development approaches based on try-and-error methodologies are unable to easily fine-tune nanoparticle populations in order to overcome the numerous constraints of ocular administration routes, which is believed to hamper easy approval from regulatory agencies for these systems. The predictable quality and specifications of the product can be achieved through quality-by-design (QbD) implementation in both research and industrial environments, in contrast to the current quality-by-testing (QbT) framework. Mathematical modelling of the expected final nanoparticle characteristics by variation of operator-controllable variables of the process can be achieved through adequate statistical design-of-experiments (DoE) application. This multivariate approach allows for optimisation of drug delivery platforms, reducing research costs and time, while maximising the understanding of the production process. This review aims to highlight the latest efforts in implementing the design of experiments to produce optimised lipid-based nanocarriers intended for ophthalmic administration. A useful background and an overview of the different possible approaches are presented, serving as a starting point to introduce the design of experiments in current nanoparticle research.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Annalisa Bianchera
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Silvia Pescina
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| |
Collapse
|
19
|
Notabi MK, Arnspang EC, Andersen MØ. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur J Pharm Sci 2021; 161:105777. [PMID: 33647401 DOI: 10.1016/j.ejps.2021.105777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Cancer remains a significant health issue worldwide. The most common group of chemotherapeutic agents are small-molecule drugs, which often are associated with toxic side-effects and non-specific delivery, leading to limited therapeutic effect. This paper describes the development of a targeted drug delivery system based on lipid nanoparticles for cancer therapy. The lipid nanoparticles consist of a lipid core conjugated to an albumin stealth coating and targeting antibodies through thiol chemistry synthesized utilizing a one-step method. Applying the developed method, lipid nanoparticles with diameters down to 87 nm, capable of encapsulating small molecule compounds were synthesized. Cellular uptake studies of the lipid nanoparticles loaded with the model drug Nile red demonstrated that stealth-coating reduced non-specific cell uptake by up to a 1000-fold compared to free drug. Moreover, antibody-conjugation led to a significant cellular retargeting. Finally, it was shown that the lipid nanoparticles undergo cellular uptake through the endocytic pathway. The lipid nanoparticles are simple to synthesize, stabile in serum and have the potential to be versatile targeted towards receptors selectively expressed by diseased cells using antibodies. Thus, the system may reduce the toxic side-effects of cancer drugs while improving their delivery to cancer cells, increasing the therapeutic effect.
Collapse
Affiliation(s)
- Martine K Notabi
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Eva C Arnspang
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Morten Ø Andersen
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
| |
Collapse
|
20
|
Hou Y, Xin M, Li Q, Wu X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204:108454. [PMID: 33497689 DOI: 10.1016/j.exer.2021.108454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to explore the feasibility of targeting the HMGB1 signaling pathway to treat diabetic keratopathy with a dipotassium glycyrrhizinate-based micelle ophthalmic solution encapsulating genistein (DG-Gen), and to evaluate whether these dipotassium glycyrrhizinate (DG) micelles could synergistically enhance the therapeutic effect of encapsulated genistein (Gen). An optimized DG-Gen ophthalmic solution was fabricated with a Gen/DG weight of ratio 1:15, and this formulation featured an encapsulation efficiency of 98.96 ± 0.82%, and an average particle size of 29.50 ± 2.05 nm. The DG-Gen ophthalmic solution was observed to have good in vivo ocular tolerance and excellent in vivo corneal permeation, and to remarkably improve in vitro antioxidant activity. Ocular topical application of the DG-Gen ophthalmic solution significantly prompted corneal re-epithelialization and nerve regeneration in diabetic mice, and this efficacy might be due to the inhibition of HMGB1 signaling through down-regulation of HMGB1 and its receptors RAGE and TLR4, as well as inflammatory factor interleukin (IL)-6 and IL-1β. In conclusion, these data showed that HMGB1 signaling is a potential regulation target for the treatment of diabetic keratopathy, and novel DG-micelle formulation encapsulating active agents such as Gen could synergistically cause blockage of HMGB1 signaling to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
21
|
Anwar W, Dawaba HM, Afouna MI, Samy AM, Rashed MH, Abdelaziz AE. Enhancing the Oral Bioavailability of Candesartan Cilexetil Loaded Nanostructured Lipid Carriers: In Vitro Characterization and Absorption in Rats after Oral Administration. Pharmaceutics 2020; 12:E1047. [PMID: 33142816 PMCID: PMC7692391 DOI: 10.3390/pharmaceutics12111047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Candesartan Cilexetil (CC) is a prodrug widely used in the treatment of hypertension and heart failure, but it has some limitations, such as very poor aqueous solubility, high affinity to P-glycoprotein efflux mechanism, and hepatic first-pass metabolism. Therefore, it has very low oral bioavailability. In this study, glyceryl monostearate (GMS) and Capryol™ 90 were selected as solid and liquid lipids, respectively, to develop CC-NLC (nanostructured lipid carrier). CC was successfully encapsulated into NLP (CC-NLC) to enhance its oral bioavailability. CC-NLC was formulated using a hot homogenization-ultrasonication technique, and the physicochemical properties were characterized. The developed CC-NLC formulation was showed in nanometric size (121.6 ± 6.2 nm) with high encapsulation efficiency (96.23 ± 3.14%). Furthermore, it appeared almost spherical in morphology under a transmission electron microscope. The surgical experiment of the designed CC-NLC for absorption from the gastrointestinal tract revealed that CC-NLC absorption in the stomach was only 15.26% of that in the intestine. Otherwise, cellular uptake study exhibit that CC-NLCs should be internalized through the enterocytes after that transported through the systemic circulation. The pharmacokinetic results indicated that the oral bioavailability of CC was remarkably improved above 2-fold after encapsulation into nanostructured lipid carriers. These results ensured that nanostructured lipid carriers have a highly beneficial effect on improving the oral bioavailability of poorly water-soluble drugs, such as CC.
Collapse
Affiliation(s)
- Walid Anwar
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt or (H.M.D.); (M.I.A.); (A.M.S.)
| | - Hamdy M. Dawaba
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt or (H.M.D.); (M.I.A.); (A.M.S.)
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Al Qantarah Sharq 41636, Ismailia Governorate, Egypt
| | - Mohsen I. Afouna
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt or (H.M.D.); (M.I.A.); (A.M.S.)
| | - Ahmed M. Samy
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt or (H.M.D.); (M.I.A.); (A.M.S.)
| | - Mohammed H. Rashed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt;
| | - Abdelaziz E. Abdelaziz
- Pharmaceutical Technology Department, Faculty of Pharmacy, Kafrelshiekh University, Kafrelshiekh 33516, Egypt;
| |
Collapse
|
22
|
Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B Biointerfaces 2020; 194:111157. [DOI: 10.1016/j.colsurfb.2020.111157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
|
23
|
Li M, Zhang L, Li R, Yan M. New resveratrol micelle formulation for ocular delivery: characterization and in vitro/ in vivo evaluation. Drug Dev Ind Pharm 2020; 46:1960-1970. [PMID: 32985941 DOI: 10.1080/03639045.2020.1828909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many eye diseases, such as corneal wound healing after injury, involve oxidative stress and inflammatory responses; however, many efficient natural antioxidants (e.g. resveratrol) have limited application in ophthalmology due to their poor solubility, low stability and poor ocular bioavailability. In this work, the aim was to formulate resveratrol into a micelle ophthalmic solution for efficient delivery to the eye. A Soluplus micelle ophthalmic solution containing resveratrol (Sol-Res) was formulated and optimized with a small and uniform dispersion in an ophthalmic solution. Sol-Res did not show any cell toxicity but promoted cell proliferation in both the short- and long-term cytotoxicity tests. The in vivo eye irritation test also verified the well ocular tolerance of the Sol-Res ophthalmic solution. The chemical stability of resveratrol in micelles in an aqueous solution was greatly improved over the free resveratrol solution, and Sol-Res also showed a good storage stability in the short-term storage stability test. Sol-Res showed improved in vitro passive permeation, in vitro cellular uptake, and in vivo corneal permeation over the free Res suspension solution. Furthermore, Sol-Res favored in vivo corneal wound healing, and the inhibition of key anti-inflammation mediators and the production of antioxidant factors in mRNA expression was observed in the Sol-Res treated wound healing corneas, suggesting that the mechanisms that regulate proinflammatory cytokines and oxidative stress might be involved in its therapeutic effect. Therefore, Sol-Res might be a promising candidate for further clinical application.
Collapse
Affiliation(s)
- Mengshuang Li
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China.,Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ling Zhang
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Rong Li
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Meixing Yan
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| |
Collapse
|
24
|
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10:27835-27855. [PMID: 35516960 PMCID: PMC9055630 DOI: 10.1039/d0ra04971a] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ocular diseases have a significant effect on vision and quality of life. Drug delivery to ocular tissues is a challenge to formulation scientists. The major barriers to delivering drugs to the anterior and posterior segments include physiological barriers (nasolacrimal drainage, blinking), anatomical barriers (static and dynamic), efflux pumps and metabolic barriers. The static barriers comprise the different layers of the cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. The tight junctions of the blood-retinal barrier (BRB) restrict systemically administered drugs from entering the retina. Nanocarriers have been found to be effective at overcoming the issues associated with conventional ophthalmic dosage forms. Various nanocarriers, including nanodispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, niosomes, and dendrimers, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic sites. In this review, various nanomedicines and their application for ophthalmic delivery of therapeutics are discussed. Additionally, scale-up and clinical status are also addressed to understand the current scenario for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Prem Prakash Singh
- Formulation Development, Slayback Pharma India LLP Hyderabad Telangana 500072 India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
- Birla Institute of Technology & Science (BITS) Pilani, Dubai Campus UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| |
Collapse
|
25
|
Synthesis of Tilmicosin Nanostructured Lipid Carriers for Improved Oral Delivery in Broilers: Physiochemical Characterization and Cellular Permeation. Molecules 2020; 25:molecules25020315. [PMID: 31941074 PMCID: PMC7024240 DOI: 10.3390/molecules25020315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop nanostructured lipid carriers (NLCs) for improved oral absorption of tilmicosin (TMS) in broilers. Thus, palmitic acid, lauric acid, and stearic acid were selected as solid lipids to formulate TMS-pNLCs, TMS-lNLCs, and TMS-sNLCs, respectively. They showed similar physicochemical properties and meanwhile possessed excellent storage and gastrointestinal stability. The TMS interacted with the lipid matrix and was encapsulated efficiently in NLCs in an amorphous structure. NLCs could enhance oral absorption of TMS compared to 10% tilmicosin phosphate solution in broilers, among which the TMS-sNLCs were the most efficient drug delivery carriers, with a relative oral bioavailability of 203.55%. NLCs could inhibit the efflux of P-glycoprotein (P-pg) toward TMS, which may be involved with improved oral absorption. Taken together, these types of solid lipids influenced the enhanced level of NLCs toward oral bioavailability of TMS, and the sNLCs proved to be the most promising oral delivery carriers of TMS.
Collapse
|
26
|
Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater 2019; 99:350-362. [PMID: 31449929 DOI: 10.1016/j.actbio.2019.08.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome is a common eye disease that affects many people worldwide. It is usually treated with eye drops, which has low bioavailability owing to rapid clearance from the ocular surface and leads to poor patient compliance and side effects. For the purpose of improving the therapeutic efficacy, nanostructured lipid carrier (NLC)-loaded dexamethasone (DEX) was prepared and functionalized with (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS). As APBA has a boronic acid group, it can form a high-affinity complex with sialic acids present in the ocular mucin, which contributes to extension of corneal retention time and improvement of drug delivery. Compared with eye drops, Rhodamine B (RhB)-labeled APBA-ChS-NLC could significantly prolong the residence time on the corneal surface. Moreover, the DEX-APBA-ChS-NLC showed no irritation to the rabbit eye as indicated in irritation studies and histological images. The pharmacodynamics study indicated that DEX-APBA-ChS-NLC could relieve symptoms of dry eye disease in rabbits. These results demonstrated that the developed mucoadhesive drug carrier could improve the delivery of drugs and have promising potential to treat anterior eye diseases. STATEMENT OF SIGNIFICANCE: In this research, (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS)-based nanostructured lipid carriers (NLCs) including dexamethasone (DEX) were designed and constructed. APBA-ChS, which is present on the surface of DEX-NLC and contains the boronic acid group, can form complex with sialic acids in the ocular mucin, hence leading to prolonged precorneal retention. This affinity between boronic acid and sialic acids was used to develop a mucoadhesive drug delivery system. The developed mucoadhesive drug carrier demonstrated prolonged retention time and alleviation of dry eye syndrome. APBA-ChS-based NLC may be considered a promising ocular drug delivery system for treating anterior eye diseases.
Collapse
|
27
|
The influence of cross-linking agent onto adsorption properties, release behavior and cytotoxicity of doxorubicin-imprinted microparticles. Colloids Surf B Biointerfaces 2019; 182:110379. [PMID: 31351269 DOI: 10.1016/j.colsurfb.2019.110379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers that possess cavities selective towards their molecular templates and have found many applications in separation science, drug delivery, and catalysis. Here, we report the synthesis of doxorubicin-imprinted microparticles cross-linked with two different compounds (ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate) and examination of their physicochemical properties. During the synthesis methacrylic acid was used as functional monomer and 2-hydroxyethyl methacrylate was added into polymerization mixture to increase hydrophilicity of the obtained materials and therefore improve interactions with aqueous release medium. The influence of initial concentration and contact time onto doxorubicin adsorption by obtained MIPs microparticles have been investigated. The microparticles obtained using ethylene glycol dimethacrylate as a cross-linker showed 3 times higher adsorption properties towards doxorubicin, than the ones obtained using trimethylolpropane trimethacrylate cross-linker. The release kinetics of doxorubicin from drug-loaded MIPs microparticles has been proven to be dependent upon cross-linker used and pH of the release medium. For drug-loaded MIPs microparticles obtained using both cross-linkers the IC50 values measured for cancer cell were comparable to the ones measured for pure doxorubicin, whereas the cytotoxicity towards normal HDF cell lines was lower.
Collapse
|
28
|
Pai RV, Monpara JD, Vavia PR. Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. J Control Release 2019; 309:190-202. [DOI: 10.1016/j.jconrel.2019.07.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023]
|