1
|
Medina-Moreno A, El-Hammadi MM, Martínez-Soler GI, Ramos JG, García-García G, Arias JL. Magnetic and pH-responsive magnetite/chitosan (core/shell) nanoparticles for dual-targeted methotrexate delivery in cancer therapy. Drug Deliv Transl Res 2025; 15:1646-1659. [PMID: 39237670 DOI: 10.1007/s13346-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Methotrexate successful therapy encounters various challenges in chemotherapy, such as poor oral bioavailability, low specificity, side effects and the development of drug resistances. In this study, it is proposed a dual-targeted nanocarrier comprising magnetite/chitosan nanoparticles for an efficient Methotrexate delivery. The formation of the particles was confirmed through morphological analysis using electron microscopy and elemental mappings via energy dispersive X-ray spectroscopy. These nanoparticles exhibited a size of ≈ 270 nm, a zeta potential of ≈ 24 mV, and magnetic responsiveness, as demonstrated by hysteresis cycle analysis and visual observations under a magnetic field. In addition, these particles displayed high stability, as evidenced by size and surface electric charge measurements, during storage at both 4 ºC and 25 ºC for at least 30 days. Electrophoretic properties were examined in relation to pH and ionic strength, confirming these core/shell nanostructure. The nanoparticles demonstrated a pH-responsive drug release as observed by a sustained Methotrexate release over the next 90 h under pH ≈ 7.4, while complete release occurred within 3 h under acidic conditions (pH ≈ 5.5). In the biocompatibility assessment, the magnetite/chitosan particles showed excellent hemocompatibility ex vivo and no cytotoxic effects on normal MCF-10 A and cancer MCF-7 cells. Furthermore, the Methotrexate-loaded nanoparticles significantly enhanced the antitumor activity reducing the half-maximal inhibitory concentration by ≈ 2.7-fold less compared to the free chemotherapeutic.
Collapse
Affiliation(s)
- Ana Medina-Moreno
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Sevilla, 41012, Spain
| | - Gema I Martínez-Soler
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Javier G Ramos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Gracia García-García
- Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, 04120, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain.
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18016, Spain.
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, 18012, Spain.
| |
Collapse
|
2
|
Aghanejad A, Kheiriabad S, Ghaffari M, Namvar Aghdash S, Ghafouri N, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. Targeted co-delivery nanosystem based on methotrexate, curcumin, and PAMAM dendrimer for improvement of the therapeutic efficacy in cervical cancer. Sci Rep 2025; 15:1813. [PMID: 39805840 PMCID: PMC11730290 DOI: 10.1038/s41598-024-82074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR. Various techniques were employed to evaluate the structural properties of the prepared Cur-PAMAM-MTX NC. The Cur-PAMAM-MTX NC, after preparation, exhibited a particle size of 249 nm, with an encapsulation efficiency (EE) of ~ 81% for Cur. The cumulative in vitro release of Cur-loaded NC indicated a controlled release influenced by time and pH. The cell study results revealed that Cur-PAMAM-MTX NC exhibited significantly higher cytotoxicity than free MTX, Cur, and other formulations tested in vitro. The synergistic effect of co-delivery of MTX and Cur by PAMAM significantly increased cytotoxicity. Besides, the significant ROS level rising has been shown in the treated cells with MTX-PAMAM-Cur. Considering these findings, the co-delivery NC shows promise for additional in vitro investigations and possesses the capacity to function as an effective framework for the combined delivery of MTX and Cur in cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Kheiriabad
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Ghaffari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Neda Ghafouri
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
3
|
Nikpour M, Karami Z, Rafieenia S, Adibifar A, Yazdani S, Saghatchi Zanjani F, Mortezazadeh T, Abdi Z, Rostamizadeh K. Inhibition of growth and lung metastasis of breast cancer by pH-responsive methotrexate/curcumin-loaded chitosan-stabilized nanoemulsions. Pharm Dev Technol 2025; 30:57-68. [PMID: 39772899 DOI: 10.1080/10837450.2024.2448335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Chemotherapeutic agents are widely used to combat breast cancer. However, due to their non-selective biodistribution, their usage is associated with severe adverse effects on healthy tissues. In this study, a chitosan-stabilized nanoemulsion (CSNE) was prepared for the codelivery of curcumin (CUR) and methotrexate (MTX). The mean diameter and polydispersity index of CUR-MTX-CSNEs were 194.63 ± 6.7 nm and 0.27 ± 0.06, respectively. Modifying the nanoemulsion surface with chitosan decreased the drug release at pH 7.4 compared to pH 5.8. The MTT test demonstrated that CUR-MTX-CSNEs were more successful in reducing the cell viability of 4T1 cells than both bare formulation and free drugs. Moreover, compared to the free drug-treated group, a 2.6 times reduction of the relative tumor volume was witnessed in CUR-MTX-CSNEs-receiving mice. Histopathological studies confirmed a more substantial inhibitory effect on tumor growth and pulmonary metastasis of developed nanostructures than free CUR/MTX. While there was no noticeable toxicity in the vital organs of CUR-MTX-CSNEs-receiving mice, free drugs resulted in severe toxicity in the liver, kidney, lung and spleen. Overall, the pH-dependent drug release, improved anti-tumor activity and reduced organ toxicity suggest that CUR-MTX-CSNE may be promising in breast cancer therapy.
Collapse
Affiliation(s)
- Mehrnoosh Nikpour
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Rafieenia
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shaghayegh Yazdani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Tohid Mortezazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Abdi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Kumar G, Virmani T, Chhabra V, Virmani R, Pathak K, Akhtar MS, Hussain Asim M, Arshad S, Siddique F, Fonte P. Transforming cancer treatment: The potential of nanonutraceuticals. Int J Pharm 2024; 667:124919. [PMID: 39515676 DOI: 10.1016/j.ijpharm.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Chemotherapy in the management of cancer is constrained by limitations like off-target effects, poor bioavailability, and dose-dependent toxicity. Nutraceuticals have been explored as an innovative strategy to overcome chemotherapy drawbacks.However, the clinical utility of nutraceuticals is restricted due to their complex structures, less water solubility, reduced stability, decreased bioavailability and more obstacles in the gastrointestinal tract. Nanonutraceuticals are nanosized nutraceutical particles having enhanced solubility, improved bioavailability, stability, and targeted delivery to specific cells. Nutraceuticals can be co-delivered with other chemotherapeutic drugs in nanocarriers to elicit synergistic effects. The targeting of nutraceuticals against cancer cells can be enabled by coupling ligands with the nanocarriers, which direct to the overexpressed receptors found at the surface of the cancer cells. Transitioning a nanonutraceutical from pre-clinical research to clinical trials is a pivotal step. This focus on advancing their application holds great potential for impacting clinical research and improving the treatment landscape for cancer patients. This review focuses on the role of nutraceuticals for cancer treatment, various nanocarriers for the efficient delivery of nutraceuticals along with co-administration of nutraceuticals with chemotherapeutic drugs using nanocarriers. Also, emphasize the targeting of ligands coupled nanocarriers to the cancer cells along with patents and clinical trials for nanonutraceuticals.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India.
| | - Vaishnavi Chhabra
- National Institute of Pharmaceutical Education & Research, Mohali, Punjab 160062, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah, Uttar Pradesh 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | | | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha 40100, Pakistan
| | - Farzana Siddique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| |
Collapse
|
5
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024; 32:1207-1232. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Bostiog DI, Simionescu N, Coroaba A, Marinas IC, Chifiriuc MC, Gradisteanu Pircalabioru G, Maier SS, Pinteala M. Multi-shell gold nanoparticles functionalized with methotrexate: a novel nanotherapeutic approach for improved antitumoral and antioxidant activity and enhanced biocompatibility. Drug Deliv 2024; 31:2388624. [PMID: 39152905 PMCID: PMC11332291 DOI: 10.1080/10717544.2024.2388624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features. Stable phosphine-coated AuNPs were synthesized and functionalized with tailored polyethylene glycol (PEG) and short-branched polyethyleneimine (PEI) moieties, followed by MTX covalent binding. Physicochemical characterization by UV-vis and Fourier-transform infrared spectroscopy (FTIR) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis at each step. The antioxidant activity of functionalized AuNPs was determined using DPPH radical scavenging assay, ferric ions' reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays. Biocompatibility and cytotoxicity were assessed using MTT and LDH assays on HaCaT human keratinocytes and CAL27 squamous cell carcinoma. MTX functionalized AuNPs demonstrated enhanced antioxidant activity and a pronounced cytotoxic effect on the tumoral cells compared to their individual components, highlighting their potential for improving cancer therapy.
Collapse
Affiliation(s)
- Denisse-Iulia Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Ioana C. Marinas
- Department of Microbiology and Immunology, Research Institute of the University of Bucharest-ICUB, Bucharest, Romania
| | - Mariana C. Chifiriuc
- Department of Microbiology and Immunology, Research Institute of the University of Bucharest-ICUB, Bucharest, Romania
| | | | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
- Polymer Research Center, “Gheorghe Asachi” Technical University of Iasi, Iasi, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
7
|
Shakori Poshteh S, Alipour S, Varamini P. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. DISCOVER NANO 2024; 19:177. [PMID: 39527354 PMCID: PMC11554965 DOI: 10.1186/s11671-024-04126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) bone metastasis poses a significant clinical challenge due to its impact on patient prognosis and quality of life. Curcumin (CUR), a natural polyphenol compound found in turmeric, has shown potential in cancer therapy due to its anti-inflammatory, antioxidant, and anticancer properties. However, its metabolic instability and hydrophobicity have hindered its clinical applications, leading to a short plasma half-life, poor absorption, and low bioavailability. To enhance the drug-like properties of CUR, nanotechnology-based delivery strategies have been employed, utilizing polymeric, lipidic, and inorganic nanoparticles (NPs). These approaches have effectively overcome CUR's inherent limitations by enhancing its stability and cellular bioavailability both in vitro and in vivo. Moreover, targeting molecules with high selectivity towards bone metastasized breast cancer cells can be used for site specific delivery of curcumin. Alendronate (ALN), a bone-seeking bisphosphonate, is one such moiety with high selectivity towards bone and thus can be effectively used for targeted delivery of curcumin loaded nanocarriers. This review will detail the process of bone metastasis in BC, elucidate the mechanism of action of CUR, and assess the efficacy of nanotechnology-based strategies for CUR delivery. Specifically, it will focus on how these strategies enhance CUR's stability and improve targeted delivery approaches in the treatment of BC bone metastasis.
Collapse
Affiliation(s)
- Shiva Shakori Poshteh
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shohreh Alipour
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Drug and Food Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Mayo B, Penroz S, Torres K, Simón L. Curcumin Administration Routes in Breast Cancer Treatment. Int J Mol Sci 2024; 25:11492. [PMID: 39519045 PMCID: PMC11546575 DOI: 10.3390/ijms252111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is a public health concern worldwide, characterized by increasing incidence and mortality rates, requiring novel and effective therapeutic strategies. Curcumin is a bioactive compound extracted from turmeric with several pharmacological activities. Curcumin is a multifaceted anticancer agent through mechanisms including the modulation of signaling pathways, inhibition of cell proliferation, induction of apoptosis, and production of reactive oxygen species. However, the poor water solubility and bioavailability of curcumin create important barriers in its clinical application. This review elaborates on the therapeutic potential of curcumin in breast cancer treatment, focusing on the efficacy of different administration routes and synergistic effects with other therapeutic agents. The intravenous administration of curcumin-loaded nanoparticles significantly improves bioavailability and therapeutic outcomes compared to oral routes. Innovative formulations, such as nano-emulsifying drug delivery systems, have shown promise in enhancing oral bioavailability. While intravenous delivery ensures higher bioavailability and direct action on tumor cells, it is more invasive and expensive than oral administration. Advancing research on curcumin in breast cancer treatment is essential for improving therapeutic outcomes and enhancing the quality of life of patients.
Collapse
Affiliation(s)
| | | | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| |
Collapse
|
9
|
Bravo-Alfaro DA, Montalvo-González E, Zapien-Macias JM, Sampieri-Moran JM, García HS, Luna-Bárcenas G. Annonaceae acetogenins: A potential treatment for gynecological and breast cancer. Fitoterapia 2024; 178:106187. [PMID: 39147170 DOI: 10.1016/j.fitote.2024.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Breast and gynecological cancers are major health concerns due to their increasing incidence rates, and in some cases, their low survival probability. In recent years, multiple compounds of natural origin have been analyzed as alternative treatments for this disease. For instance, Acetogenins are plant secondary metabolites from the Annonaceae family, and its potential anticancer activity has been reported against a wide range of cancer cells both in vitro and in vivo. Several studies have demonstrated promising results of Acetogenins' antitumor capacity, given their selective activity of cellular inhibition at low concentrations. This review outlines the origin, structure, and antineoplastic activities in vitro and in vivo of Acetogenins from Annonaceae against breast cancer and gynecological cancers reported to date. Here, we also provide a systematic summary of the activity and possible mechanisms of action of Acetogenins against these types of cancer and provide references for developing future therapies based on Acetogenins and nanotechnologies.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro 76130, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic. Av. Tecnológico 2595 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico
| | - J Martin Zapien-Macias
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611, United States of America
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro 76130, Mexico.
| |
Collapse
|
10
|
Pradeep Prabhu P, Mohanty B, Lobo CL, Balusamy SR, Shetty A, Perumalsamy H, Mahadev M, Mijakovic I, Dubey A, Singh P. Harnessing the nutriceutics in early-stage breast cancer: mechanisms, combinational therapy, and drug delivery. J Nanobiotechnology 2024; 22:574. [PMID: 39294665 PMCID: PMC11411841 DOI: 10.1186/s12951-024-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a significant health challenge, ranking as the second leading cause of cancer-related death and the primary cause of mortality among women aged 45 to 55. Early detection is crucial for optimal prognosis. Among various treatment options available for cancer, chemotherapy remains the predominant approach. However, its patient-friendliness is hindered by cytotoxicity, adverse effects, multi-drug resistance, potential for recurrence, and high costs. This review explores extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. RESULTS Consequently, there is growing interest in exploring the relationship between diet, cancer, and complementary and alternative medicine (CAM) in cancer chemotherapy. Phytochemicals like berberine, curcumin, quercetin, lycopene, sulforaphane, resveratrol, epigallocatechin gallate, apigenin, genistein, thymoquinone have emerged as promising candidates due to their pleiotropic actions on target cells through multiple mechanisms with minimal toxicity effects. This review focuses on extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. CONCLUSION The present review provides a comprehensive understanding of the molecular mechanisms, coupled with well-designed clinical trials and adherence to regulatory guidelines, which pave the way for nutrition-based combination therapies to become a frontline approach in early-stage BC treatment.
Collapse
Affiliation(s)
- Pavithra Pradeep Prabhu
- Nitte (Deemed to Be University), Department of Pharmacognosy, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Barsha Mohanty
- Nitte (Deemed to Be University), Department of Molecular Genetics and Cancer Biology, Nitte University Centre for Science, Education and Research, Mangaluru, 575018, India
| | - Cynthia Lizzie Lobo
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Amitha Shetty
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea, Hanyang University, Seoul, Republic of Korea
| | - Manohar Mahadev
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Akhilesh Dubey
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India.
| | - Priyanka Singh
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
11
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
12
|
Lupascu FG, Sava A, Tătărușanu SM, Iacob AT, Dascălu A, Profire BȘ, Vasincu IM, Apotrosoaei M, Gîscă TC, Turin-Moleavin IA, Profire L. New Chitosan-Based Co-Delivery Nanosystem for Diabetes Mellitus Therapy. Polymers (Basel) 2024; 16:1825. [PMID: 39000680 PMCID: PMC11243866 DOI: 10.3390/polym16131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders, with a major involvement of oxidative stress in its onset and progression. Pioglitazone (Pio) is an antidiabetic drug that mainly works by reducing insulin resistance, while curcumin (Cur) is a powerful antioxidant with an important hypoglycemic effect. Both drugs are associated with several drawbacks, such as reduced bioavailability and a short half-life time (Pio), as well as instability and poor water solubility (Cur), which limit their therapeutic use. In order to overcome these disadvantages, new co-delivery (Pio and Cur) chitosan-based nanoparticles (CS-Pio-Cur NPs) were developed and compared with simple NPs (CS-Pio/CS-Cur NPs). The NPs were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition, the entrapment efficiency (EE) and loading capacity (LC), as well as the release profile, of the APIs (Pio and Cur) from the CS-APIs NPs in simulated fluids (SGF, SIF, and SCF) were also assessed. All the CS-APIs NPs presented a small particle size (PS) (211.6-337.4 nm), a proper polydispersity index (PI) (0.104 and 0.289), and a positive zeta potential (ZP) (21.83 mV-32.64 mV). Based on the TEM results, an amorphous state could be attributed to the CA-APIs NPs, and the TEM analysis showed a spherical shape with a nanometric size for the CS-Pio-Cur NPs. The FT-IR spectroscopy supported the successful loading of the APIs into the CS matrix and proved some interactions between the APIs and CS. The CS-Pio-Cur NPs presented increased or similar EE (85.76% ± 4.89 for Cur; 92.16% ± 3.79 for Pio) and LC% (23.40% ± 1.62 for Cur; 10.14% ± 0.98 for Pio) values in comparison with simple NPs, CS-Cur NPs (EE = 82.46% ± 1.74; LC = 22.31% ± 0.94), and CS-Pio NPs (EE = 93.67% ± 0.89; LC = 11.24% ± 0.17), respectively. Finally, based on the release profile results, it can be appreciated that the developed co-delivery nanosystem, CS-Pio-Cur NPs, assures a controlled and prolonged release of Pio and Cur from the polymer matrix along the GI tract.
Collapse
Affiliation(s)
- Florentina Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iași, Romania
| | - Simona-Maria Tătărușanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iași, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Andrei Dascălu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iași, Romania
| | - Bianca-Ștefania Profire
- Department of Internal Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iași, Romania
| | - Ioana-Mirela Vasincu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Maria Apotrosoaei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Tudor-Cătălin Gîscă
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iași, Romania
| | - Ioana-Andreea Turin-Moleavin
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iași, Romania
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| |
Collapse
|
13
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
14
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
15
|
Zhu J, Li Q, Wu Z, Xu Y, Jiang R. Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems. Pharmaceutics 2024; 16:79. [PMID: 38258090 PMCID: PMC10819793 DOI: 10.3390/pharmaceutics16010079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity, attracting significant attention from researchers due to its heightened malignancy and drug resistance. Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes, highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phytochemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailability, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As such, we provide an overview of the properties, synthesis, and characterization of the hybridization of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five years on CUR's biogenesis with respect to the regulation of BC, revealing that CUR participates in arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle, increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally, we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemotherapeutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately, this review is expected to offer inspiring ideas, promising strategies, and potential pathways for developing advanced anti-BC strategy nanosystems in clinical practice.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Ying Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| |
Collapse
|
16
|
Huang M, Liu J, Fan Y, Sun J, Cheng JX, Zhang XF, Zhai BT, Guo DY. Development of curcumin-loaded galactosylated chitosan-coated nanoparticles for targeted delivery of hepatocellular carcinoma. Int J Biol Macromol 2023; 253:127219. [PMID: 37802456 DOI: 10.1016/j.ijbiomac.2023.127219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Curcumin (CUR) has good antitumor effects, but its poor aqueous solubility severely limits its clinical application and the systemic nonspecific distribution of the free drug in tumor patients is a key therapeutic challenge. In order to overcome the limitations of free drugs and improve the therapeutic efficacy, we developed novel galactosylated chitosan (GC)-modified nanoparticles (GC@NPs) based on poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PEG-PLGA), which can target asialoglycoprotein receptor (ASGPR) expressed on hepatocellular carcinoma cells and have excellent biocompatibility. The results showed that the drug loading (DL) of CUR was approximately 4.56 %. A favorable biosafety profile was maintained up to concentrations of 500 μg/mL. Furthermore, in vitro cellular assays showed that GC@NPs could be efficiently internalized by HepG2 cells via ASGPR-mediated endocytosis and successfully released CUR for chemotherapy. More importantly, in vivo anti-tumor experiments revealed that GC@NPs were able to accumulate effectively within tumor sites through EPR effect and ASGPR-mediated endocytosis, leading to superior inhibition of tumor growth compared to free CUR. Overall, GC@NPs are a promising CUR nanocarrier for enhanced tumor therapy with a good biosafety profile.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Ji Liu
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jiang-Xue Cheng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
17
|
Marlina A, Misran M. Physicochemical Properties and Release Study of Antimetabolite-Incorporated Stearoyl Chitosan. ACS OMEGA 2023; 8:40494-40507. [PMID: 37929136 PMCID: PMC10620914 DOI: 10.1021/acsomega.3c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Stearoyl chitosan (SC), derived from the acylation of chitosan, contributes to the efficiency of drug delivery systems because of its structure, which accommodates the drug in a particle. Nonetheless, its role in chemotherapy has been largely unexplored. The present study involves the synthesis of stearoyl chitosan through the reaction of depolymerized chitosan with stearoyl chloride under mild reaction conditions. The resulting compound was subjected to structural analysis utilizing Fourier-transform infrared (FTIR) spectroscopy, 1H NMR, and X-ray diffraction (XRD) spectroscopy. The dispersion of SC molecules in phosphate-buffered saline (PBS) forms SC nanoparticles. The best dispersion of SC in the solution was achieved at a 1:60 chitosan-to-stearoyl chloride weight ratio. Three antimetabolite drugs, methotrexate, pemetrexed, and raltitrexed, were selected to examine the loading efficacy of SC. Pemetrexed had the highest drug-loading value of 36.8% among the three antimetabolites incorporated into SC, along with an encapsulation efficiency of 85.1%. The size of SC loaded with antimetabolites ranged from 225 to 369 nm, and their spherical form was verified via a transmission electron microscope. The in vitro release study showed that SC demonstrated controlled drug release, suggesting that SC nanoparticles have significant promise as a delivery strategy for chemotherapy.
Collapse
Affiliation(s)
- Anita Marlina
- Research
Centre for Chemistry, National Research
and Innovation Agency Republic of Indonesia, South Tangerang 15314, Indonesia
- Department
of Chemistry, Faculty of Science, University
of Malaya, Kuala
Lumpur, 50603, Malaysia
| | - Misni Misran
- Department
of Chemistry, Faculty of Science, University
of Malaya, Kuala
Lumpur, 50603, Malaysia
| |
Collapse
|
18
|
Afshari AR, Sanati M, Kesharwani P, Sahebkar A. Recent Advances in Curcumin-Based Combination Nanomedicines for Cancer Therapy. J Funct Biomater 2023; 14:408. [PMID: 37623653 PMCID: PMC10455605 DOI: 10.3390/jfb14080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Standard cancer chemotherapeutics often produce significant adverse effects and eventually lose their effectiveness due to the emergence of resistance mechanisms. As a result, patients with malignant tumors experience a poor quality of life and a short lifespan. Thus, combination medication regimens provide various advantages, including increased success rate, fewer side effects, and fewer occurrences of resistance. Curcumin (Cur), a potential phytochemical from turmeric, when coupled with traditional chemotherapeutics, has been established to improve the effectiveness of cancer treatment in clinical and preclinical investigations. Cur not only exerts multiple mechanisms resulting in apoptotic cancer cell death but also reduces the resistance to standard chemotherapy drugs, mainly through downregulating the multi-drug resistance (MDR) cargoes. Recent reports showed the beneficial outcomes of Cur combination with many chemotherapeutics in various malignancies. Nevertheless, owing to the limited bioavailability, devising co-delivery strategies for Cur and conventional pharmaceuticals appears to be required for clinical settings. This review summarized various Cur combinations with standard treatments as cancer therapeutics.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
20
|
Caballero-Florán IH, Cortés H, Borbolla-Jiménez FV, Florán-Hernández CD, Del Prado-Audelo ML, Magaña JJ, Florán B, Leyva-Gómez G. PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells. Pharmaceutics 2023; 15:1594. [PMID: 37376043 DOI: 10.3390/pharmaceutics15061594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.
Collapse
Affiliation(s)
- Isaac H Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
| | - Fabiola V Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
| | - Carla D Florán-Hernández
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México 14380, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México 14380, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
21
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
22
|
Reddy GA, Handa M, Garabadu D, Kumar R, Kushawaha PK, Shukla R. Transferrin decorated PLGA encumbered moxifloxacin nanoparticles and in vitro cellular studies. Drug Dev Ind Pharm 2023; 49:129-138. [PMID: 36852720 DOI: 10.1080/03639045.2023.2185463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
PURPOSE Complicated intra-abdominal infection (cIAI) management involves administering antibiotics that destroy the cell wall and the genesis of bacterial lipopolysaccharide (LPS). During the infectious state, the expression of transferrin receptors upregulates on the intestinal epithelial cells, which are considered the site of infection. In the present research, transferrin decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulated moxifloxacin (MOX) were developed for possible targeting of the receptors in the colon. SIGNIFICANCE This study will explore more about the incorporation of transferrin as effective coating material in targeted drug delivery. METHODS Nanoparticles were prepared using nano-emulsification and surface modification with transferrin was done by layer-by-layer methodology and evaluated by powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), FTIR, SEM, antibacterial activity, and cellular uptake studies. RESULTS The formulated NPs exhibit a size of ≈170 nm, PDI ≈ 0.25, zeta potential ≈-4.0 mV, drug loading ≈ 6.8%, and entrapment efficiency of 82%. Transferrin-decorated NPs exhibit tailored release for almost 12 h and in vitro antibacterial activity for 14 h. The cellular uptake studies were done on a RAW264.7 cell line for better determination of transferrin uptake of fabricated NPs. CONCLUSION The above study circumvents around the preparation of transferrin decorated PLGA encumbered MOX NPs intended for cIAI-induced sepsis. PLGA NPs provide tailored release of MOX with primary burst and followed by sustained release. These observations confines with antibacterial activity studies. The prepared transferrin-coated NPs were stable and effectively uptaken by RAW264.7 cells. However, future studies include the preclinical investigation of these NPs in sepsis-induced murine models.
Collapse
Affiliation(s)
- Gayathri Aparnasai Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
23
|
Phenolic Fraction from Peanut ( Arachis hypogaea L.) By-product: Innovative Extraction Techniques and New Encapsulation Trends for Its Valorization. FOOD BIOPROCESS TECH 2023; 16:726-748. [PMID: 36158454 PMCID: PMC9483447 DOI: 10.1007/s11947-022-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Peanut skin is a by-product rich in bioactive compounds with high nutritional and pharmaceutical values. The phenolic fraction, rich in proanthocyanidins/procyanidins, is a relevant class of bioactive compounds, which has been increasingly applied as functional ingredients for food and pharmaceutical applications and is mostly recovered from peanut skins through low-pressure extraction methods. Therefore, the use of green high-pressure extractions is an interesting alternative to value this peanut by-product. This review addresses the benefits of the phenolic fraction recovered from peanut skin, with a focus on proanthocyanin/procyanidin compounds, and discusses the improvement of their activity, bioavailability, and protection, by methods such as encapsulation. Different applications for the proanthocyanidins, in the food and pharmaceutical industries, are also explored. Additionally, high-pressure green extraction methods, combined with micro/nanoencapsulation, using wall material derived from peanut industrial processing, may represent a promising biorefinery strategy to improve the bioavailability of proanthocyanidins recovered from underutilized peanut skins.
Collapse
|
24
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Raman S, Khan AA, Mahmood S. Nose to brain delivery of selegiline loaded PLGA/lipid nanoparticles: Synthesis, characterisation and brain pharmacokinetics evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Parvathaneni V, Chilamakuri R, Kulkarni NS, Baig NF, Agarwal S, Gupta V. Exploring Amodiaquine's Repurposing Potential in Breast Cancer Treatment-Assessment of In-Vitro Efficacy & Mechanism of Action. Int J Mol Sci 2022; 23:11455. [PMID: 36232751 PMCID: PMC9569809 DOI: 10.3390/ijms231911455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Due to the heterogeneity of breast cancer, current available treatment options are moderately effective at best. Hence, it is highly recommended to comprehend different subtypes, understand pathogenic mechanisms involved, and develop treatment modalities. The repurposing of an old FDA approved anti-malarial drug, amodiaquine (AQ) presents an outstanding opportunity to explore its efficacy in treating majority of breast cancer subtypes. Cytotoxicity, scratch assay, vasculogenic mimicry study, and clonogenic assay were employed to determine AQ's ability to inhibit cell viability, cell migration, vascular formation, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of AQ in MCF-7 and MDAMB-231 cell lines. Apoptosis assays, cell cycle analysis, RT-qPCR assays, and Western blot studies were performed to determine AQ's ability to induce apoptosis, cell cycle changes, gene expression changes, and induction of autophagy marker proteins. The results from in-vitro studies confirmed the potential of AQ as an anti-cancer drug. In different breast cancer cell lines tested, AQ significantly induces cytotoxicity, inhibit colony formation, inhibit cell migration, reduces 3D spheroid volume, induces apoptosis, blocks cell cycle progression, inhibit expression of cancer related genes, and induces LC3BII protein to inhibit autophagy. Our results demonstrate that amodiaquine is a promising drug to repurpose for breast cancer treatment, which needs numerous efforts from further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
27
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Dey SK, Pradhan A, Roy T, Das S, Chattopadhyay D, Maiti Choudhury S. Biogenic polymer-encapsulated diosgenin nanoparticles: Biodistribution, pharmacokinetics, cellular internalization, and anticancer potential in breast cancer cells and tumor xenograft. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Gürmen K, Şahin U, Yılmaz E, Soylak M, Şahan S. Determination of Curcumin in Food with Homogenous Liquid-Phase Microextraction Preconcentration and Spectrophotometric Determination. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kamil Gürmen
- Technology Research, and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Uğur Şahin
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Development Zone, USeM ArGe ve Danş. San. ve Tic. Ltd. Şti., Erciyes University, Kayseri, Turkey
| | - Erkan Yılmaz
- Faculty of Pharmacy, Department of Analytical Chemistry, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research, and Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Serkan Şahan
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Erciyes University, Kayseri, Turkey
- Technology Development Zone, USeM ArGe ve Danş. San. ve Tic. Ltd. Şti., Erciyes University, Kayseri, Turkey
| |
Collapse
|
30
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
31
|
Salari N, Faraji F, Torghabeh FM, Faraji F, Mansouri K, Abam F, Shohaimi S, Akbari H, Mohammadi M. Polymer-based drug delivery systems for anticancer drugs: A systematic review. Cancer Treat Res Commun 2022; 32:100605. [PMID: 35816909 DOI: 10.1016/j.ctarc.2022.100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanotechnology sciences lead to the development of new treatment approaches for various diseases such as cancer. Nanotechnology advances can potentially minimize the side effects of drugs through the employment of effective and controlled drug delivery systems (DDSs). Polymers are optimal tools providing drug delivery mechanisms through the unique features of pharmacokinetics, circulation time, biocompatibility, and biodegradability. This systematic review aimed to evaluate polymer-based DDSs for anticancer drugs and their various therapeutic applications in cancer treatment. This study was conducted with no time limitation by November 2021. Related articles were collected through a deep search in English and Persian databases of SID, MagIran, Scopus, Web Of Science (WoS), PubMed, Science Direct, and Google Scholar. Keywords included drug delivery system, anticancer agent, polymeric nanostructure-based drug delivery, polymer-based drug delivery, and polymeric system. As the results showed, polymeric nanoparticles (PNPs) have influential roles in cancer treatment than conventional chemotherapy procedures. PNPs can reduce cytotoxicity following chemotherapy drug administration, improve the solubility characteristics of these therapeutic agents and inhibit the rate of tumor growth.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mansouri Torghabeh
- Department of Physiology Sciences, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Faraji
- Student research committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzaneh Abam
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
32
|
Dodda JM, Remiš T, Rotimi S, Yeh YC. Progress in the drug encapsulation of poly(lactic- co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic- co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B 2022; 10:4127-4141. [PMID: 35593381 DOI: 10.1039/d2tb00469k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Tomáš Remiš
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Sadiku Rotimi
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, 0183, Pretoria West Campus, South Africa
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Antitumor Properties of Curcumin in Breast Cancer Based on Preclinical Studies: A Systematic Review. Cancers (Basel) 2022; 14:cancers14092165. [PMID: 35565294 PMCID: PMC9099919 DOI: 10.3390/cancers14092165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Natural formulations and phytotherapies have shown promising antitumor activities. This review assesses the antitumor effects of curcumin on breast cancer. In particular, we discuss the effects of curcumin on the proliferation, viability, and apoptosis of breast cancer cell lineages and tumor volume. Studies have shown that curcumin administered at different concentrations inhibited proliferation, decreased viability, and induced apoptosis in human and animal breast cancer cells. Nanoparticle formulations of curcumin administered orally, via implant, or intraperitoneally reduced the tumor volume of human and murine mammary cells in vivo. Moreover, curcumin nanoformulations facilitate tumor growth inhibition in animal models of breast cancer. Randomized clinical trials are warranted to assess the efficacy and safety of curcumin formulations for clinical use. Abstract Breast cancer is one of the most common neoplasms among women. Anticancer strategies using natural formulations and phytotherapies are promising antitumor treatment alternatives. This review assesses the antitumor effects of curcumin on breast cancer reported in preclinical in vitro and in vivo animal models. We used five databases to search for preclinical studies published up to May 2021. The assessments included the effects of curcumin on the proliferation, viability, and apoptosis of breast cancer cell lineages and on tumor volume. In total, 60 articles met the inclusion criteria. Curcumin administered at different concentrations and via different routes of administration inhibited proliferation, decreased viability, and induced apoptosis in human and animal breast cancer cells. Nanoparticle formulations of curcumin administered orally, via implant, and intraperitoneally reduced the tumor volume of human and murine mammary cells in vivo. Moreover, curcumin nanoformulations exert positive effects on tumor growth inhibition in animal models of breast cancer. Further randomized clinical trials are warranted to assess the efficacy and safety of curcumin formulations for clinical use.
Collapse
|
34
|
Heredia NS, Vizuete K, Flores-Calero M, Pazmiño V. K, Pilaquinga F, Kumar B, Debut A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One 2022; 17:e0264825. [PMID: 35271644 PMCID: PMC8912140 DOI: 10.1371/journal.pone.0264825] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Poly(lactic-co-glycolic acid) is one of the most used polymers for drug delivery systems (DDSs). It shows excellent biocompatibility, biodegradability, and allows spatio-temporal control of the release of a drug by altering its chemistry. In spite of this, few formulations have reached the market. To characterize and optimize the drug release process, mathematical models offer a good alternative as they allow interpreting and predicting experimental findings, saving time and money. However, there is no general model that describes all types of drug release of polymeric DDSs. This study aims to perform a statistical comparison of several mathematical models commonly used in order to find which of them best describes the drug release profile from PLGA particles synthesized by nanoprecipitation method. For this purpose, 40 datasets extracted from scientific articles published since 2016 were collected. Each set was fitted by the models: order zero to fifth order polynomials, Korsmeyer-Peppas, Weibull and Hyperbolic Tangent Function. Some data sets had few observations that do not allow to apply statistic test, thus bootstrap resampling technique was performed. Statistic evidence showed that Hyperbolic Tangent Function model is the one that best fit most of the data.
Collapse
Affiliation(s)
- Nathaly S. Heredia
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- * E-mail:
| | - Marco Flores-Calero
- Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Katherine Pazmiño V.
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Fernanda Pilaquinga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Chaibasa, Jharkhand, India
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
35
|
Mousazadeh N, Gharbavi M, Rashidzadeh H, Nosrati H, Danafar H, Johari B. Anticancer evaluation of methotrexate and curcumin coencapsulated niosomes against colorectal cancer cell line. Nanomedicine (Lond) 2022; 17:201-217. [PMID: 35037483 DOI: 10.2217/nnm-2021-0334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The aim of the present investigation was to develop niosomes containing both curcumin (CUR) and methotrexate (MTX). Also, the combinational effect of CUR and MTX in both free and niosomal forms on growth inhibition potential and induction of apoptosis in the HCT-116 cell line were exploited. Materials & methods: Niosomes were prepared by the thin-film hydration method and their physicochemical properties were determined by various techniques. Cellular uptake, cell apoptosis, wound healing and MTT assay were conducted to ascertain niosomes' feasibility for cancer therapy. Results: The combination of CUR and MTX in niosomal formulation showed more toxicity than their combination in free form. Conclusion: The nanocarrier-based approach was effective for the codelivery of CUR and MTX against cancer cells in vitro.
Collapse
Affiliation(s)
- Navid Mousazadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Rashidzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Nosrati
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
36
|
Esmaeili Y, Khavani M, Bigham A, Sanati A, Bidram E, Shariati L, Zarrabi A, Jolfaie NA, Rafienia M. Mesoporous silica@chitosan@gold nanoparticles as "on/off" optical biosensor and pH-sensitive theranostic platform against cancer. Int J Biol Macromol 2022; 202:241-255. [PMID: 35041881 DOI: 10.1016/j.ijbiomac.2022.01.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023]
Abstract
A cancer nanotheranostic system was fabricated based on mesoporous silica@chitosan@gold (MCM@CS@Au) nanosystem targeted by aptamer toward the MUC-1 positive tumor cells. Subsequently, curcumin as an efficient herbal anticancer drug was first encapsulated into chitosan-triphosphate nanoparticles and then the resulted nanoparticle was loaded into the nanosystem (MCM@CS@Au-Apt). The nanosystem successful fabrication was approved at each synthesis step through FTIR, XRD, BET, DLS, FE-SEM, HRTEM, and fluorescence spectroscopy. Besides, the interaction between aptamer and curcumin was evaluated using full atomistic molecular dynamics simulations. The mechanism of curcumin release was likewise investigated through different kinetic models. Afterwards, the potential of the designed nanosystem in targeted imaging, and drug delivery was evaluated using fluorescence microscopy and flow cytometry. It was found that the energy transfer between the base pairs in the hairpin of double strands of DNA aptamer acts as a quencher for MCM@CS@Au fluorescence culminating in an "on/off" optical biosensor. On the other hand, the presence of pH-sensitive chitosan nanoparticles creates smart nanosystem to deliver more curcumin into the desired cells. Indeed, when the aptamer specifically binds to the MUC-1 receptor, its double strands separate under the low pH condition, leading to the drug release and the recovery of the fluorescence ("On" state). Based on the toxicity results, this nanosystem had more toxicity toward the MUC-1-positive tumor cells than MUC-1-negative cells, representing its selective targeting. Therefore, this nanosystem could be introduced as a smart anticancer nanotheranostic system for tracing particular biomarkers (MUC-1), non-invasive fluorescence imaging, and targeted curcumin delivery.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Alireza Sanati
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Ave, 8174673461 Isfahan, Iran; Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Nafise Arbab Jolfaie
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
37
|
Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of Curcumin Nanoformulations in Cancer Management. Molecules 2022; 27:361. [PMID: 35056675 PMCID: PMC8777756 DOI: 10.3390/molecules27020361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho PMB 31, Ghana;
| | - Enas Alkhader
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan;
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
38
|
Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers (Basel) 2021; 13:polym13244400. [PMID: 34960948 PMCID: PMC8703470 DOI: 10.3390/polym13244400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023] Open
Abstract
This manuscript aims to provide the latest update on polymeric nanoparticle drug delivery system for breast cancer treatment after 2015 and how research-oriented it is based on the available research data. Therefore, the authors have chosen breast cancer which is the most frequent and common reason for mortality in women worldwide. The first-line treatment for breast cancer treatment is chemotherapy, apart from surgery, radiation and hormonal therapy. Chemotherapy is associated with lesser therapeutics and undesirable side effects and hence. In addition, drug resistance affects the therapeutic dose to the target site. Although various nano-based formulations have been developed for effective treatment, the polymeric nanoparticles effectively avoid the lacunae of conventional chemotherapy. There has been an effort made to understand the chemotherapy drugs and their conventional formulation-related problems for better targeting and effective drug delivery for breast cancer treatment. Thus, the polymeric nanoparticles as a strategy overcome the associated problems with resulting dose reduction, enhanced bioavailability, reduced side effects, etc. This present review has compiled the research reports published from 2015 to 2021 from different databases, such as PubMed, Google Scholar, ScienceDirect, which are related to breast cancer treatment in which the drug delivery of numerous chemotherapeutic agents alone or in combination, including phytoconstituents formulated into various polymer-based nanoparticles.
Collapse
|
39
|
|
40
|
Sui L, Xu G, Hao Y, Wang X, Tang K. Engineering of marizomib loaded polymeric nanoparticles: In vivo safety profile and In vitro proliferation in hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Mamnoon B, Feng L, Froberg J, Choi Y, Sathish V, Taratula O, Taratula O, Mallik S. Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS OMEGA 2021; 6:27654-27667. [PMID: 34722965 PMCID: PMC8552235 DOI: 10.1021/acsomega.1c02250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Endoxifen is the primary active metabolite of tamoxifen, a nonsteroidal-selective estrogen receptor modulator (SERM) and widely used medication to treat estrogen receptor-positive (ER+) breast cancer. In this study, endoxifen was conjugated to the surface of polymeric nanoparticles (polymersomes) for targeted delivery of doxorubicin (DOX) to estrogen receptor-positive breast cancer cells (MCF7). Rapid cell growth and insufficient blood supply result in low oxygen concentration (hypoxia) within the solid breast tumors. The polymersomes developed here are prepared from amphiphilic copolymers of polylactic acid (PLA) and poly(ethylene glycol) (PEG) containing diazobenzene as the hypoxia-responsive linker. We prepared two nanoparticle formulations: DOX-encapsulated hypoxia-responsive polymersomes (DOX-HRPs) and endoxifen-conjugated, DOX-encapsulated hypoxia-responsive polymersomes (END-DOX-HRPs). Cellular internalization studies demonstrated eight times higher cytosolic and nuclear localization after incubating breast cancer cells with END-DOX-HRPs (targeted polymersomes) in contrast to DOX-HRPs (nontargeted polymersomes). Cytotoxicity studies on monolayer cell cultures exhibited that END-DOX-HRPs were three times more toxic to ER+ MCF7 cells than DOX-HRPs and free DOX in hypoxia. The cell viability studies on three-dimensional hypoxic cultures also demonstrated twice as much toxicity when the spheroids were treated with targeted polymersomes instead of nontargeted counterparts. This is the first report of surface-decorated polymeric nanoparticles with endoxifen ligands for targeted drug delivery to ER+ breast cancer microtumors. The newly designed endoxifen-conjugated, hypoxia-responsive polymersomes might have translational potential for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Jamie Froberg
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Venkatachalem Sathish
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Oleh Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Olena Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Sanku Mallik
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
42
|
Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers (Basel) 2021; 13:2623. [PMID: 34451161 PMCID: PMC8399915 DOI: 10.3390/polym13162623] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.
Collapse
Affiliation(s)
- Shubham Sharma
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
- PhD Research Scholar, IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India
| | - P. Sudhakara
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
| | - Jujhar Singh
- IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - M. R. Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
43
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
44
|
Haritha NH, Nawab A, Vijayakurup V, Anto NP, Liju VB, Alex VV, Amrutha AN, Aiswarya SU, Swetha M, Vinod BS, Sundaram S, Guijarro MV, Herlevich T, Krishna A, Nestory NK, Bava SV, Sadasivan C, Zajac-Kaye M, Anto RJ. Targeting Thymidylate Synthase Enhances the Chemosensitivity of Triple-Negative Breast Cancer Towards 5-FU-Based Combinatorial Therapy. Front Oncol 2021; 11:656804. [PMID: 34336653 PMCID: PMC8320437 DOI: 10.3389/fonc.2021.656804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The ongoing treatment modalities for breast cancer (BC) primarily rely on the expression status of ER, PR and HER-2 receptors in BC tissues. Our strategy of chemosensitization provides new insights to counter chemoresistance, a major obstacle that limits the benefits of chemotherapy of mammary cancers. METHODS By utilizing a murine breast cancer model employing NSG mice bearing orthotopic triple-negative breast cancer (TNBC) xenografts, we have evaluated the ability of phytochemical curcumin in chemosensitizing BC to 5-Fluorouracil (5-FU) chemotherapy and the differential modulations of cellular events in response to this strategy, independent of their receptor status. RESULTS A significant synergistic antitumor potential was observed in the murine model with a sub-optimal dose treatment of 5-FU plus curcumin, as evaluated by a reduction in the tumor-related parameters. We authenticated the pivotal role of thymidylate synthase (TS) in regulating the 5-FU-curcumin synergism using the TNBC pre-clinical model. Our study also confirmed the pharmacological safety of this chemotherapeutic plus phytoactive combination using acute and chronic toxicity studies in Swiss albino mice. Subsequently, the molecular docking analysis of curcumin binding to TS demonstrated the affinity of curcumin towards the cofactor-binding site of TS, rather than the substrate-binding site, where 5-FU binds. Our concomitant in vivo and in silico evidence substantiates the superior therapeutic index of this combination. CONCLUSION This is the first-ever pre-clinical study portraying TS as the critical target of combinatorial therapy for mammary carcinomas and therefore we recommend its clinical validation, especially in TNBC patients, who currently have limited therapeutic options.
Collapse
Affiliation(s)
- Nair Hariprasad Haritha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Akbar Nawab
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, United States
| | - Vinod Vijayakurup
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, United States
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vijayasteltar B. Liju
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Vijai V. Alex
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Balachandran S. Vinod
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam, India
| | - Maria V. Guijarro
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, United States
| | - Thomas Herlevich
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, United States
| | - Archana Krishna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Nesteena K. Nestory
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Smitha V. Bava
- Department of Biotechnology, University of Calicut, Malappuram, India
| | | | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, United States
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
45
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. A traceable, GSH/pH dual-responsive nanoparticles with spatiotemporally controlled multiple drugs release ability to enhance antitumor efficacy. Colloids Surf B Biointerfaces 2021; 205:111866. [PMID: 34044333 DOI: 10.1016/j.colsurfb.2021.111866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Constructing highly efficient and multifunctional nanoparticles to overcome the multiple challenges of targeted drug delivery is a new strategy urgently needed in tumor therapy. Here, we synthesized pH-responsive prodrug (PEG2K-NH-N-DOX), GSH-responsive prodrug (PEG2K-S-S-CPT), folate-receptor targeting polymers (FA-PEG2K-L8, FA-PEG2K-TOS) and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), used to encapsulate combrestatinA4 (CA4) to prepare multifunctional nanoparticles (FTDCAG NPs). Unlike other nanoparticles, FTDCAG NPs contains three drugs with the ability to control the release in time and space, which can maximize the effectiveness of precise cancer chemotherapy. We first confirmed that specific binding between FTDCAG NPs and overexpressed folate-receptor cells by flow cytometry and confocal laser scanning microscopy. We then investigated the spatiotemporally controlled release ability of FTDCAG NPs loaded with doxorubicin (DOX), CA4 and camptothecin (CPT). Relative to pH = 7.4, the release efficiency of CA4 in the pH = 6.5 increased by 63.4 %. The first released CA4 is able to destroy the angiogenesis and help tumor cells to be exposed to the remaining FTDCG NPs. After being internalized into the tumor cells, FTDCG NPs is disassembled and the CPT and DOX were released due to the increase of intracellular GSH concentration and the decrease of pH value. Besides, the relaxation time of FTDCAG NPs is 3.86 times that of clinical Gd-DTPA, and the in vitro and vivo T1-weighted imaging is brighter, which can be used to trace the nanoparticles by MRI. Therefore, FTDCAG NPs provide an efficient strategy for the design of multifunctional drug delivery systems for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
46
|
Synthesis and biological evaluation of fluorescent hyaluronic acid modified amorphous calcium phosphate drug carriers for tumor-targeting. Int J Biol Macromol 2021; 182:1445-1454. [PMID: 34015404 DOI: 10.1016/j.ijbiomac.2021.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
Cancer is becoming a major threat to national public health security. The integration of disease diagnosis and monitoring with treatment has become a hot spot for researchers. The amorphous calcium phosphate (ACP) nanoparticles prepared by the group in the previous stage could not precisely treat the lesion without tumor targeting and imaging characteristics. In this paper, water-soluble hyaluronic acid fluorescent carbon nanoparticles (HA-FCNs) were prepared and co-interacting with ACP nanoparticles to form hyaluronic acid fluorescent carbon/amorphous calcium phosphate (HA-FCNs/ACP) nanoparticles. The basic characteristics were characterized and the biological characteristics before and after drug loading were evaluated. HA-FCNs/ACP nanoparticles have good hemocompatibility, pH responsiveness, and enzymatic release. HA-FCNs and HA-FCNs/ACP nanoparticles are dispersed in the cytoplasm through the overexpressed CD44 receptors, which are actively targeted into A549 cells. Besides, the migration of A549 cells would be inhibited after cells were treated with drug-loaded nanomaterials. Therefore, the as-prepared nanoparticles can be used to monitor and treat focal sites through tumor-targeting bioimaging, pH-responsive, and enzymatic drug release properties, thus enabling integrated diagnosis and treatment.
Collapse
|
47
|
Abstract
Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.
Collapse
|
48
|
Ombredane AS, Silva VRP, Andrade LR, Pinheiro WO, Simonelly M, Oliveira JV, Pinheiro AC, Gonçalves GF, Felice GJ, Garcia MP, Campos PM, Luz GVS, Joanitti GA. In Vivo Efficacy and Toxicity of Curcumin Nanoparticles in Breast Cancer Treatment: A Systematic Review. Front Oncol 2021; 11:612903. [PMID: 33767985 PMCID: PMC7986721 DOI: 10.3389/fonc.2021.612903] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is one of the most prevalent types of malignant tumors in the world, resulting in a high incidence of death. The development of new molecules and technologies aiming to apply more effective and safer therapy strategies has been intensively explored to overcome this situation. The association of nanoparticles with known antitumor compounds (including plant-derived molecules such as curcumin) has been considered an effective approach to enhance tumor growth suppression and reduce adverse effects. Therefore, the objective of this systematic review was to summarize published data regarding evaluations about efficacy and toxicity of curcumin nanoparticles (Cur-NPs) in in vivo models of breast cancer. The search was carried out in the databases: CINAHL, Cochrane, LILACS, Embase, FSTA, MEDLINE, ProQuest, BSV regional portal, PubMed, ScienceDirect, Scopus, and Web of Science. Studies that evaluated tumor growth in in vivo models of breast cancer and showed outcomes related to Cur-NP treatment (without association with other antitumor molecules) were included. Of the 528 initially gathered studies, 26 met the inclusion criteria. These studies showed that a wide variety of NP platforms have been used to deliver curcumin (e.g., micelles, polymeric, lipid-based, metallic). Attachment of poly(ethylene glycol) chains (PEG) and active targeting moieties were also evaluated. Cur-NPs significantly reduced tumor volume/weight, inhibited cancer cell proliferation, and increased tumor apoptosis and necrosis. Decreases in cancer stem cell population and angiogenesis were also reported. All the studies that evaluated toxicity considered Cur-NP treatment to be safe regarding hematological/biochemical markers, damage to major organs, and/or weight loss. These effects were observed in different in vivo models of breast cancer (e.g., estrogen receptor-positive, triple-negative, chemically induced) showing better outcomes when compared to treatments with free curcumin or negative controls. This systematic review supports the proposal that Cur-NP is an effective and safe therapeutic approach in in vivo models of breast cancer, reinforcing the currently available evidence that it should be further analyzed in clinical trials for breast cancer treatments.
Collapse
Affiliation(s)
- Alicia S Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil.,Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vitória R P Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil
| | - Laise R Andrade
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Willie O Pinheiro
- Post-Graduation Program in Sciences and Technologies in Health, Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil
| | - Mayara Simonelly
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Jaqueline V Oliveira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andréia C Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil.,Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Gabriel F Gonçalves
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil
| | - Gisela J Felice
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil
| | - Mônica P Garcia
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Patrícia M Campos
- Pharmaceutical Sciences Department, State University of Ponta Grossa, Parana, Brazil
| | - Glécia V S Luz
- Post-Graduate Program in Biomedical Engineering-PPGEB, Faculty of Gama-FGA, University of Brasilia, Brasilia, Brazil.,Health Technology Assessment Center-NATS/UnB, University of Brasília, Brasilia, Brazil
| | - Graziella A Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Brasilia, Brazil.,Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
49
|
Liu Y, Ma Y, Peng X, Wang L, Li H, Cheng W, Zheng X. Cetuximab-conjugated perfluorohexane/gold nanoparticles for low intensity focused ultrasound diagnosis ablation of thyroid cancer treatment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 21:856-866. [PMID: 33551680 PMCID: PMC7850351 DOI: 10.1080/14686996.2020.1855064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the formulation of nanoassemblies (NAs) comprising C225 conjugates Au-PFH-NAs (C-Au-PFH-NAs) for low-intensity focused ultrasound diagnosis ablation of thyroid cancer. C-Au-PFH-NAs showed excellent stability in water, phosphate-buffered saline (PBS), and 20% rat serum. Transmission electron microscopy (TEM) images also revealed the effective construction of C-Au-PFH-NAs as common spherical assemblies. The incubation of C625 thyroid carcinoma with C-Au-PFH-NAs triggers apoptosis, as confirmed by flow cytometry analysis. The C-Au-PFH-NAs exhibited antitumour efficacy in human thyroid carcinoma xenografts, where histopathological results further confirmed these outcomes. Furthermore, we were able to use low-intensity focused ultrasound diagnosis imaging (LIFUS) to examine the efficiency of C-Au-PFH-NAs in thyroid carcinoma in vivo. These findings clearly show that the use of LIFUS agents with high-performance imaging in different therapeutic settings will have extensive potential for future biomedical applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Yue Ma
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Xiaoshan Peng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Lingling Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Haixia Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
| | - Xiulan Zheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, P.R. China
- CONTACT Xiulan Zheng No.150, Haping Road, Harbin150081, P.R. China
| |
Collapse
|
50
|
Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111793. [PMID: 33579443 DOI: 10.1016/j.msec.2020.111793] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress and inflammation are two related processes common to many diseases. Curcumin is a natural compound with both antioxidant and anti-inflammatory properties, among others, that is recently being used as a natural occurring product alternative to traditional drugs. However, it has a hydrophobic nature that compromises its solubility in physiological fluids and its circulation time and also presents cytotoxicity problems in its free form, limiting the range of concentrations to be used. In order to overcome these drawbacks and taking advantage of the benefits of nanotechnology, the aim of this work is the development of curcumin loaded polymeric nanoparticles that can provide a controlled release of the drug and enlarge their application in the treatment of inflammatory and oxidative stress related diseases. Specifically, the vehicle is a bioactive terpolymer based on a α-tocopheryl methacrylate, 1-vinyl-2-pyrrolidone and N-vinylcaprolactam. Nanoparticles were obtained by nanoprecipitation and characterized in terms of size, morphology, stability, encapsulation efficiency and drug release. In vitro cellular assays were performed in human articular chondrocyte and RAW 264.7 cultures to assess cytotoxicity, cellular uptake, antioxidant and anti-inflammatory properties. The radical scavenging activity of the systems was confirmed by the DPPH test and the quantification of cellular reactive oxygen species. The anti-inflammatory potential of these systems was demonstrated by the reduction of different pro-inflammatory factors such as IL-8, MCP and MIP in chondrocytes; and nitric oxide, IL-6, TNF-α and MCP-1, among others, in RAW 264.7. Finally, the in vivo biocompatibility was confirmed in a rat model by subcutaneously injecting the nanoparticle dispersions. The reduction of curcumin toxicity and the antioxidant, anti-inflammatory and biocompatibility properties open the door to deeper in vitro and in vivo research on these curcumin loaded polymeric nanoparticles to treat inflammation and oxidative stress based diseases.
Collapse
|