1
|
Karadurmus L, Erturk AS. Recent emerging trends in dendrimer research: Electrochemical sensors and their multifaceted applications in biomedical fields or healthcare. Biosens Bioelectron 2025; 273:117172. [PMID: 39823858 DOI: 10.1016/j.bios.2025.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Dendrimers enhance the selectivity and sensitivity of sensors through their synthetic, highly branched, three-dimensional structures and large surface area. This unique architecture enables precise functionalization with various recognition elements, significantly improving the specificity and sensitivity of electrochemical sensors for detecting disease markers, biomolecules, and environmental pollutants. Dendrimer-based electrochemical sensors offer promising advancements in healthcare, such as detecting biomarkers for heart disease, monitoring blood glucose levels, and sensitively determining cancer-related proteins. Additionally, incorporating metals and conductive polymers into dendrimer nanocomposites can further enhance sensor performance. This review article provides a detailed overview of dendrimer's history, structure, properties, electrochemical properties, and synthesis methods. Particular attention has been paid to recent developments in the applications of dendrimers including electrochemical sensors, drug delivery, gene therapy and bioimaging. Recent progress in various applications of dendrimer-based electrochemical sensors developed over the last seven years, focusing on their healthcare applications and discussing the primary goals and challenges that will shape future research in this field, is also critically analyzed. These advances in dendrimer technology hold great potential for the development of novel therapeutics and expanded applications in sensor design.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye
| | - Ali Serol Erturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye.
| |
Collapse
|
2
|
Patle RY, Dongre RS. Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. J Drug Target 2025; 33:437-457. [PMID: 39530737 DOI: 10.1080/1061186x.2024.2428966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Collapse
Affiliation(s)
- Ramkrishna Y Patle
- PGTD Chemistry, RTM Nagpur University, Nagpur, India
- Mahatma Gandhi College of Science, Chandrapur, India
| | | |
Collapse
|
3
|
Das S, Chanchlani B, P S S, Are V, Biswas S. Emerging dendrimer-based RNA delivery strategies. Nanomedicine (Lond) 2025; 20:835-849. [PMID: 40178336 PMCID: PMC11988225 DOI: 10.1080/17435889.2025.2485023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Dendrimers represent a class of polymers characterized by a highly branched architecture, precise composition, and a multitude of functional groups, garnering significant interest in biomedical applications. These are three-dimensional nanostructures characterized by a high degree of molecular homogeneity, adjustable size, multivalence, significant surface functionality, and high aqueous solubility.Dendrimers, owing to their significant properties, are currently utilized for drug delivery and are under investigation as potential carriers for nucleic acid-based vaccines. Nucleic acid, as a therapeutic molecule, offers several advantages, including safety, efficacy, and cost-effectiveness. These delivery systems may exhibit accelerated development timelines, reduced production costs, and enhanced storage and transportation efficiency. An essential aspect of DNA or RNA delivery technology is the selection of an efficient method of delivery.This review summarizes the classification, preparation, and formulation strategies for dendrimer delivery. Furthermore, the delivery of RNA via dendrimers for a range of disease conditions, including cancer, autoimmune disorders, infectious diseases, neurological disorders, and metabolic disorders, has been investigated and summarized.
Collapse
Affiliation(s)
- Sneha Das
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad, India
| | - Bhavesha Chanchlani
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad, India
| | - Shishira P S
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad, India
| | - Varshini Are
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad, India
| |
Collapse
|
4
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
5
|
Gandhi N, Modi S, Soni S, Andey T. Modular self-emulsifying drug delivery platform to enhance cellular uptake activity in triple-negative breast cancer. Eur J Pharm Sci 2025; 206:106993. [PMID: 39708842 DOI: 10.1016/j.ejps.2024.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Triple-negative breast cancer (TNBC) presents with resistance phenotypes to certain therapies, such as cisplatin, often requiring higher dosing, with associated acquired tumor resistance, renal toxicity, and variable patient responses. A self-emulsifying drug delivery (SEDD) formulation approach was proposed to overcome the limitations of cisplatin in TNBC, focusing on improving intracellular cisplatin and control siRNA uptake as a proof-of-principle of dual drug delivery. Four SEDD formulations were prepared and optimized for cisplatin (o/w) emulsion and FITC-siRNA (w/o) emulsion using pseudo-ternary phase diagrams to facilitate the formation of water-in-oil-water (w/o/w) emulsions. Formulations were characterized by size, polydispersity (PDI), and surface charge and tested in vitro. Cellular uptake via triplex staining of drug-loaded SEDDs was investigated. SEDDs showed enhanced internalization and promoted selective TNBC cellular uptake. The current study is a proof-of-principle for the successful co-delivery of cisplatin (small molecule) and siRNA (large molecule) via the SEDDs platform.
Collapse
Affiliation(s)
- Nandini Gandhi
- Massachusetts College of Pharmacy and Health Sciences (MCPHS University) Department of Pharmaceutical Sciences, School of Pharmacy, 19 Foster St., Worcester, MA 01608, USA
| | - Shail Modi
- Massachusetts College of Pharmacy and Health Sciences (MCPHS University) Department of Pharmaceutical Sciences, School of Pharmacy, 19 Foster St., Worcester, MA 01608, USA
| | - Shailvi Soni
- Massachusetts College of Pharmacy and Health Sciences (MCPHS University) Department of Pharmaceutical Sciences, School of Pharmacy, 19 Foster St., Worcester, MA 01608, USA
| | - Terrick Andey
- Massachusetts College of Pharmacy and Health Sciences (MCPHS University) Department of Pharmaceutical Sciences, School of Pharmacy, 19 Foster St., Worcester, MA 01608, USA.
| |
Collapse
|
6
|
Sahoo L, Paikray SK, Tripathy NS, Fernandes D, Dilnawaz F. Advancements in nanotheranostics for glioma therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2587-2608. [PMID: 39480526 DOI: 10.1007/s00210-024-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Gliomas are brain tumors mainly derived from glial cells that are difficult to treat and cause high mortality. Radiation, chemotherapy, and surgical excision are the conventional treatments for gliomas. Patients who have surgery or have undergone chemotherapy for glioma treatment have poor prognosis with tumor recurrence. In particular, for glioblastoma, the 5-year average survival rate is 4-7%, and the median survival is 12-18 months. A number of issues hinder effective treatment such as, poor surgical resection, tumor heterogeneity, insufficient drug penetration across the blood-brain barrier, multidrug resistance, and difficulties with drug specificity. Nanotheranostic-mediated drug delivery is becoming a well-researched consideration, and an efficient non-invasive method for delivering chemotherapeutic drugs to the target area. Theranostic nanomedicines, which incorporate therapeutic drugs and imaging agents for personalized therapies, can be used for preventing overdose of non-responders. Through the identification of massive and complicated information from next-generation sequencing, machine learning enables for precise prediction of therapeutic outcomes and post-treatment management for patients with cancer. This article gives a thorough overview of nanocarrier-mediated drug delivery with a brief introduction to drug delivery challenges. In addition, this assessment offers a current summary of preclinical and clinical research on nanomedicines for gliomas. In the future, nanotheranostics will provide personalized treatment for gliomas and other treatable cancers.
Collapse
Affiliation(s)
- Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | | | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
7
|
Aghanejad A, Kheiriabad S, Ghaffari M, Namvar Aghdash S, Ghafouri N, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. Targeted co-delivery nanosystem based on methotrexate, curcumin, and PAMAM dendrimer for improvement of the therapeutic efficacy in cervical cancer. Sci Rep 2025; 15:1813. [PMID: 39805840 PMCID: PMC11730290 DOI: 10.1038/s41598-024-82074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR. Various techniques were employed to evaluate the structural properties of the prepared Cur-PAMAM-MTX NC. The Cur-PAMAM-MTX NC, after preparation, exhibited a particle size of 249 nm, with an encapsulation efficiency (EE) of ~ 81% for Cur. The cumulative in vitro release of Cur-loaded NC indicated a controlled release influenced by time and pH. The cell study results revealed that Cur-PAMAM-MTX NC exhibited significantly higher cytotoxicity than free MTX, Cur, and other formulations tested in vitro. The synergistic effect of co-delivery of MTX and Cur by PAMAM significantly increased cytotoxicity. Besides, the significant ROS level rising has been shown in the treated cells with MTX-PAMAM-Cur. Considering these findings, the co-delivery NC shows promise for additional in vitro investigations and possesses the capacity to function as an effective framework for the combined delivery of MTX and Cur in cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Kheiriabad
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Ghaffari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Neda Ghafouri
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
8
|
Stadler J, Garmo LG, Doyle D, Cheng CI, Richardson G, Waheed Z, Tofan T, Srinageshwar B, Sharma A, Petersen RB, Dunbar GL, Rossignol J. Curcumin encapsulated in PAMAM dendrimers for the therapeutic treatment of ischemic stroke in rats. Front Cell Dev Biol 2025; 12:1467417. [PMID: 39834388 PMCID: PMC11743639 DOI: 10.3389/fcell.2024.1467417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties. Curcumin is known to have anti-inflammatory and antioxidant effects yet suffers from poor solubility and bioavailability. The purpose of this study is to investigate the efficacy of curcumin encapsulated in PAMAM dendrimers as a potential therapeutic treatment for ischemic stroke by studying post-stroke lesion size, astrocyte reactivity, and functional recovery in a rat model of cerebral ischemia. Methods Forty-eight male and female Sprague-Dawley rats (280-380 g) underwent either a 90-min middle cerebral artery occlusion (MCAo) or sham surgery before receiving one of four treatments: (1) Hanks' balanced salt solution (HBSS) control, (2) empty dendrimer control, (3) curcumin control, or (4) curcumin encapsulated in PAMAM dendrimer. Neurobehavioral outcomes were evaluated at 1-, 3-, 5-, and 7-day post-surgery, after which animals were euthanized on day 8 to assess infarct volume and GFAP immunoreactivity. Results Animals that received formulations containing dendrimers (curcumin encapsulated in dendrimers or empty dendrimers) demonstrated significantly lower levels of GFAP immunoreactivity and improved functional recovery, including weight and neurobehavioral scores, compared to the formulations that did not contain dendrimers (curcumin and HBSS control). Additionally, the dendrimer-curcumin treatment group exhibited a significantly improved paw laterality index over the course of the study compared with the other three treatment groups. Conclusion Although the post-stroke administration of curcumin encapsulated in PAMAM dendrimers modulates the astrocytic response and promotes functional recovery following ischemic stroke in rats, its therapeutic benefits may be driven by PAMAM dendrimers as the empty dendrimer treatment group also showed significant improvements post-stroke. Further investigation regarding PAMAM dendrimers in treating neuroinflammatory conditions remains warranted.
Collapse
Affiliation(s)
- Justin Stadler
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Lucas G. Garmo
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - David Doyle
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Chin-I. Cheng
- Department of Statistics, Actuarial and Data Science, Central Michigan University, Mt. Pleasant, MI, United States
| | - Garrett Richardson
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Zain Waheed
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Tim Tofan
- School of Business, Wayne State University, Detroit, MI, United States
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert B. Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
9
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
10
|
Damani M, Mhaske A, Dighe S, Sawarkar SP. Immunotherapy in Cervical Cancer: An Evolutionary Paradigm in Women's Reproductive Health. Crit Rev Ther Drug Carrier Syst 2025; 42:55-88. [PMID: 40084517 DOI: 10.1615/critrevtherdrugcarriersyst.2025044498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cervical cancer is the fourth most common cause of morbidity and mortality in women. The major causative factor for cervical cancer is primary prolonged infection with human papillomavirus, along with secondary factors such as immunodeficiency, smoking, low socioeconomic standards, poor hygiene, and overuse of oral contraceptives. A grave need exists to practice novel strategies to overcome existing drawbacks of conventional therapy such as chemotherapy, radiation therapy, and surgery. Cancer immunotherapy works by strengthening the immune system of the host to combat against the cancerous cells. Immunotherapy in cervical cancer treatment has demonstrated long-lasting effects; however, the response to such therapies was nominal due to its prominent limitations such as immunosuppressive behavior of the tumor. Presently plethora of nanoplatforms such as polymeric nanoparticles, micelles, liposomes, and dendrimers are being maneuvered with cancer immunotherapy. The amalgamation of nanotechnology and immunotherapy in the treatment of cervical cancer is conceivable due to the mutual association between the tumor microenvironment and immunosurveillance. Safety concerns of nanoplatforms with immunotherapeutics such as toxicity, inflammation, and unwanted accumulation in tissues could be surmounted by surface modification methods. This review highlights the benefits of the amalgamation of nanotechnology and immunotherapy to improve shortcomings applicable to the conventional delivery of cancer treatment. We also aim to outline the nanoimmunotherapy sophistications and future translational avenues in this rapidly flourishing cancer treatment modality.
Collapse
Affiliation(s)
- Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India
| | - Akshada Mhaske
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sayali Dighe
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| |
Collapse
|
11
|
Majidzadeh H, Araj-Khodaei M, Aghanejad A, Ghaffari M, Jafari A, Jenanifard F, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. PAMAM dendrimers based co-delivery of methotrexate and berberine for targeting of Hela cancer cells. Toxicol Rep 2024; 13:101765. [PMID: 39484635 PMCID: PMC11525225 DOI: 10.1016/j.toxrep.2024.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Polyamidoamine dendrimer (PAMAM) is a class of synthetic macromolecular polymers for targeted drug delivery. PAMAM dendrimers are characterized by a pure defined structure, adjustable nanoscale dimensions, mono-dispersity, and versatile surface modification. The objective of this study was to study the covalent coupling of methotrexate (MTX) to PAMAM dendrimer, which was loaded with the natural product anticancer agent, berberine (BER) for the targeting of HeLa cells. The successful preparation of MTX-conjugated PAMAM loaded with BER (MTX-PAMAM-BER) was confirmed by Fourier transform infrared spectroscopy and particle size was evaluated using dynamic light scattering. The biological assays, MTT, flow cytometry, ROS levels evaluation and DAPI staining were used to assess the cytotoxicity effect of the prepared nanosystem. The findings indicated that MTX-PAMAM-BER exhibited greater suppression of tumor cell growth in comparison to BER, MTX, PAMAM-BER, and MTX-PAMAM. Besides, the noteworthy ROS level has been seen in the treated cells with MTX-PAMAM-BER. Finally, it should be stated that the fabricated MTX-PAMAM-BER co-delivery nanosystem could be a promising agent for cancer therapy and targeting.
Collapse
Affiliation(s)
- Hossein Majidzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Jafari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Jenanifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
12
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
13
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
14
|
Guo F, Wu Y, Liu J. Curcumin nanoparticles in heat stroke management. J Nanobiotechnology 2024; 22:559. [PMID: 39267043 PMCID: PMC11396141 DOI: 10.1186/s12951-024-02771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE The exacerbation of extreme high-temperature events due to global climate change poses a significant challenge to public health, particularly impacting the central nervous system through heat stroke. This study aims to develop Poly(amidoamine) (PAMAM) nanoparticles loaded with curcumin (PAMAM@Cur) to enhance its therapeutic efficacy in hypothalamic neural damage in a heat stroke model and explore its potential mechanisms. METHODS Curcumin (Cur) was encapsulated into PAMAM nanoparticles through a hydrophobic interaction method, and various techniques were employed to characterize their physicochemical properties. A heat stroke mouse model was established to monitor body temperature and serum biochemical parameters, conduct behavioral assessments, histological examinations, and biochemical analyses. Transcriptomic and proteomic analyses were performed to investigate the therapeutic mechanisms of PAMAM@Cur, validated in an N2a cell model. RESULTS PAMAM@Cur demonstrated good stability, photostability, cell compatibility, significant blood-brain barrier (BBB) penetration capability, and effective accumulation in the brain. PAMAM@Cur markedly improved behavioral performance and neural cell structural integrity in heat stroke mice, alleviated inflammatory responses, with superior therapeutic effects compared to Cur or PAMAM alone. Multi-omics analysis revealed that PAMAM@Cur regulated antioxidant defense genes and iron death-related genes, particularly upregulating the PCBP2 protein, stabilizing SLC7A11 and GPX4 mRNA, and reducing iron-dependent cell death. CONCLUSION By enhancing the drug delivery properties of Cur and modulating molecular pathways relevant to disease treatment, PAMAM@Cur significantly enhances the therapeutic effects against hypothalamic neural damage induced by heat stroke, showcasing the potential of nanotechnology in improving traditional drug efficacy and providing new strategies for future clinical applications. SIGNIFICANCE This study highlights the outlook of nanotechnology in treating neurological disorders caused by heat stroke, offering a novel therapeutic approach with potential clinical applications.
Collapse
Affiliation(s)
- Fei Guo
- Emergency Trauma Surgery Department of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yizhan Wu
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
| |
Collapse
|
15
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
16
|
Yao Y, Zhao Q, Xu F, Yao T. Enhanced anti-tumor therapy for hepatocellular carcinoma via sorafenib and KIAA1199-siRNA co-delivery liposomes. Saudi Pharm J 2024; 32:102153. [PMID: 39211513 PMCID: PMC11357851 DOI: 10.1016/j.jsps.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. Sorafenib (Sf) is currently the first-line treatment for HCC. However, due to the side effects and unsatisfied efficiency of Sf, it is urgent to combine different therapeutic agents to inhibit HCC progression and increase the therapeutic efficacy. Here, our study constructed a Sf and KIAA1199-siRNA co-loaded liposome Sf-Lp-KIAA, which was prepared by electrostatic interaction of KIAA1199-siRNA and Sf loaded liposome (Sf-Lp). The particle size, zeta potential, the in vitro cumulative release was investigated. The physical and chemical properties were characterized, and the inhibition of HepG2 growth and metastasis in vitro was investigated. The cellular uptake of the co-loaded liposome was significantly higher than that of free siRNA, and the drug/siRNA could be co-delivered to the target cells. Sf-Lp-KIAA could significantly inhibit the growth, migration, invasion and down-regulate KIAA1199 expression of HepG2 cells in vitro than that of single Sf treated group. In addition, the co-delivery liposome accumulated in the HepG2 subcutaneous tumor model and suppress tumor growth after systemic administration without induce obvious toxicity. The present study implied that the co-delivery of Sf and KIAA1199-siRNA through the co-loaded liposomes exerted synergistic antitumor effects on HCC, which would lay a foundation for HCC therapy in the future.
Collapse
Affiliation(s)
- Yao Yao
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feng Xu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
18
|
Romani C, Sponchioni M, Volonterio A. Fluorinated PAMAM-Arginine Carrier Prodrugs for pH-Sensitive Sustained Ibuprofen Delivery. Pharm Res 2024; 41:1725-1736. [PMID: 39048881 PMCID: PMC11362194 DOI: 10.1007/s11095-024-03747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The development of an efficient, multifunctional drug delivery system overcoming different obstacles generally associated with drug formulations, including the poor accumulation of the active principle in the target site and its sustained release for prolonged time. METHODS Our study proposes the development of a fluorinated poly(amidoamine) (PAMAM) carrier prodrug combining drug release boosted in alkaline environments with a possible implementation in 19F MRI applications. In particular, we functionalized the terminal primary amines of PAMAM G2 and G4 through an ad hoc designed fluorinated ibuprofen-arginine Michael acceptor to obtain multifunctional ibuprofen-PAMAM-Arg conjugates. RESULTS These carriers demonstrated pH-dependent and sustained ibuprofen release for more than 5 days. This advantage was observed in both weak alkaline and physiological buffer solutions, allowing to overcome the limits associated to the burst release from similar fluorinated Arg-PAMAM dendrimers with ibuprofen physically encapsulated. CONCLUSION These findings, coupled to the high biocompatibility of the system, suggest a potential synergistic biomedical application of our conjugates, serving as vehicles for drug delivery and as 19F magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Carola Romani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy.
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
19
|
Trivedi R, Upadhyay TK. Preparation, characterization and antioxidant and anticancerous potential of Quercetin loaded β-glucan particles derived from mushroom and yeast. Sci Rep 2024; 14:16047. [PMID: 38992105 PMCID: PMC11239821 DOI: 10.1038/s41598-024-66824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
β-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. β-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated β-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are β-glucan and alginate sealing made slow and sustained release of the Quercetin from the β-glucan particles. Morphological analysis of the hollow and Quercetin loaded β-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow β-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived β-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
20
|
Batra N, Tu MJ, Yu AM. Molecular Engineering of Functional SiRNA Agents. ACS Synth Biol 2024; 13:1906-1915. [PMID: 38733599 PMCID: PMC11197084 DOI: 10.1021/acssynbio.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation. Herein, we show that with the use of a new tRNA fused pre-miRNA carrier, we can produce various forms of BioRNA/siRNA agents within living host cells. We report a high-level overexpression of nine target BioRNA/siRNA molecules at 100% success rate, yielding 3-10 mg of BioRNA/siRNA per 0.25 L of bacterial culture with high purity (>98%) and low endotoxin (<5 EU/μg RNA). Furthermore, we demonstrate that three representative BioRNA/siRNAs against GFP, BCL2, and PD-L1 are biologically active and can specifically and efficiently silence their respective targets with the potential to effectively produce downstream antiproliferation effects by PD-L1-siRNA. With these promising results, we aim to advance the field of synthetic biology by offering a novel platform to bioengineer functional siRNA agents for research and drug development.
Collapse
Affiliation(s)
- Neelu Batra
- Department of Biochemistry
and Molecular Medicine, UC Davis School
of Medicine, Sacramento, California 95817, United States
| | - Mei-Juan Tu
- Department of Biochemistry
and Molecular Medicine, UC Davis School
of Medicine, Sacramento, California 95817, United States
| | - Ai-Ming Yu
- Department of Biochemistry
and Molecular Medicine, UC Davis School
of Medicine, Sacramento, California 95817, United States
| |
Collapse
|
21
|
Sun L, Li Z, Lan J, Wu Y, Zhang T, Ding Y. Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front Pharmacol 2024; 15:1389922. [PMID: 38831883 PMCID: PMC11144913 DOI: 10.3389/fphar.2024.1389922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Chen Y, Lin X, Liu X, Liu Y, Bui-Le L, Blakney AK, Yeow J, Zhu Y, Stevens MM, Shattock RJ, Chen R, Brogan APS, Hallett JP. Thermally Robust Solvent-Free Liquid Polyplexes for Heat-Shock Protection and Long-Term Room Temperature Storage of Therapeutic Nucleic Acids. Biomacromolecules 2024; 25:2965-2972. [PMID: 38682378 PMCID: PMC11094731 DOI: 10.1021/acs.biomac.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.
Collapse
Affiliation(s)
- Yiyan Chen
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Xiaoyan Lin
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Xuhan Liu
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
- Shenzhen
University General Hospital, Shenzhen University Clinical Medical
Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen 518000, P. R. China
| | - Yifan Liu
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Liem Bui-Le
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Anna K. Blakney
- Department
of Infectious Disease, Imperial College
London, Norfolk Place, London W2 1NY, U.K.
- School
of Biomedical Engineering, Michael Smith
Laboratories, 2185 East
Mall, Vancouver, British
Columbia V6T 1Z4, Canada
| | - Jonathan Yeow
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering at Imperial College London, Prince Consort Rd, SW7 2AZ London, South Kensington, U.K.
| | - Yunqing Zhu
- School
of
Materials Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering at Imperial College London, Prince Consort Rd, SW7 2AZ London, South Kensington, U.K.
| | - Robin J. Shattock
- Department
of Infectious Disease, Imperial College
London, Norfolk Place, London W2 1NY, U.K.
| | - Rongjun Chen
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Alex P. S. Brogan
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| |
Collapse
|
23
|
Vishwakarma M, Agrawal P, Soni S, Tomar S, Haider T, Kashaw SK, Soni V. Cationic nanocarriers: A potential approach for targeting negatively charged cancer cell. Adv Colloid Interface Sci 2024; 327:103160. [PMID: 38663154 DOI: 10.1016/j.cis.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cancer, a widespread and lethal disease, necessitates precise therapeutic interventions to mitigate its devastating impact. While conventional chemotherapy remains a cornerstone of cancer treatment, its lack of specificity towards cancer cells results in collateral damage to healthy tissues, leading to adverse effects. Thus, the quest for targeted strategies has emerged as a critical focus in cancer research. This review explores the development of innovative targeting methods utilizing novel drug delivery systems tailored to recognize and effectively engage cancer cells. Cancer cells exhibit morphological and metabolic traits, including irregular morphology, unchecked proliferation, metabolic shifts, genetic instability, and a higher negative charge, which serve as effective targeting cues. Central to these strategies is the exploitation of the unique negative charge characteristic of cancer cells, attributed to alterations in phospholipid composition and the Warburg effect. Leveraging this distinct feature, researchers have devised cationic carrier systems capable of enhancing the specificity of therapeutic agents towards cancer cells. The review delineates the underlying causes of the negative charge in cancer cells and elucidates various targeting approaches employing cationic compounds for drug delivery systems. Furthermore, it delves into the methods employed for the preparation of these systems. Beyond cancer treatment, the review also underscores the multifaceted applications of cationic carrier systems, encompassing protein and peptide delivery, imaging, photodynamic therapy, gene delivery, and antimicrobial applications. This comprehensive exploration underscores the potential of cationic carrier systems as versatile tools in the fight against cancer and beyond.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Poornima Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Surbhi Tomar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India; Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India.
| |
Collapse
|
24
|
Vahedi F, Javan B, Sharbatkhari M, Soltani A, Shafiee M, Memarian A, Erfani-Moghadam V. Synergistic anticancer effects of co-delivery of linc-RoR siRNA and curcumin using polyamidoamine dendrimers against breast cancer. Biochem Biophys Res Commun 2024; 705:149729. [PMID: 38452515 DOI: 10.1016/j.bbrc.2024.149729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer resistance to chemotherapy necessitates novel combination therapeutic approaches. Linc-RoR is a long intergenic noncoding RNA that regulates stem cell differentiation and promotes metastasis and invasion in breast cancer. Herein, we report a dual delivery system employing polyamidoamine dendrimers to co-administer the natural compound curcumin and linc-RoR siRNA for breast cancer treatment. Polyamidoamine dendrimers efficiently encapsulated curcumin and formed complexes with linc-RoR siRNA at an optimal N/P ratio. In MCF-7 breast cancer cells, the dendriplexes were effectively internalized and the combination treatment synergistically enhanced cytotoxicity, arresting the cell cycle at the G1 phase and inducing apoptosis. Linc-RoR gene expression was also significantly downregulated. Individual treatments showed lower efficacy, indicating synergism between components. Mechanistic studies are warranted to define the molecular underpinnings of this synergistic interaction. Our findings suggest dual delivery of linc-RoR siRNA and curcumin via dendrimers merits further exploration as a personalized therapeutic approach for overcoming breast cancer resistance.
Collapse
Affiliation(s)
- Farzaneh Vahedi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Alireza Soltani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shafiee
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
25
|
D. S. A, Julietraja K, Jaganathan B, Alsinai A. Curcumin-Conjugated PAMAM Dendrimers of Two Generations: Comparative Analysis of Physiochemical Properties Using Adriatic Topological Indices. ACS OMEGA 2024; 9:14558-14579. [PMID: 38559925 PMCID: PMC10976413 DOI: 10.1021/acsomega.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Curcumin (C21H20O6) is a polyphenol found in the plant Curcuma longa. Even though it possesses many pharmacological effects, owing to its limited intestinal absorption, solubility, and oral bioavailability, it is more often used as a health supplement than as a lead chemical. The poly(amido)amine (PAMAM) dendrimer (nanostructure) is utilized to enhance the stability and targeted delivery of drugs. Recently, curcumin was conjugated with the PAMAM dendrimer and analyzed for its photostability. Further investigation into the physiochemical characteristics of different generations can facilitate curcumins' targeted delivery for many diseases, including cancer. However, many of these conjugates' physiochemical properties are not available in databases since they have not been explored theoretically or experimentally. In this article, QSAR/QSPR (quantitative structure-activity relationship/quantitative structure-property relationship) analysis of physiochemical properties was carried out for component structures, which produced encouraging results. Hence, 16 discrete adriatic topological indices and their associated entropy measures were evaluated to theoretically predict a few physiochemical properties of the conjugated structure. The predictions will aid the chemist in drug designing.
Collapse
Affiliation(s)
- Anuradha D. S.
- Department
of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai 632014, India
| | - Konsalraj Julietraja
- Department
of Mathematics, School of Engineering, Presidency
University, Bengaluru 560064, India
| | - B. Jaganathan
- Department
of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai 632014, India
| | - Ammar Alsinai
- Department
of Mathematics, Ibb University, Ibb 3000, Yemen
| |
Collapse
|
26
|
Mushtaq A, Li L, Grøndahl L, A A. Targeted Nanoparticles Based on Alendronate Polyethylene Glycol Conjugated Chitosan for the Delivery of siRNA and Curcumin for Bone Metastasized Breast Cancer Applications. Macromol Biosci 2024; 24:e2300268. [PMID: 37794635 DOI: 10.1002/mabi.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Bone metastasized breast cancer reduces the quality of life and median survival. Targeted delivery of small interfering RNA (siRNA) and chemotherapeutic drugs using nanoparticles (NPs) is a promising strategy to overcome current limitations in treating these metastatic breast cancers. This research develops alendronate conjugated polyethylene glycol functionalized chitosan (ALD-PEG-CHI) NP for the delivery of cell death siRNA (CD-siRNA) and curcumin (CUR) and explores its targeting ability and in vitro cell cytotoxicity. Polyethylene glycol functionalized CHI (mPEG-CHI) NPs serve as control. The size of CD-siRNA loaded NPs is below 100 nm while CUR loaded NPs is below 200 nm, with near neutral zeta potential for all NPs. The CUR encapsulation efficiency (EE) is 70% and 88% for targeted and control NPs, respectively, while complete encapsulation of CD-siRNA is achieved in both NP systems. The bone targeting ability of CY5-dsDNA loaded ALD-PEG-CHI NPs using hydroxyapatite discs is fivefold compared to control indicating ALD presentation at the targeting NP surface. Delivery of CD-siRNA loaded NPs and CUR loaded NPs show synergistic and additive growth inhibition effects against MCF-7 cells by mPEG-CHI and ALD-PEG-CHI NPs, respectively. Overall, these in vitro results illustrate the potential of the targeted NPs as an effective therapeutic system toward bone metastasized breast cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
27
|
Vakili-Azghandi M, Mollazadeh S, Ghaemi A, Ramezani M, Alibolandi M. Dendrimer-based nanomedicines for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:317-347. [DOI: 10.1016/b978-0-443-18770-4.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Saharkhiz S, Zarepour A, Nasri N, Cordani M, Zarrabi A. A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. Eur J Pharm Sci 2023; 191:106600. [PMID: 37802230 DOI: 10.1016/j.ejps.2023.106600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Chemotherapy agents often exhibit limited effectiveness due to their fast elimination from the body and non-targeted delivery. Emerging nanomaterials as drug delivery carriers open new expectancy to overcome these limitations in current chemotherapeutic treatments. In this study, we introduce and evaluate a smart pH-responsive niosomal formulation capable of delivering Doxorubicin (DOX) and Curcumin (CUR) in both individually and co-loaded forms. In particular, drug-loaded niosomes were prepared using thin-film hydration method and then characterized via different physicochemical analyses. The pH responsivity of the carrier was assessed by performing a drug release study in three different pH conditions (4, 6.5, and 7.4). Finally, the anticancer efficacy of the therapeutic compounds was evaluated through the MTT assay. Our results showed spherical particles with a size of about 200 nm and -2 mV surface charge. Encapsulation efficiency (EE%) of the nanocarrier was about 77.06 % and 79.08 % for DOX and CUR, respectively. The release study confirmed the pH responsivity of the carrier. The MTT assay results revealed about 39 % and 43 % of cell deaths after treatment with cur-loaded and dox-loaded niosomes, which increased to 74 % and 79 % after co-administration and co-loading forms of drugs, respectively, exhibiting increased anticancer efficacy by selectively delivering DOX and CUR individually or in combination. Overall, these findings suggest that our nanoformulation holds the potential as a targeted and highly effective approach for cancer management and therapy, overcoming the limitations of conventional chemotherapy drugs.
Collapse
Affiliation(s)
- Shaghayegh Saharkhiz
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye
| | - Negar Nasri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
| |
Collapse
|
29
|
Ajith S, Almomani F, Elhissi A, Husseini GA. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects. Heliyon 2023; 9:e21227. [PMID: 37954330 PMCID: PMC10637937 DOI: 10.1016/j.heliyon.2023.e21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.
Collapse
Affiliation(s)
- Saniha Ajith
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | | | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
30
|
Sanati M, Afshari AR, Kesharwani P, Sahebkar A. Recent advances in codelivery of curcumin and siRNA as anticancer therapeutics. Eur Polym J 2023; 198:112444. [DOI: 10.1016/j.eurpolymj.2023.112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
31
|
Jiang L, Qi Y, Yang L, Miao Y, Ren W, Liu H, Huang Y, Huang S, Chen S, Shi Y, Cai L. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci 2023; 18:100852. [PMID: 37920650 PMCID: PMC10618707 DOI: 10.1016/j.ajps.2023.100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
How to effectively transform the pro-oncogenic tumor microenvironments (TME) surrounding a tumor into an anti-tumoral never fails to attract people to study. Small interfering RNA (siRNA) is considered one of the most noteworthy research directions that can regulate gene expression following a process known as RNA interference (RNAi). The research about siRNA delivery targeting tumor cells and TME has been on the rise in recent years. Using siRNA drugs to silence critical proteins in TME was one of the most efficient solutions. However, the manufacture of a siRNA delivery system faces three major obstacles, i.e., appropriate cargo protection, accurately targeted delivery, and site-specific cargo release. In the following review, we summarized the pharmacological actions of siRNA drugs in remolding TME. In addition, the delivery strategies of siRNA drugs and combination therapy with siRNA drugs to remodel TME are thoroughly discussed. In the meanwhile, the most recent advancements in the development of all clinically investigated and commercialized siRNA delivery technologies are also presented. Ultimately, we propose that nanoparticle drug delivery siRNA may be the future research focus of oncogene therapy. This summary offers a thorough analysis and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yao Qi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Jianyang People's Hospital of Sichuan Province, Jianyang 641400, China
| | - Yangbao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
32
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
33
|
An H, Deng X, Wang F, Xu P, Wang N. Dendrimers as Nanocarriers for the Delivery of Drugs Obtained from Natural Products. Polymers (Basel) 2023; 15:polym15102292. [PMID: 37242865 DOI: 10.3390/polym15102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Natural products have proven their value as drugs that can be therapeutically beneficial in the treatment of various diseases. However, most natural products have low solubility and poor bioavailability, which pose significant challenges. To solve these issues, several drug nanocarriers have been developed. Among these methods, dendrimers have emerged as vectors for natural products due to their superior advantages, such as a controlled molecular structure, narrow polydispersity index, and the availability of multiple functional groups. This review summarizes current knowledge on the structures of dendrimer-based nanocarriers for natural compounds, with a particular focus on applications in alkaloids and polyphenols. Additionally, it highlights the challenges and perspectives for future development in clinical therapy.
Collapse
Affiliation(s)
- Huan An
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Fang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Pingcui Xu
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Nani Wang
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| |
Collapse
|
34
|
Saharkhiz S, Zarepour A, Zarrabi A. A new theranostic pH-responsive niosome formulation for Doxorubicin delivery and bio-imaging against breast cancer. Int J Pharm 2023; 637:122845. [PMID: 36958608 DOI: 10.1016/j.ijpharm.2023.122845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
As one of the newest generations of nanoplatforms, smart nanotheranostics have attracted signifivant attentions for medical applications, especially in oncology and cancer treatment. Indeed, their capability to provide treatment and diagnosis simultaneously leads to reduce time and side effects along with improving the performance. This study aims to introduce a novel smart nano-platform composed of doxorubicin-loaded pH-responsive stealth niosomes containing CdSe/ZnS Quantum dots as an imaging agent. Drug loaded nano-platform was fabricated via thin-film hydration method and then evaluated using different physicochemical tests. The entrapment efficiency and release profile of doxorubicin were assessed at three different pH (4, 6.5, and 7.4). Biological features and imaging ability of the nanoparticles were also evaluated by MTT assay, apoptosis assay, and fluorescence microscopy. Results showed that the fabricated nanoparticles were round-shaped, with a mean size of about 100±10 nm, -2 mV surface charge, and about 87% entrapment efficiency. The drug release profile presented a pH-responsive behavior (80, 60, and 40% drug release in pH 4, 6.5, and 7.4, respectively). The bio-activity assessments showed nearly 55% cytotoxicity effects via inducing cell apoptosis. Besides, the uptake of samples by the cells was confirmed through fluorescence imaging. Based on the results, this new nanoformulation could be considered as a candidate for future cancer theranostic applications.
Collapse
Affiliation(s)
- Shaghayegh Saharkhiz
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
35
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
36
|
State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Adv Colloid Interface Sci 2023; 314:102869. [PMID: 36933542 DOI: 10.1016/j.cis.2023.102869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Over the years, layered double hydroxides (LDHs) hold a specific position in biomedicine due to their tunable chemical composition and appropriate structural properties. However, LDHs lack adequate sensitivity for active targeting because of less active surface area and low mechanical strength in physiological conditions. The exploitation of eco-friendly materials, such as chitosan (CS), for surface engineering of LDHs, whose payloads are transferred only under certain conditions, can help develop stimuli-responsive materials owing to high biosafety and unique mechanical strength. We aim to render a well-oriented scenario toward the latest achievements of a bottom-up technology relying on the surface functionalization of LDHs to fabricate functional formulations with promoted bio-functionality and high encapsulation efficiency for various bioactives. Many efforts have been devoted to critical aspects of LDHs, including systemic biosafety and the suitability for developing multicomponent systems via integration with therapeutic modalities, which are thoroughly discussed herein. In addition, a comprehensive discussion was provided for the recent progress in the emergence of CS-coated LDHs. Finally, the challenges and future perspectives in the fabrication of efficient CS-LDHs in biomedicine are considered, with a special focus on cancer treatment.
Collapse
|
37
|
Soltani A, Pakravan P. Preparation and Characterization of Magnetic Solid Lipid Nanoparticles as a Targeted Drug Delivery System for Doxorubicin. Adv Pharm Bull 2023; 13:301-308. [PMID: 37342367 PMCID: PMC10278217 DOI: 10.34172/apb.2023.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/11/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2024] Open
Abstract
Purpose: In the present study, we investigated the magnetic solid lipid nanoparticles (mSLNs) for targeted delivery of doxorubicin (DOX) into breast cancer cells. Methods: The synthesis of iron oxide nanoparticles was carried out by co-precipitation of a ferrous and ferric aqueous solution with the addition of a base; moreover, during precipitation process, the magnetite nanoparticles should be coated with stearic acid (SA) and tripalmitin (TPG). An emulsification dispersion-ultrasonic method was employed to prepare DOX loaded mSLNs. Fourier transforms infrared spectroscopy, vibrating sample magnetometer, and photon correlation spectroscopy (PCS) were used to characterize the subsequently prepared nanoparticles. In addition, the antitumor efficacy of particles was evaluated on MCF-7 cancer cell lines. Results: The findings showed that entrapment efficiency values for solid lipid and magnetic SLNs were 87±4.5% and 53.7±3.5%, respectively. PCS investigations showed that particle size increased with magnetic loading in the prepared NPs. In vitro drug release of DOX-loaded SLN and DOX-loaded mSLN in phosphate buffer saline (pH=7.4) showed that the amount of drug released approached 60% and 80%, respectively after 96 h of incubation. The electrostatic interactions between magnetite and drug had little effect on the release characteristics of the drug. The higher toxicity of DOX as nanoparticles compared to free drug was inferred from in vitro cytotoxicity. Conclusion: DOX encapsulated magnetic SLNs can act as a suitable and promising candidate for controlled and targeted therapy for cancer.
Collapse
Affiliation(s)
| | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
38
|
Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
39
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
40
|
Mejlsøe SL, Christensen JB. Dendrimers in drug delivery. ADVANCED AND MODERN APPROACHES FOR DRUG DELIVERY 2023:357-387. [DOI: 10.1016/b978-0-323-91668-4.00005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Picos-Corrales LA, Licea-Claverie A, Sarmiento-Sánchez JI, Ruelas-Leyva JP, Osuna-Martínez U, García-Carrasco M. Methods of nanoencapsulation of phytochemicals using organic platforms. PHYTOCHEMICAL NANODELIVERY SYSTEMS AS POTENTIAL BIOPHARMACEUTICALS 2023:123-184. [DOI: 10.1016/b978-0-323-90390-5.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
43
|
A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Yadav DN, Ali MS, Thanekar AM, Pogu SV, Rengan AK. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy. Mol Pharm 2022; 19:4506-4526. [PMID: 36409653 DOI: 10.1021/acs.molpharmaceut.2c00811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
Collapse
Affiliation(s)
- Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
45
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
46
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
47
|
Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL, Behmanesh M. PEGylated PAMAM Dendrimers as Eptifibatide Nanocarriers: An Atomistic View from Molecular Dynamics Simulations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
49
|
Mohammadi A, Sahabi M, Beigi-Boroujeni S, Abdolvand H, Makvandi P, Pournaghshband Isfahani A, Gharibi R, Ebrahimibagha M. Alginate hydrogel with enhanced curcumin release through HPβCD assisted host-guest interaction. BIOMATERIALS ADVANCES 2022; 141:213130. [PMID: 36179495 DOI: 10.1016/j.bioadv.2022.213130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The underprivileged pharmacodynamic action of curcumin, which arose from its low water solubility and rapid metabolism, restricts its therapeutic performance. In this study, (2-Hydroxy isopropyl)-β-cyclodextrin (HPβCD) as a macrocycle host molecule was employed to enhance the availability and control release of curcumin by forming a host-guest inclusion complex within an in-situ forming alginate hydrogel. The formation of the inclusion complexes of curcumin with a single host molecule was characterized by FTIR, XRD, TGA, SEM, and DLS analyses. The inclusion complex of curcumin and HPβCD (HPβCD-Cur) showed a high encapsulation efficiency of 88.2 %. According to DLS results, aqueous dispersion of HPβCD-Cur exhibited a unimodal histogram after 2 and 7 days with average particles size of 207.5 and 230.6 nm, respectively. This observation could be because of the formation of an inclusion complex that effectively distributed in solution and prevented curcumin agglomeration. The prepared alginate hydrogel containing HPβCD-Cur demonstrated >87 % reduction in colonies of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, which significantly is higher than that for Alg/Cur (<69 %). The Alg/HPβCD-Cur hydrogel exhibited a high water uptake of 470 % after 2 h, and a curcumin cumulative release of 80 % over 72 h, with proper cytocompatibility. Consequently, it was shown that the HPβCD carrier could act as an apt host molecule that can properly encapsulate curcumin and enhance its release from the Alg/HPβCD-Cur hydrogel.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Mahyar Sahabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 2501, N.L., Mexico
| | - Hossein Abdolvand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Pontedera, 56025 Pisa, Italy
| | | | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Mehrnoosh Ebrahimibagha
- Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
Gholinia Sarpoli LM, Zare-Karizi S, Heidari E, Hasanzadeh A, Bayandori M, Azedi F, Hamblin MR, Karimi M. Co-delivery of curcumin and Bcl-2 siRNA to enhance therapeutic effect against breast cancer cells using PEI-functionalized PLGA nanoparticles. Pharm Dev Technol 2022; 27:785-793. [PMID: 36043390 DOI: 10.1080/10837450.2022.2120003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE Breast cancer is the second major cause of death worldwide among women. Co-delivery of anticancer drugs and nucleic acids targeting the apoptosis pathway could be a promising new approach. METHODS In the present study, we synthesized a novel nanostructure for co-delivery of curcumin and siRNA to breast cancer cells. Curcumin-loaded polylactic-co-glycolic acid (PLGA) was synthesized using an O/W emulsion-solvent diffusion method. It was coated with polyethylenimine (PEI) and subsequently complexed with Bcl-2 siRNA. Also nanoparticles were characterized such as zeta potential, size distribution and drug encapsulation. Finally the cytotoxicity of NP and Bcl2 experession was evaluated. RESULTS The curcumin loaded PLGA nanoparticles were 70nm in size, and increased to 84 nm after incorporation of PEI plus Bcl-2 siRNA. The encapsulation ratio of drug in our nanoparticle was 78%. Cellular internalization PLGA-CUR-PEI/Bcl-2 siRNA NPs was confirmed by fluorescence microscopy with broadcasting of the fluorescence in the cytoplasm and into the nucleus. The results of the cell viability assay revealed that curcumin-loaded PLGA coated with PEI and Bcl-2 siRNA exhibited the highest cytotoxicity against the T47D cell line, while the siRNA decreased the Bcl-2 expression by 90.7%. CONCLUSION The co-delivery of curcumin plus Bcl-2 siRNA with the PLGA-PEI nanosystem could be a synergistic drug carrier against breast cancer cells.
Collapse
Affiliation(s)
| | - Shohreh Zare-Karizi
- Department of Genetics, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bayandori
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|