1
|
Alam P, Sharma P, Faiz Arshad M. Comprehensive Computational Screening and Analysis of Natural Compounds Reveals Promising Estrogen Receptor Alpha Inhibitors for Breast Cancer Therapy. Chem Biodivers 2025; 22:e202402052. [PMID: 39363725 DOI: 10.1002/cbdv.202402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Breast cancer remains a leading cause of death among women, with estrogen receptor alpha (ERα) overexpression playing a pivotal role in tumor growth and progression. This study aimed to identify novel ERα inhibitors from a library of 561 natural compounds using computational techniques, including virtual screening, molecular docking, and molecular dynamics simulations. Four promising candidates - Protopine, Sanguinarine, Pseudocoptisine, and Stylopine - were selected based on their high binding affinities and interactions with key ERα residues. Molecular dynamics simulations conducted over 500 nanoseconds revealed that Protopine and Sanguinarine exhibited more excellent stability with minimal fluctuations, suggesting strong and stable binding. In contrast, Pseudocoptisine and Stylopine showed higher flexibility, indicating less stable interactions. Binding free energy calculations further supported the potential of Protopine and Sanguinarine as ERα inhibitors, though their binding strength was slightly lower than that of the reference compound. These findings highlight Protopine and Sanguinarine as leading candidates for further investigation, and in vitro and in vivo studies are recommended to evaluate their therapeutic potential in breast cancer treatment.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh, 11451, Saudi Arabia
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mohammed Faiz Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| |
Collapse
|
2
|
Cho H, Jun I, Adnan KM, Park CG, Lee SA, Yoon J, Ryu CS, Kim YJ. Effects of 5α-reductase inhibition by dutasteride on reproductive gene expression and hormonal responses in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110048. [PMID: 39313015 DOI: 10.1016/j.cbpc.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Steroid 5α-reductase (SRD5A) is a crucial enzyme involved in steroid metabolism, primarily converting testosterone to dihydrotestosterone (DHT). Dutasteride, an inhibitor of SRD5A types 1 and 2, is widely used for treating benign prostatic hyperplasia. An adverse outcome pathway (AOP) has been documented wherein SRD5A inhibition decreases DHT synthesis, leading to reduced levels of 17β-estradiol (E2) and vitellogenin (VTG), subsequently impairing fecundity in fish (AOP 289). However, the molecular and cellular mechanisms underlying these effects remain poorly understood. In this study, we assessed the impact of SRD5A inhibition on zebrafish embryos (Danio rerio). Exposure to dutasteride resulted in decreased DHT, E2, and VTG levels, showing a positive correlation. Dutasteride also downregulated the expression of reproduction-related genes (srd5a2, cyp19a1, esr1, esr2a, esr2b, and vtg), with interrelated reductions observed across these levels. Docking studies suggested that dutasteride's effects may operate independently of androgen receptor (AR) and estrogen receptor (ER) interactions. Furthermore, co-exposure of dutasteride (0.5 or 2 μM) with 0.5 μM DHT revealed gene expression levels comparable to the control group. These findings underscore DHT's pivotal role in modulating estrogenic function and the interplay between estrogenic and androgenic responses in vertebrates. Our proposed AOP model offers insights into mechanistic gaps, thereby enhancing current understanding and bridging knowledge disparities.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-Ro, Jeju 63243, Republic of Korea
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Adeluola AA, Radomska HS, Wilson TA, Kulp SK, Kabat A, Helms TH, Mayo AK, Montgomery EJ, Thomas J, Marcho LM, Costa T, Fukuda M, Kang DD, Vibhute S, Wang D, Bennett CE, Coss CC. The elucidation of species-specific receptor pharmacology: A case study using subtype-selective para- and meta-carborane estrogen receptor agonists. J Pharmacol Exp Ther 2025; 392:100001. [PMID: 39892992 DOI: 10.1124/jpet.123.001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Estrogen receptors (ERs) are essential pharmacological targets for treating hormonal disorders and estrogen-dependent malignancies. Selective activation of ERβ is hypothesized to provide therapeutic benefit with reduced risk of unwanted estrogenic side-effects associated with ERα activity. However, activating ERβ without activating ERα is challenging due to the high sequence and structural homology between the receptor subtypes. We assessed the impact of structural modifications to the parent compound OSU-ERβ-12 on receptor subtype binding selectivity using cell-free binding assays. Functional selectivity was evaluated by transactivation in HEK-293 cells overexpressing human or murine ERs. In vivo selectivity was examined through the uterotrophic effects of the analogs after oral administration in estrogen-naïve female mice. Furthermore, we evaluated the in vivo pharmacokinetics of the analogs following single-dose intravenous and oral administration. Regarding selectivity, a single compound exhibited greater functional selectivity than OSU-ERβ-12 for human ERβ. However, like others in the meta-carborane series, its poor in vivo pharmacokinetics limit its suitability for further development. Surprisingly, and at odds with their pharmacokinetic and in vitro human activity data, most analogs potently induced uterotrophic effects in estrogen-naïve female mice. Further investigation of activity in HEK-293 cells expressing murine ERs revealed species-specific differences in the ER subtype selectivity of these analogs. Our findings highlight species-specific receptor pharmacology and the challenges it poses to characterizing developmental therapeutics in preclinical species. SIGNIFICANCE STATEMENT: This study investigates para- and meta-substituted carborane analogs targeting estrogen receptors (ERs), revealing the greater selectivity of carborane analogs for human ERβ compared to the mouse ortholog. These findings shed light on the intricacies of using preclinical species in drug development to predict human pharmacology. The report also provides insights for the refinement and optimization of carborane analogs as potential therapeutic agents for estrogen-related disease states.
Collapse
Affiliation(s)
- Adeoluwa A Adeluola
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hanna S Radomska
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Tyler A Wilson
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alyssa Kabat
- Charles River Laboratories, Worcester, Massachusetts
| | - Timothy H Helms
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Abigail K Mayo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Emma J Montgomery
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Lynn M Marcho
- Division of Medical Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Travis Costa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mayu Fukuda
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Diana D Kang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sandip Vibhute
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dasheng Wang
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Chad E Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio; Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio; Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
4
|
Dailey GP, Rabiola CA, Lei G, Wei J, Yang XY, Wang T, Liu CX, Gajda M, Hobeika AC, Summers A, Marek RD, Morse MA, Lyerly HK, Crosby EJ, Hartman ZC. Vaccines targeting ESR1 activating mutations elicit anti-tumor immune responses and suppress estrogen signaling in therapy resistant ER+ breast cancer. Hum Vaccin Immunother 2024; 20:2309693. [PMID: 38330990 PMCID: PMC10857653 DOI: 10.1080/21645515.2024.2309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
ER+ breast cancers (BC) are characterized by the elevated expression and signaling of estrogen receptor alpha (ESR1), which renders them sensitive to anti-endocrine therapy. While these therapies are clinically effective, prolonged treatment inevitably results in therapeutic resistance, which can occur through the emergence of gain-of-function mutations in ESR1. The central importance of ESR1 and development of mutated forms of ESR1 suggest that vaccines targeting these proteins could potentially be effective in preventing or treating endocrine resistance. To explore the potential of this approach, we developed several recombinant vaccines encoding different mutant forms of ESR1 (ESR1mut) and validated their ability to elicit ESR1-specific T cell responses. We then developed novel ESR1mut-expressing murine mammary cancer models to test the anti-tumor potential of ESR1mut vaccines. We found that these vaccines could suppress tumor growth, ESR1mut expression and estrogen signaling in vivo. To illustrate the applicability of these findings, we utilize HPLC to demonstrate the presentation of ESR1 and ESR1mut peptides on human ER+ BC cell MHC complexes. We then show the presence of human T cells reactive to ESR1mut epitopes in an ER+ BC patient. These findings support the development of ESR1mut vaccines, which we are testing in a Phase I clinical trial.
Collapse
Affiliation(s)
- Gabrielle P. Dailey
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | | | - Gangjun Lei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Xiao-Yi Yang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Tao Wang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Cong-Xiao Liu
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Melissa Gajda
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Amy C. Hobeika
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Amanda Summers
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Robert D. Marek
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | | | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Erika J. Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Cui Y, He W, Wang Z, Yang H, Zheng M, Li Y. Reduced estrogenic risks of a sunscreen additive: Theoretical design and evaluation of functionally improved salicylates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135371. [PMID: 39084014 DOI: 10.1016/j.jhazmat.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Salicylic esters (SEs), the widely used ultraviolet (UV) absorbers in sunscreen products, have been found to have health risks such as skin sensitization and estrogenic effects. This study aims to design SE substitutes that maintain high UV absorbance while reducing estrogenicity. Using molecular docking and Gaussian09 software for initial assessments and further application of a combination of two-dimensional and three-dimensional quantitative structure-activity relationships (2D-QSAR and 3D-QSAR, respectively) models, we designed 73 substitutes. The best-performing molecules, ethylhexyl salicylate (EHS)-5 and EHS-15, significantly reduced estrogenicity (44.54 % and 17.60 %, respectively) and enhanced UV absorbance (249.56 % and 46.94 %, respectively). Through screening for human health risks, we found that EHS-5 and EHS-15 were free from skin sensitivity and eye irritation and exhibited reduced skin permeability compared with EHS. Furthermore, the photolysis and synthetic pathways of EHS-5 and EHS-15 were deduced, demonstrating their good photodegradability and potential synthesizability. In addition, we analyzed the mechanisms underlying the changes in estrogenic effects and UV absorption properties. We identified covalent hydrogen bond basicity and acidity Propgen value for atomic molecular properties and the highest occupied molecular orbital eigenvalue as the main factors affecting the estrogenic effect and UV absorbance of SEs, respectively. This study focuses on the design and screening of SEs, exhibiting enhanced functionality, reduced health risks, and synthetic feasibility.
Collapse
Affiliation(s)
- Yuhan Cui
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Wei He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Maosheng Zheng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
6
|
Elango A, Kannan I, Ravichandar R, Kumaravelu P. Molecular docking analysis of imeglimin and its derivatives with estrogen receptor-alpha. Bioinformation 2024; 20:711-718. [PMID: 39309570 PMCID: PMC11414348 DOI: 10.6026/973206300200711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Estrogen receptor-α (ER- α) is a principal endocrine regulatory protein in breast cancer. The progression of ER-α positive breast cancer is slowed by selective estrogen receptor modulators such as Tamoxifen. But, long term therapy with Tamoxifen leads to resistance. Therefore, it is of interest to document the Molecular docking and pharmacokinetic analysis of imeglimin derivatives with ER-alpha. Among the 166 derivatives of Imeglimin, only five derivatives were shortlisted after toxicity testing. The selected derivatives showed good binding affinity with favorable pharmacokinetic profiles. The selected compounds of Imeglimin were found to possess excellent anticancer potential and could be considered as novel, cost-effective anticancer agents effective against ER positive breast cancer for further investigation.
Collapse
Affiliation(s)
- Anitha Elango
- Department of Pharmacology, Panimalar Medical College Hospital and Research Institute, Chennai
| | - Iyanar Kannan
- Department of Microbiology, Tagore Medical College and Hospital, Chennai
| | - Ramya Ravichandar
- Department of Pharmacology, Tagore Medical College and Hospital, Chennai
| | | |
Collapse
|
7
|
Zhao Z, Huang G, He Y, Zuo X, Han W, Li H. Estrogen inhibits the differentiation of fibroblasts induced by high stiffness matrix by enhancing DNMT1 expression. Tissue Cell 2023; 85:102207. [PMID: 37708582 DOI: 10.1016/j.tice.2023.102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Pelvic organ prolapse(POP) is a multifactorial connective tissue disorder caused by damage to the supporting structures of the pelvic floor. Evidence from several studies suggests that anterior vaginal wall stiffness is higher in patients with POP, but the mechanisms involved remain unknown. METHODS Tissue from the anterior vaginal wall of patients with POP or other benign diseases was obtained. The modulus of elasticity of the anterior vaginal wall was measured using a microindenter. Cells were cultured in vitro on acrylamide gels of different stiffness and treated with DNMT1 inhibitor, microtubule polymerisation inhibitor and estrogen. Western blot or immunohistochemical staining was performed to detect DNA Methyltransferase 1, α-smooth muscle actin(α-SMA) expression, and connective tissue growth factor(CTGF) expression. CONCLUSION Estrogen can inhibit high stiffness matrix-induced fibroblast differentiation, by enhancing DNMT1 expression. This study may help to elucidate the complex crosstalk between fibroblasts and their surrounding matrix under healthy and pathological conditions and provide new insights into the options for material-related therapeutic applications.
Collapse
Affiliation(s)
- Zhihan Zhao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Guotao Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Yong He
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Xiaohu Zuo
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Wuyue Han
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Hong Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
8
|
Tong JH, Elmore S, Huang SS, Tachachartvanich P, Manz K, Pennell K, Wilson MD, Borowsky A, La Merrill MA. Chronic Exposure to Low Levels of Parabens Increases Mammary Cancer Growth and Metastasis in Mice. Endocrinology 2023; 164:bqad007. [PMID: 36683225 PMCID: PMC10205179 DOI: 10.1210/endocr/bqad007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Methylparaben (MP) and propylparaben (PP) are commonly used as food, cosmetic, and drug preservatives. These parabens are detected in the majority of US women and children, bind and activate estrogen receptors (ER), and stimulate mammary tumor cell growth and invasion in vitro. Hemizygous B6.FVB-Tg (MMTV-PyVT)634Mul/LellJ female mice (n = 20/treatment) were exposed to MP or PP at levels within the US Food and Drug Administration's "human acceptable daily intake." These paraben-exposed mice had increased mammary tumor volume compared with control mice (P < 0.001) and a 28% and 91% increase in the number of pulmonary metastases per week compared with the control mice, respectively (P < 0.0001). MP and PP caused differential expression of 288 and 412 mammary tumor genes, respectively (false discovery rate < 0.05), a subset of which has been associated with human breast cancer metastasis. Molecular docking and luciferase reporter studies affirmed that MP and PP bound and activated human ER, and RNA-sequencing revealed increased ER expression in mammary tumors among paraben-exposed mice. However, ER signaling was not enriched in mammary tumors. Instead, both parabens strongly impaired tumor RNA metabolism (eg, ribosome, spliceosome), as evident from enriched KEGG pathway analysis of differential mammary tumor gene expression common to both paraben treatments (MP, P < 0.001; PP, P < 0.01). Indeed, mammary tumors from PP-exposed mice had an increased retention of introns (P < 0.05). Our data suggest that parabens cause substantial mammary cancer metastasis in mice as a function of their increasing alkyl chain length and highlight the emerging role of aberrant spliceosome activity in breast cancer metastasis.
Collapse
Affiliation(s)
- Jason H Tong
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Sarah Elmore
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Shenq-Shyang Huang
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Phum Tachachartvanich
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Katherine Manz
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Machelle D Wilson
- Department of Public Health Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Alexander Borowsky
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Immunohistochemical Detection of Estrogen Receptor-Beta (ERβ) with PPZ0506 Antibody in Murine Tissue: From Pitfalls to Optimization. Biomedicines 2022; 10:biomedicines10123100. [PMID: 36551855 PMCID: PMC9775465 DOI: 10.3390/biomedicines10123100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The estrogen receptor beta (ERβ) is physiologically essential for reproductive biology and is implicated in various diseases. However, despite more than 20 years of intensive research on ERβ, there are still uncertainties about its distribution in tissues and cellular expression. Several studies show contrasts between mRNA and protein levels, and the use of knockout strategies revealed that many commercially available antibodies gave false-positive expression results. Recently, a specific monoclonal antibody against human ERβ (PPZ0506) showed cross-reactivity with rodents and was optimized for the detection of rat ERβ. Herein, we established an immunohistochemical detection protocol for ERβ protein in mouse tissue. Staining was optimized on murine ovaries, as granulosa cells are known to strongly express ERβ. The staining results were confirmed by western blot analysis and RT-PCR. To obtain accurate and reliable staining results, different staining conditions were tested in paraffin-embedded tissues. Different pitfalls were encountered in immunohistochemical detection. Strong heat-induced epitope retrieval (HIER) and appropriate antibody dilution were required to visualize specific nuclear expression of ERβ. Finally, the specificity of the antibody was confirmed by using ovaries from Esr2-depleted mice. However, in some animals, strong (non-specific) background staining appeared. These signals could not be significantly alleviated with commercially available additional blocking solutions and are most likely due to estrus-dependent expression of endogenous immunoglobulins. In summary, our study showed that the antibody PPZ0506, originally directed against human ERβ, is also suitable for reliable detection of murine ERβ. An established staining protocol mitigated ambiguities regarding the expression and distribution of ERβ in different tissues and will contribute to an improved understanding of its role and functions in murine tissues in the future.
Collapse
|
10
|
Nowak K, Jabłońska E, Garley M, Iwaniuk A, Radziwon P, Wołczyński S, Ratajczak-Wrona W. Investigation of estrogen-like effects of parabens on human neutrophils. ENVIRONMENTAL RESEARCH 2022; 214:113893. [PMID: 35839909 DOI: 10.1016/j.envres.2022.113893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the estrogen-like effects and mechanism of action most commonly used parabens: methyl- (MeP), ethyl- (EtP), propyl- (PrP) and butylparaben (BuP) in human neutrophils. Neutrophils were isolated from 50 blood donors, pre-incubated with antagonists of estrogen receptor α (ERα), ERβ and G-protein coupled estrogen receptor 1 (GPER), then incubated with MeP, EtP, PrP, BuP and 17β-estradiol (E2; 10 nM). Cytotoxic effect was evaluated by MTT test. Neutrophils apoptosis, necrosis and NETs formation were assessed in flow cytometry and confocal microscopy. The ability of the neutrophils for chemotaxis, phagocytosis, NADPH oxidase activity and generation of superoxide anion was assessed in Boyden's chamber, Park's method with latex, the NBT test, and reduction of cytochrome C, respectively. The total nitric oxide concentration was measured in neutrophils supernatants by the Griess reaction. The expression of cathepsin G, neutrophil elastase, proteinase 3, ERα, ERβ and GPER was assessed in Western blot method. In our research, parabens did not cause a cytotoxic effect on human neutrophils nor affect their lifespan. Parabens exposure did not change neutrophils functions (chemotaxis, phagocytosis, NETs formation and oxygen-dependent killing mechanism) and expression of estrogen receptors. Our results suggest that parabens do not cause estrogen receptor-mediated neutrophils-related effects at concentrations measured in the plasma of individuals using products preserved with parabens.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Poland
| | | | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
11
|
M Rafeeq M. Molecular docking analysis of phytochemicals with estrogen receptor alpha. Bioinformation 2022; 18:697-702. [PMID: 37323553 PMCID: PMC10266367 DOI: 10.6026/97320630018697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is linked to estrogen receptor alpha (ER-α) positive. Tamoxifen and other estrogen selective modulators have proven to be beneficial in slowing the progression of ER-α BC. However, tamoxifen resistance emerges as a result of long-term treatment and cancer development. Therefore, it is of interest to document data on the molecular docking analysis of phytochemicals targeting with Estrogen Receptor-alpha. The screening of the phytochemicals from the ZINC database (a total of 87133 compounds) against ER-α protein was completed. We show that ZINC69481841 and ZINC95486083bind strongly to ER- with binding energies of 10.47 and 11.88 Kcal/mol, respectively, which were significantly greater than the control compound (-8.32Kcal/mol). ZINC69481841 and ZINC95486083 were found to bind with the key residues (Leu387, Arg394, Glu353, and Thr347) of ER-α protein. Data shows that the lead compounds (ZINC69481841 and ZINC95486083) have an acceptable range of ADMET and drug-likeness properties for further consideration in drug discovery.
Collapse
Affiliation(s)
- Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah - 21589, KSA
| |
Collapse
|
12
|
Boudreau MW, Duraki D, Wang L, Mao C, Kim JE, Henn MA, Tang B, Fanning SW, Kiefer J, Tarasow TM, Bruckheimer EM, Moreno R, Mousses S, Greene GL, Roy EJ, Park BH, Fan TM, Nelson ER, Hergenrother PJ, Shapiro DJ. A small-molecule activator of the unfolded protein response eradicates human breast tumors in mice. Sci Transl Med 2021; 13:13/603/eabf1383. [PMID: 34290053 DOI: 10.1126/scitranslmed.abf1383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Metastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darjan Duraki
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ji Eun Kim
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sean W Fanning
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | - Geoffrey L Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ben Ho Park
- Department of Medicine, Division of Heme/Onc, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Erik R Nelson
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Park CG, Jung KC, Kim DH, Kim YJ. Monohaloacetonitriles induce cytotoxicity and exhibit different mode of action in endocrine disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143316. [PMID: 33190885 DOI: 10.1016/j.scitotenv.2020.143316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 05/23/2023]
Abstract
Haloacetonitriles are emerging disinfection by-products that can be detected in various aquatic environments. They are cytotoxic, genotoxic, mutagenic, and tumorigenic in vitro and in vivo, but their endocrine-disrupting potency remains unknown. In this study, we examined the agonistic and antagonistic estrogenic and androgenic activities of haloacetonitriles, as well as their cytotoxicity, using a yeast-based reporter assay. We also investigated the interactions of haloacetonitriles with human estrogen receptor alpha (hERα) through molecular docking. We observed that iodoacetonitrile (median lethal dose: 1.96 × 10-5 M) and bromoacetonitrile (median lethal dose: 1.97 × 10-5 M) had similar cytotoxicities, which are higher than that of chloroacetonitrile (median lethal dose: 7.16 × 10-5 M). We observed bromoacetonitrile and chloroacetonitrile elicited estrogenic activity with 10% effective concentrations of 3.30 × 10-9 M and 2.36 × 10-9 M, respectively. This finding indicates that bromoacetonitrile and chloroacetonitrile may mimic estrogen signaling through interaction with hERα. Consistent with that result, we identified bromoacetonitrile and chloroacetonitrile interacted with residues in the original estrogen recognition sites of hERα. Our results show that bromoacetonitrile and chloroacetonitrile affect the endocrine-disrupting potency mediated via estrogen receptors by using in vitro assay and molecular docking.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany
| | - Ki Chun Jung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Da-Hye Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| |
Collapse
|
14
|
Gustafsson KL, Farman HH, Nilsson KH, Henning P, Movérare-Skrtic S, Lionikaite V, Lawenius L, Engdahl C, Ohlsson C, Lagerquist MK. Arginine site 264 in murine estrogen receptor-α is dispensable for the regulation of the skeleton. Am J Physiol Endocrinol Metab 2021; 320:E160-E168. [PMID: 33225718 DOI: 10.1152/ajpendo.00349.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα. Estrogen protects against bone loss but is not a suitable treatment due to adverse effects in other tissues. Therefore, increased knowledge regarding estrogen signaling in estrogen-responsive tissues is warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor-α (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo, although the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate whether R264 in ERα is involved in the regulation of the skeleton in vivo. Dual-energy X-ray absorptiometry (DEXA) analysis at 3, 6, 9, and 12 mo of age showed no differences in total body areal bone mineral density (BMD) between R264A and wild type (WT) in either female or male mice. Furthermore, analyses using computed tomography (CT) demonstrated that trabecular bone mass in tibia and vertebra and cortical thickness in tibia were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα.NEW & NOTEWORTHY Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα.
Collapse
Affiliation(s)
- Karin L Gustafsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lina Lawenius
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pharmacology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Mazurek AH, Szeleszczuk Ł, Simonson T, Pisklak DM. Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. Int J Mol Sci 2020; 21:E6411. [PMID: 32899216 PMCID: PMC7504198 DOI: 10.3390/ijms21176411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France;
| | - Dariusz Maciej Pisklak
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| |
Collapse
|
16
|
Le Naour A, Koffi Y, Diab M, Le Guennec D, Rougé S, Aldekwer S, Goncalves-Mendes N, Talvas J, Farges MC, Caldefie-Chezet F, Vasson MP, Rossary A. EO771, the first luminal B mammary cancer cell line from C57BL/6 mice. Cancer Cell Int 2020; 20:328. [PMID: 32699527 PMCID: PMC7372867 DOI: 10.1186/s12935-020-01418-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Despite decades of therapeutic trials, effective diagnosis, many drugs available and numerous studies on breast cancer, it remains the deadliest cancer in women. In order to choose the most appropriate treatment and to understand the prognosis of the patients, breast cancer is divided into different subtypes using a molecular classification. Just as there remains a need to discover new effective therapies, models to test them are also required. Methods The EO771 (also named E0771 or EO 771) murine mammary cancer cell line was originally isolated from a spontaneous tumour in C57BL/6 mouse. Although frequently used, this cell line remains poorly characterized. Therefore, the EO771 phenotype was investigated. The phenotype was compared to that of MCF-7 cells, known to be of luminal A subtype and to express estrogen receptors, as well as MDA-MB-231 cells, which are triple negative. Their sensitivity to hormonal treatment was evaluated by viability tests. Results The EO771 were estrogen receptor α negative, estrogen receptor β positive, progesterone receptor positive and ErbB2 positive. This phenotype was associated with a sensitivity to anti-estrogen treatments such as tamoxifen, 4-hydroxy-tamoxifen, endoxifen and fulvestrant. Conclusions On account of the numerous results published with the EO771 cell line, it is important to know its classification, to facilitate comparisons with corresponding types of tumours in patients. Transcriptomic and protein analysis of the EO771 cell line classified it within the luminal B subtype. Luminal B cancers correspond to one of the subtypes most frequently encountered in patients and associated with a poor prognosis.
Collapse
Affiliation(s)
- Augustin Le Naour
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Yvonne Koffi
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Mariane Diab
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Delphine Le Guennec
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Stéphanie Rougé
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Sahar Aldekwer
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Nicolas Goncalves-Mendes
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Jérémie Talvas
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Marie-Chantal Farges
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Florence Caldefie-Chezet
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Marie-Paule Vasson
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France.,Department of Nutrition, Gabriel Montpied University Hospital, Jean Perrin Cancer Centre, 58 rue Montalembert, 63011 Clermont-Ferrand, France
| | - Adrien Rossary
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| |
Collapse
|
17
|
Nogara PA, Orian L, Rocha JBT. The Se …S/N interactions as a possible mechanism of δ-aminolevulinic acid dehydratase enzyme inhibition by organoselenium compounds: A computational study. ACTA ACUST UNITED AC 2020; 15:100127. [PMID: 32572387 PMCID: PMC7280828 DOI: 10.1016/j.comtox.2020.100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023]
Abstract
DPDS and PSA interacts with cysteine residues from AlaD active site. The Se…S interactions could be involved in the δ-AlaD inhibition. δ-AlaD from Cucumis sativus does not present cysteine residues in the active site. Se…N interactions could be involved in the organoselenium action.
Organoselenium compounds present many pharmacological properties and are promising drugs. However, toxicological effects associated with inhibition of thiol-containing enzymes, such as the δ-aminolevulinic acid dehydratase (δ-AlaD), have been described. The molecular mechanism(s) by which they inhibit thiol-containing enzymes at the atomic level, is still not well known. The use of computational methods to understand the physical–chemical properties and biological activity of chemicals is essential to the rational design of new drugs. In this work, we propose an in silico study to understand the δ-AlaD inhibition mechanism by diphenyl diselenide (DPDS) and its putative metabolite, phenylseleninic acid (PSA), using δ-AlaD enzymes from Homo sapiens (Hsδ-AlaD), Drosophila melanogaster (Dmδ-AlaD) and Cucumis sativus (Csδ-AlaD). Protein modeling homology, molecular docking, and DFT calculations are combined in this study. According to the molecular docking, DPDS and PSA might bind in the Hsδ-AlaD and Dmδ-AlaD active sites interacting with the cysteine residues by Se…S interactions. On the other hand, the DPDS does not access the active site of the Csδ-AlaD (a non-thiol protein), while the PSA interacts with the amino acids residues from the active site, such as the Lys291. These interactions might lead to the formation of a covalent bond, and consequently, to the enzyme inhibition. In fact, DFT calculations (mPW1PW91/def2TZVP) demonstrated that the selenylamide bond formation is energetically favored. The in silico data showed here are in accordance with previous experimental studies, and help us to understand the reactivity and biological activity of organoselenium compounds.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
18
|
Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, Colacino JA. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999-2014. ENVIRONMENT INTERNATIONAL 2020; 137:105496. [PMID: 32113086 PMCID: PMC7137529 DOI: 10.1016/j.envint.2020.105496] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Stark racial disparities in disease incidence among American women remain a persistent public health challenge. These disparities likely result from complex interactions between genetic, social, lifestyle, and environmental risk factors. The influence of environmental risk factors, such as chemical exposure, however, may be substantial and is poorly understood. OBJECTIVES We quantitatively evaluated chemical-exposure disparities by race/ethnicity, life stage, and time in United States (US) women (n = 38,080) by using biomarker data for 143 chemicals from the National Health and Nutrition Examination Survey (NHANES) 1999-2014. METHODS We applied a series of survey-weighted, generalized linear models using data from the entire NHANES women population along with cycle and age-group stratified subpopulations. The outcome was chemical biomarker concentration, and the main predictor was race/ethnicity with adjustment for age, socioeconomic status, smoking habits, and NHANES cycle. RESULTS Compared to non-Hispanic White women, the highest disparities were observed for non-Hispanic Black, Mexican American, Other Hispanic, and Other Race/Multi-Racial women with higher levels of pesticides and their metabolites, including 2,5-dichlorophenol, o,p'-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with personal care and consumer product compounds, including parabens and monoethyl phthalate, as well as several metals, such as mercury and arsenic. Moreover, for Mexican American, Other Hispanic, and non-Hispanic black women, there were several exposure disparities that persisted across age groups, such as higher 2,4- and 2,5-dichlorophenol concentrations. Exposure levels for methyl and propyl parabens, however, were the highest in non-Hispanic black compared to non-Hispanic white children with average differences exceeding 4-fold. Exposure disparities for methyl and propyl parabens are increasing over time in Other Race/Multi-Racial women while fluctuating for non-Hispanic Black, Mexican American, and Other Hispanic. Cotinine levels are among the highest in Non-Hispanic White women compared to Mexican American and Other Hispanic women with disparities plateauing and increasing, respectively. DISCUSSION We systematically evaluated differences in chemical exposures across women of various race/ethnic groups and across age groups and time. Our findings could help inform chemical prioritization in designing epidemiological and toxicological studies. In addition, they could help guide public health interventions to reduce environmental and health disparities across populations.
Collapse
Affiliation(s)
- Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Kvasnicka
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Adam AHB, de Haan LHJ, Estruch IM, Hooiveld GJEJ, Louisse J, Rietjens IMCM. Estrogen receptor alpha (ERα)-mediated coregulator binding and gene expression discriminates the toxic ERα agonist diethylstilbestrol (DES) from the endogenous ERα agonist 17β-estradiol (E2). Cell Biol Toxicol 2020; 36:417-435. [PMID: 32088792 PMCID: PMC7505815 DOI: 10.1007/s10565-020-09516-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Diethylstilbestrol (DES) is a synthetic estrogen and proven human teratogen and carcinogen reported to act via the estrogen receptor α (ERα). Since the endogenous ERα ligand 17β-estradiol (E2) does not show these adverse effects to a similar extent, we hypothesized that DES' interaction with the ERα differs from that of E2. The current study aimed to investigate possible differences between DES and E2 using in vitro assays that detect ERα-mediated effects, including ERα-mediated reporter gene expression, ERα-mediated breast cancer cell (T47D) proliferation and ERα-coregulator interactions and gene expression in T47D cells. Results obtained indicate that DES and E2 activate ERα-mediated reporter gene transcription and T47D cell proliferation in a similar way. However, significant differences between DES- and E2-induced binding of the ERα to 15 coregulator motifs and in transcriptomic signatures obtained in the T47D cells were observed. It is concluded that differences observed in binding of the ERα with several co-repressor motifs, in downregulation of genes involved in histone deacetylation and DNA methylation and in upregulation of CYP26A1 and CYP26B1 contribute to the differential effects reported for DES and E2.
Collapse
Affiliation(s)
- Aziza Hussein Bakheit Adam
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
20
|
Endocrine Disruptors Induced Distinct Expression of Thyroid and Estrogen Receptors in Rat versus Mouse Primary Cerebellar Cell Cultures. Brain Sci 2019; 9:brainsci9120359. [PMID: 31817561 PMCID: PMC6955918 DOI: 10.3390/brainsci9120359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
The endocrine system of animals consists of fine-tuned self-regulating mechanisms that maintain the hormonal and neuronal milieu during tissue development. This complex system can be influenced by endocrine disruptors (ED)—substances that can alter the hormonal regulation even in small concentrations. By now, thousands of substances—either synthesized by the plastic, cosmetic, agricultural, or medical industry or occurring naturally in plants or in polluted groundwater—can act as EDs. Their identification and testing has been a hard-to-solve problem; Recent indications that the ED effects may be species-specific just further complicated the determination of biological ED effects. Here we compare the effects of bisphenol-A, zearalenone, and arsenic (well-known EDs) exerted on mouse and rat neural cell cultures by measuring the differences of the ED-affected neural estrogen- and thyroid receptors. EDs alters the receptor expression in a species-like manner detectable in the magnitude as well as in the nature of biological responses. It is concluded that the interspecies differences (or species specificity) in ED effects should be considered in the future testing of ED effects.
Collapse
|
21
|
Makhaeva GF, Elkina NA, Shchegolkov EV, Boltneva NP, Lushchekina SV, Serebryakova OG, Rudakova EV, Kovaleva NV, Radchenko EV, Palyulin VA, Burgart YV, Saloutin VI, Bachurin SO, Richardson RJ. Synthesis, molecular docking, and biological evaluation of 3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors. Bioorg Chem 2019; 91:103097. [DOI: 10.1016/j.bioorg.2019.103097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
|