1
|
Popli P, Meduri RT, Sharma T, Challa RR, Vallamkonda B, Satti PR, Singh TG, Swami R. Polymeric and lipidic nanoparticles in transforming anti-HIV combinational therapy: can they turn the tide? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04169-w. [PMID: 40266304 DOI: 10.1007/s00210-025-04169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The HIV-1 pandemic presents a multifaceted challenge across the globe, standing as the foremost public health crisis today. Global data on HIV-related morbidity and mortality are alarming. Effective HIV management hinges on minimizing transmission through highly active antiretroviral therapy (HAART), which relies on a combination of HAART and has been a cornerstone in HIV management. However, challenges such as low patient adherence, suboptimal drug pharmacokinetics, and side effects, potentially undermine the efficacy of existing treatment. Emerging nanotherapeutics, particularly lipidic and polymeric nanoparticles, have exhibited immense promise in addressing these concerns. These nanocarriers enhance targeted drug delivery, facilitate controlled release, and reduce toxicity. Notably, co-delivery strategies using nanoparticles enable the simultaneous transport of multiple drugs involved in HAART. But the question arises whether the exploration is enough to turn the tide. Hence, through this review, the authors have tried to explore and discuss the obstacles faced by the lipid and polymeric nanoparticles such as stability and encapsulation efficiency, and translating these innovations to clinical practice in detail and discussed the future potential of AI-driven nanomedicine.
Collapse
Affiliation(s)
- Pankaj Popli
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Guntur, India
| | | | | | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Lambaren K, Trac N, Fehrenbach D, Madhur M, Chung EJ. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjug Chem 2025; 36:332-346. [PMID: 39979082 DOI: 10.1021/acs.bioconjchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Karla Lambaren
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Trac
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Daniel Fehrenbach
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Meena Madhur
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Eun Ji Chung
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Lomas C, Dubey RC, Perez-Alvarez G, Lopez Hernandez Y, Atmar A, Arias AY, Vashist A, Aggarwal S, Manickam P, Lakshmana MK, Vashist A. Recent advances in nanotherapeutics for HIV-associated neurocognitive disorders and substance use disorders. Nanomedicine (Lond) 2025; 20:603-619. [PMID: 39963928 PMCID: PMC11902879 DOI: 10.1080/17435889.2025.2461984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Substance use disorders (SUD) and HIV-associated neurocognitive disorders (HAND) work synergistically as a significant cause of cognitive decline in adults and adolescents globally. Current therapies continue to be limited due to difficulties crossing the blood-brain barrier (BBB) leading to limited precision and effectiveness, neurotoxicity, and lack of co-treatment options for both HAND and SUD. Nanoparticle-based therapeutics have several advantages over conventional therapies including more precise targeting, the ability to cross the BBB, and high biocompatibility which decreases toxicity and optimizes sustainability. These advantages extend to other neurological disorders such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). This review summarizes recent advances in nanotechnology for application to HAND, SUD, and co-treatment, as well as other neurological disorders. This review also highlights the potential challenges these therapies face in clinical translation and long-term safety.
Collapse
Affiliation(s)
- Christia Lomas
- Department of Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Ravi Chandra Dubey
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Gabriela Perez-Alvarez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Yesenia Lopez Hernandez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Aorzala Atmar
- Department of Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Adriana Yndart Arias
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Atul Vashist
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
- Centre of Excellence in Nanosensors and Nanomedicine, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | | | - Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
5
|
Yang M, Ding C, Zhao T, Song G, Liu T, Li Z, Zhang Y. Nanoparticle-Based Therapies for Neurotropic Viral Infections: Mechanisms, Challenges, and Future Prospects. Rev Med Virol 2024; 34:e2575. [PMID: 39160646 DOI: 10.1002/rmv.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Neurotropic viral infections pose a significant challenge due to their ability to target the central nervous system and cause severe neurological complications. Traditional antiviral therapies face limitations in effectively treating these infections, primarily due to the blood-brain barrier, which restricts the delivery of therapeutic agents to the central nervous system. Nanoparticle-based therapies have emerged as a promising approach to overcome these challenges. Nanoparticles offer unique properties that facilitate drug delivery across biological barriers, such as the blood-brain barrier, and can be engineered to possess antiviral activities.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ge Song
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Tingting Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zeqi Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
6
|
Vasukutty A, Pillarisetti S, Choi J, Kang SH, Park IK. CXCR4 Targeting Nanoplatform for Transcriptional Activation of Latent HIV-1 Infected T Cells. ACS APPLIED BIO MATERIALS 2024; 7:4831-4842. [PMID: 37586084 DOI: 10.1021/acsabm.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antiretroviral drugs are limited in their ability to target latent retroviral reservoirs in CD4+ T cells, highlighting the need for a T cell-targeted drug delivery system that activates the transcription of inactivated viral DNA in infected cells. Histone deacetylase inhibitors (HDACi) disrupt chromatin-mediated silencing of the viral genome and are explored in HIV latency reversal. But single drug formulations of HDACi are insufficient to elicit therapeutic efficacy, warranting combination therapy. Furthermore, protein kinase C activators (PKC) have shown latency reversal activity in HIV by activating the NF-κB signaling pathway. Combining HDACi (SAHA) with PKC (PMA) activators enhances HIV reservoir activation by promoting chromatin decondensation and subsequent transcriptional activation. In this study, we developed a mixed nanomicelle (PD-CR4) drug delivery system for simultaneous targeting of HIV-infected CD4+ T cells with two drugs, suberoylanilide hydroxamic acid (SAHA) and phorbol 12-myristate 13-acetate (PMA). SAHA is a HDACi that promotes chromatin decondensation, while PMA is a PKC agonist that enhances transcriptional activation. The physicochemical properties of the formulated PD-CR4 nanoparticles were characterized by NMR, CMC, DLS, and TEM analyses. Further, we investigated in vitro safety profiles, targeting efficacy, and transcriptional activation of inactivated HIV reservoir cells. Our results suggest that we successfully prepared a targeted PD system with dual drug loading. We have compared latency reversal efficacy of a single drug nanoformulation and combination drug nanoformulation. Final PD-SP-CR4 successfully activated infected CD4+ T cell reservoirs and showed enhanced antigen release from HIV reservoir T cells, compared with the single drug treatment group as expected. To summarize, our data shows PD-SP-CR4 has potential T cell targeting efficiency and efficiently activated dormant CD4+ T cells. Our data indicate that a dual drug-loaded particle has better therapeutic efficacy than a single loaded particle as expected. Hence, PD-CR4 can be further explored for HIV therapeutic drug delivery studies.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
7
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
8
|
Chaturvedi A, Sharma S, Shukla R. Drug Nanocrystals: A Delivery Channel for Antiviral Therapies. AAPS PharmSciTech 2024; 25:41. [PMID: 38366178 DOI: 10.1208/s12249-024-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, 226002, India.
| |
Collapse
|
9
|
Srivastava N, Mishra V, Mishra Y, Ranjan A, Aljabali AAA, El-Tanani M, Alfagih IM, Tambuwala MM. Development and evaluation of a protease inhibitor antiretroviral drug-loaded carbon nanotube delivery system for enhanced efficacy in HIV treatment. Int J Pharm 2024; 650:123678. [PMID: 38065344 DOI: 10.1016/j.ijpharm.2023.123678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The primary objective of this study was to enhance the effectiveness of the protease inhibitor antiretroviral drug by designing a novel delivery system using carboxylated multiwalled carbon nanotubes (COOH-MWCNTs). To achieve this, Fosamprenavir calcium (FPV), a prodrug of amprenavir known for inhibiting the proteolytic cleavage of immature virions, was selected as the protease inhibitor antiretroviral drug, and loaded onto COOH-MWCNTs using a direct loading method. The structural specificity of the drug-loaded MWCNTs, the percent entrapment efficiency, and in vitro drug release were rigorously evaluated for the developed formulation, referred to as FPV-MWCNT. Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and atomic force microscopy (AFM) techniques were employed to confirm the structural integrity and specificity of the FPV-MWCNT formulation. The results demonstrated a remarkable entrapment efficiency of 79.57 ± 0.4 %, indicating the successful loading of FPV onto COOH-MWCNTs. FE-SEM and AFM analyses further confirmed the well-dispersed and elongated structure of the FPV-MWCNT formulation, without any signs of fracture, ensuring the stability and integrity of the drug delivery system. Moreover, particle size analysis revealed an average size of 290.1 nm, firmly establishing the nanoscale range of the formulation, with a zeta potential of 0.230 mV, signifying the system's colloidal stability. In vitro drug release studies conducted in methanolic phosphate buffer saline (PBS) at pH 7.4 and methanolic acetate buffer at pH 5 demonstrated sustained drug release from the FPV-MWCNT formulation. Over a period of 96 h, the formulation exhibited a cumulative drug release of 91.43 ± 2.3 %, showcasing the controlled and sustained release profile. Furthermore, hemolysis studies indicated a notable reduction in the toxicity of both FPV and MWCNT upon conjugation, although the percent hemolysis increased with higher concentrations, suggesting the need for careful consideration of dosage levels. In conclusion, the findings from this study underscore the potential of the FPV-MWCNT formulation as an effective and promising drug-conjugated system for delivering antiretroviral drugs. The successful encapsulation, sustained drug release, and reduced toxicity make FPV-MWCNT a compelling candidate for enhancing the therapeutic efficacy of protease inhibitor antiretroviral drugs in the treatment of HIV. The developed delivery system holds great promise for future advancements in HIV treatment and paves the way for further research and development in the field of drug delivery utilizing carbon nanotube-based systems.
Collapse
Affiliation(s)
- Neha Srivastava
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan; College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh ZIP 4545, Saudi Arabia
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|
10
|
Antiviral Potential of Selected N-Methyl-N-phenyl Dithiocarbamate Complexes against Human Immunodeficiency Virus (HIV). MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Despite the use of highly active antiretroviral therapy approved by the United States Food and Drug Administration (FDA) for the treatment of human immunodeficiency virus (HIV) infection, HIV remains a public health concern due to the inability of the treatment to eradicate the virus. In this study, N-methyl-N-phenyl dithiocarbamate complexes of indium(III), bismuth(III), antimony(III), silver(I), and copper(II) were synthesized. The complexes were characterized by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The N-methyl-N-phenyl dithiocarbamate complexes were then evaluated for their antiviral effects against HIV-1 subtypes A (Q168), B (QHO.168), and C (CAP210 and ZM53). The results showed that the copper(II)-bis (N-methyl-N-phenyl dithiocarbamate) complex had a neutralization efficiency of 94% for CAP210, 54% for ZM53, 45% for Q168, and 63% for QHO.168. The silver(I)-bis (N-methyl-N-phenyl dithiocarbamate) complex showed minimal neutralization efficiency against HIV, while indium(III) and antimony(III) N-methyl-N-phenyl dithiocarbamate complexes had no antiviral activity against HIV-1. The findings revealed that copper(II)-bis (N-methyl-N-phenyl dithiocarbamate), with further improvement, could be explored as an alternative entry inhibitor for HIV.
Collapse
|
11
|
Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev 2022; 185:114294. [PMID: 35436569 DOI: 10.1016/j.addr.2022.114294] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
Abstract
Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke J Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|