1
|
Qi Q, Liu Y, Puranik V, Patra S, Svindrych Z, Gong X, She Z, Zhang Y, Aprahamian I. Photoswitchable Fluorescent Hydrazone for Super-Resolution Cell Membrane Imaging. J Am Chem Soc 2025; 147:16404-16411. [PMID: 40315017 DOI: 10.1021/jacs.5c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Advancing the field of super-resolution microscopy will require the design and optimization of new molecular probes whose emission can be toggled "ON" and "OFF" using light. Recently, we reported on a hydrazone photochrome (1) whose emission can be photoswitched on demand, although its low brightness and UV light-dependent back isomerization limited its use in such applications. Here, we report on the optimization of this parent fluorophore by replacing its dimethylamine electron-donating group with conformationally more rigid groups, namely, azetidine (2), 3,3-difluoroazetidine (3), and julolidine (4). This structural change resulted in enhanced brightness (i.e., extinction coefficient multiplied by fluorescence quantum yield), specifically in 4 because of its rigidity and ED capability. Next, three electron push-pull hydrazones (5-7) were designed based on the scaffold of 4, using cyano, nitro, or dicyanovinyl, respectively, as the electron-withdrawing groups, resulting in the progressive red-shifting of the photoswitching wavelengths into the visible region and further enhancement in brightness. Finally, fluorogenic probe 8 was developed based on parent compound 7, which could be activated solely with visible light and used in the super-resolution imaging of fixed-cell and live-cell plasma membranes with average localization precisions of 17 and 25 nm, respectively.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yunshu Liu
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Vedang Puranik
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shefali Patra
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zdenek Svindrych
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiayi Gong
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ziwei She
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yang Zhang
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
3
|
Kelkoul I, Muñoz VP, Ortega R, Carmona A. Synchrotron-based correlative imaging of metals and proteins in neuronal cells: state of the art and future challenges in neurometallomics. Metallomics 2025; 17:mfaf003. [PMID: 39890607 DOI: 10.1093/mtomcs/mfaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Metal homeostasis in the nervous system is subtly regulated and changes in metal distribution or content, either increases or decreases, are associated with neurodegeneration or cognitive impairment. Determining the localization and quantification of metals in different types of neurons is important information for understanding their role in neurobiology. Synchrotron X-ray fluorescence imaging is a powerful technique that provides very high sensitivity and high spatial resolution for imaging metals in cells. However, additional biological information is often required to correlate the subcellular localization of metals with specific proteins or organelles. The purpose of this article is to review the studies in neuroscience that correlate metal imaging by synchrotron X-ray fluorescence with protein localization by other techniques. This article highlights the diversity of correlative modalities that have been used, from fluorescence to super-resolution and infrared microscopy, and the wealth of information that has been extracted, but also discusses some current limitations. Future developments are needed, particularly for direct imaging of metals and proteins with a single instrument.
Collapse
Affiliation(s)
- Ines Kelkoul
- Université de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Chemical Imaging and Speciation, F-33170 Gradignan, France
| | - Virginia Puente Muñoz
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Instituto Biofisika (CSIC/UPV), Leioa, Spain
| | - Richard Ortega
- Université de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Chemical Imaging and Speciation, F-33170 Gradignan, France
| | - Asuncion Carmona
- Université de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Chemical Imaging and Speciation, F-33170 Gradignan, France
| |
Collapse
|
4
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Lopez A, Holbrook JH, Kemper GE, Lukowski JK, Andrews WT, Hummon AB. Tracking Drugs and Lipids: Quantitative Mass Spectrometry Imaging of Liposomal Doxorubicin Delivery and Bilayer Fate in Three-Dimensional Tumor Models. Anal Chem 2024; 96:9254-9261. [PMID: 38778440 PMCID: PMC11646454 DOI: 10.1021/acs.analchem.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Targeted therapy to the tumor would greatly advance precision medicine. Many drug delivery vehicles have emerged, but liposomes are cited as the most successful to date. Recent efforts to develop liposomal drug delivery systems focus on drug distribution in tissues and ignore liposomal fate. In this study, we developed a novel method to elucidate both drug and liposomal bilayer distribution in a three-dimensional cell culture model using quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI qMSI) alongside fluorescence microscopy. Imaging liposomal distribution in a cell culture model is challenging, as lipids forming the bilayer are endogenous to the model system. To resolve this issue, we functionalized the bilayer by chemically cross-linking a fluorescent tag to the alkyne-containing lipid hexynoyl phosphoethanolamine (HPE). We synthesized liposomes incorporating the tagged HPE lipid and encapsulated within them doxorubicin, yielding a theranostic liposome capable of both drug delivery and monitoring liposomal uptake. We employed an "in-tissue" MALDI qMSI approach to generate a calibration curve with R2 = 0.9687, allowing for quantification of doxorubicin within spheroid sections at multiple time points. After 72 h of treatment with the theranostic liposomes, full doxorubicin penetration was observed. The metabolites doxorubicinone and 7-deoxydoxorubicinone were also detected after 48 h. Modification of the bilayer allowed for fluorescence microscopy tracking of liposomes, while MALDI MSI simultaneously permitted the imaging of drugs and metabolites. While we demonstrated the utility of our method with doxorubicin, this system could be applied to examine the uptake, release, and metabolism of many other liposome-encapsulated drugs.
Collapse
Affiliation(s)
- Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - William T Andrews
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Kariman BS, Diaspro A, Bianchini P. Numerical study of transient absorption saturation in single-layer graphene for optical nanoscopy applications. Sci Rep 2024; 14:8392. [PMID: 38600103 PMCID: PMC11350070 DOI: 10.1038/s41598-024-57462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Transient absorption, or pump-probe microscopy is an absorption-based technique that can explore samples ultrafast dynamic properties and provide fluorescence-free contrast mechanisms. When applied to graphene and its derivatives, this technique exploits the graphene transient response caused by the ultrafast interband transition as the imaging contrast mechanism. The saturation of this transition is fundamental to allow for super-resolution optical far-field imaging, following the reversible saturable optical fluorescence transitions (RESOLFT) concept, although not involving fluorescence. With this aim, we propose a model to numerically compute the temporal evolution under saturation conditions of the single-layer graphene molecular states, which are involved in the transient absorption. Exploiting an algorithm based on the fourth order Runge-Kutta (RK4) method, and the density matrix approach, we numerically demonstrate that the transient absorption signal of single-layer graphene varies linearly as a function of excitation intensity until it reaches saturation. We experimentally verify this model using a custom pump-probe super-resolution microscope. The results define the intensities necessary to achieve super-resolution in a pump-probe nanoscope while studying graphene-based materials and open the possibility of predicting such a saturation process in other light-matter interactions that undergo the same transition.
Collapse
Affiliation(s)
- Behjat S Kariman
- Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy.
| |
Collapse
|
8
|
Jones EW, Derrick J, Nisbet RM, Ludington WB, Sivak DA. First-passage-time statistics of growing microbial populations carry an imprint of initial conditions. Sci Rep 2023; 13:21340. [PMID: 38049502 PMCID: PMC10696051 DOI: 10.1038/s41598-023-48726-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments in E. coli and S. aureus with inoculum sizes ranging between 1 and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding that it encodes-and can be used to deduce-information about the early growth rate of a population.
Collapse
Affiliation(s)
- Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Joshua Derrick
- Department of Biological Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - William B Ludington
- Department of Biological Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
9
|
Ganaway A, Tatsuta K, Castillo VCG, Okada R, Sunaga Y, Ohta Y, Ohta J, Ohsawa M, Akay M, Akay YM. Investigating the Influence of Morphine and Cocaine on the Mesolimbic Pathway Using a Novel Microimaging Platform. Int J Mol Sci 2023; 24:16303. [PMID: 38003493 PMCID: PMC10671016 DOI: 10.3390/ijms242216303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine (DA)'s relationship with addiction is complex, and the related pathways in the mesocorticolimbic system are used to deliver DA, regulating both behavioral and perceptual actions. Specifically, the mesolimbic pathway connecting the ventral tegmental area (VTA) and the nucleus accumbens (NAc) is crucial in regulating memory, emotion, motivation, and behavior due to its responsibility to modulate dopamine. To better investigate the relationship between DA and addiction, more advanced mapping methods are necessary to monitor its production and propagation accurately and efficiently. In this study, we incorporate dLight1.2 adeno-associated virus (AAV) into our latest CMOS (complementary metal-oxide semiconductor) imaging platform to investigate the effects of two pharmacological substances, morphine and cocaine, in the NAc using adult mice. By implanting our self-fabricated CMOS imaging device into the deep brain, fluorescence imaging of the NAc using the dLight1.2 AAV allows for the visualization of DA molecules delivered from the VTA in real time. Our results suggest that changes in extracellular DA can be observed with this adapted system, showing potential for new applications and methods for approaching addiction studies. Additionally, we can identify the unique characteristic trend of DA release for both morphine and cocaine, further validating the underlying biochemical mechanisms used to modulate dopaminergic activation.
Collapse
Affiliation(s)
- Austin Ganaway
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA; (A.G.); (M.A.)
| | - Kousuke Tatsuta
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (K.T.); (M.O.)
| | - Virgil Christian Garcia Castillo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Ryoma Okada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Yoshinori Sunaga
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (K.T.); (M.O.)
| | - Metin Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA; (A.G.); (M.A.)
| | - Yasemin M. Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA; (A.G.); (M.A.)
| |
Collapse
|
10
|
Chukrallah LG, Snyder EM. Modern tools applied to classic structures: Approaches for mammalian male germ cell RNA granule research. Andrology 2023; 11:872-883. [PMID: 36273399 DOI: 10.1111/andr.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
First reported in the 1800s, germ cell granules are small nonmembrane bound RNA-rich regions of the cytoplasm. These sites of critical RNA processing and storage in the male germ cell are essential for proper differentiation and development and are present in a wide range of species from Caenorhabditis elegans through mammals. Initially characterized by light and electron microscopy, more modern techniques such as immunofluorescence and genetic models have played a major role in expanding our understanding of the composition of these structures. While these methods have given light to potential granule functions, much work remains to be done. The current expansion of imaging technologies and omics-scale analyses to germ cell granule research will drive the field forward considerably. Many of these methods, both current and upcoming, have considerable caveats and limitations that necessitate a holistic approach to the study of germ granules. By combining and balancing different techniques, the field is poised to elucidate the nature of these critical structures.
Collapse
Affiliation(s)
- Lauren G Chukrallah
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Elizabeth M Snyder
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
11
|
Frawley AT, Leslie KG, Wycisk V, Galiani S, Shrestha D, Eggeling C, Anderson HL. A Photoswitchable Solvatochromic Dye for Probing Membrane Ordering by RESOLFT Super-resolution Microscopy. Chemphyschem 2023; 24:e202300125. [PMID: 36946252 DOI: 10.1002/cphc.202300125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
A switchable solvatochromic fluorescent dyad can be used to map ordering of lipids in vesicle membranes at a resolution better than the diffraction limit. Combining a Nile Red fluorophore with a photochromic spironaphthoxazine quencher allows the fluorescence to be controlled using visible light, via photoswitching and FRET quenching. Synthetic lipid vesicles of varying composition were imaged with an average 2.5-fold resolution enhancement, compared to the confocal images. Ratiometric detection was used to probe the membrane polarity, and domains of different lipid ordering were distinguished within the same membrane.
Collapse
Affiliation(s)
- Andrew T Frawley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kathryn G Leslie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Virginia Wycisk
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dilip Shrestha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien-Platz 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
12
|
Willig KI. In vivo super-resolution of the brain - How to visualize the hidden nanoplasticity? iScience 2022; 25:104961. [PMID: 36093060 PMCID: PMC9449647 DOI: 10.1016/j.isci.2022.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Super-resolution fluorescence microscopy has entered most biological laboratories worldwide and its benefit is undisputable. Its application to brain imaging, for example in living mice, enables the study of sub-cellular structural plasticity and brain function directly in a living mammal. The demands of brain imaging on the different super-resolution microscopy techniques (STED, RESOLFT, SIM, ISM) and labeling strategies are discussed here as well as the challenges of the required cranial window preparation. Applications of super-resolution in the anesthetized mouse brain enlighten the stability and plasticity of synaptic nanostructures. These studies show the potential of in vivo super-resolution imaging and justify its application more widely in vivo to investigate the role of nanostructures in memory and learning.
Collapse
Affiliation(s)
- Katrin I Willig
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| |
Collapse
|
13
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
14
|
Neumann EK, Patterson NH, Rivera ES, Allen JL, Brewer M, deCaestecker MP, Caprioli RM, Fogo AB, Spraggins JM. Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney Int 2022; 101:137-143. [PMID: 34619231 PMCID: PMC8741652 DOI: 10.1016/j.kint.2021.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
The human kidney is composed of many cell types that vary in their abundance and distribution from normal to diseased organ. As these cell types perform unique and essential functions, it is important to confidently label each within a single tissue to accurately assess tissue architecture and microenvironments. Towards this goal, we demonstrate the use of co-detection by indexing (CODEX) multiplexed immunofluorescence for visualizing 23 antigens within the human kidney. Using CODEX, many of the major cell types and substructures, such as collecting ducts, glomeruli, and thick ascending limb, were visualized within a single tissue section. Of these antibodies, 19 were conjugated in-house, demonstrating the flexibility and utility of this approach for studying the human kidney using custom and commercially available antibodies. We performed a pilot study that compared both fresh frozen and formalin-fixed paraffin-embedded healthy non-neoplastic and diabetic nephropathy kidney tissues. The largest cellular differences between the two groups was observed in cells labeled with aquaporin 1, cytokeratin 7, and α-smooth muscle actin. Thus, our data show the power of CODEX multiplexed immunofluorescence for surveying the cellular diversity of the human kidney and the potential for applications within pathology, histology, and building anatomical atlases.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Nathan Heath Patterson
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Jamie L. Allen
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Maya Brewer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232
| | - Mark P. deCaestecker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37232
| | - Agnes B. Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN USA 37232.,Departments of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA 37232
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37232,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA 37232
| |
Collapse
|
15
|
Bonnet S, Elfatairi R, Franconi F, Roger E, Legeay S. Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine (Lond) 2021; 16:2539-2536. [PMID: 34814704 DOI: 10.2217/nnm-2021-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand how nanoparticles (NPs) interact with biological barriers and to ensure they maintain their integrity over time, it is crucial to study their in vivo pharmacokinetic (PK) profiles. Many methods of tracking have been used to describe the in vivo fate of NPs and to evaluate their PKs and structural integrity. However, they do not deliver the same level of information and this may cause misinterpretations. Here, the authors review and discuss the different methods for in vivo tracking of organic NPs. Among them, Förster resonance energy transfer (FRET) presents great potential to track NPs' integrity. However, FRET still requires validated methods to extract and quantify NPs in biological fluids and tissues.
Collapse
Affiliation(s)
- Samuel Bonnet
- Université d'Angers, PRISM, SFR ICAT, Plate-forme de recherche en imagerie et spectroscopie multi-modales, Angers F-49000, France
| | - Rana Elfatairi
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Florence Franconi
- Université d'Angers, PRISM, SFR ICAT, Plate-forme de recherche en imagerie et spectroscopie multi-modales, Angers F-49000, France.,Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Emilie Roger
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| | - Samuel Legeay
- Université d'Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|
16
|
Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv Drug Deliv Rev 2021; 177:113807. [PMID: 34023331 DOI: 10.1016/j.addr.2021.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Shape of particulate drug carries has been identified as a key parameter in determining their biological outcome. In this review, we analyze the field of particle shape as it shifts from fundamental investigations to contemporary applications for disease treatment, while highlighting outstanding remaining questions. We summarize fabrication and characterization methods and discuss in depth how particle shape influences biological interactions with cells, transport in the vasculature, targeting in the body, and modulation of the immune response. As the field moves from discoveries to applications, further attention needs to be paid to factors such as characterization and quality control, selection of model organisms, and disease models. Taken together, these aspects will provide a conceptual foundation for designing future non-spherical drug carriers to overcome biological barriers and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kapate
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Jing Y, Zhang C, Yu B, Lin D, Qu J. Super-Resolution Microscopy: Shedding New Light on In Vivo Imaging. Front Chem 2021; 9:746900. [PMID: 34595156 PMCID: PMC8476955 DOI: 10.3389/fchem.2021.746900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Over the past two decades, super-resolution microscopy (SRM), which offered a significant improvement in resolution over conventional light microscopy, has become a powerful tool to visualize biological activities in both fixed and living cells. However, completely understanding biological processes requires studying cells in a physiological context at high spatiotemporal resolution. Recently, SRM has showcased its ability to observe the detailed structures and dynamics in living species. Here we summarized recent technical advancements in SRM that have been successfully applied to in vivo imaging. Then, improvements in the labeling strategies are discussed together with the spectroscopic and chemical demands of the fluorophores. Finally, we broadly reviewed the current applications for super-resolution techniques in living species and highlighted some inherent challenges faced in this emerging field. We hope that this review could serve as an ideal reference for researchers as well as beginners in the relevant field of in vivo super resolution imaging.
Collapse
Affiliation(s)
| | | | | | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
19
|
Vellwock AE, Yao H. Biomimetic and bioinspired surface topographies as a green strategy for combating biofouling: a review. BIOINSPIRATION & BIOMIMETICS 2021; 16:041003. [PMID: 34044382 DOI: 10.1088/1748-3190/ac060f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Biofouling refers to the adverse attachment and colonization of fouling organisms, including macromolecules, bacteria, and sessile invertebrates, on the surfaces of materials submerged in aquatic environments. Almost all structures working in watery surroundings, from marine infrastructures to healthcare facilities, are affected by this sticky problem, resulting in massive direct and indirect economic loss and enormous cost every year in protective maintenance and remedial cleaning. Traditional approaches to preventing marine biofouling primarily rely on the application of biocide-contained paints, which certainly impose adverse effects on the ocean environment and marine ecology. Biomimicry offers an efficient shortcut to developing environmentally friendly antifouling techniques and has yielded encouraging and promising results. The antifouling strategies learned from nature can be broadly classified into two categories according to the nature of the cues applied for biofouling control. One is the chemical antifouling techniques, which are dedicated to extracting the effective antifoulant compounds from marine organisms and synthesizing chemicals mimicking natural antifoulants. In contrast, the physical biomimetic (BM) antifouling practices focus on the emulation and optimization of the physical cues such as micro and nanoscale surface topographies learned from naturally occurring surfaces for better antifouling efficacy. In this review, a synopsis of the techniques for manufacturing the BM and bioinspired (BI) antifouling surface topographies is introduced, followed by the bioassay to assess the antifouling performance of the structured surfaces. Then, the BM and BI surface topographies that were reported to possess enhanced antifouling competence are introduced, followed by a summary of theoretical modeling. The whole paper is concluded by summarizing the studies' deficiencies so far and outlooking the research directions in the future.
Collapse
Affiliation(s)
- Andre E Vellwock
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Haimin Yao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
20
|
Man Z, Cui H, Lv Z, Xu Z, Wu Z, Wu Y, Liao Q, Liu M, Xi P, Zheng L, Fu H. Organic Nanoparticles-Assisted Low-Power STED Nanoscopy. NANO LETTERS 2021; 21:3487-3494. [PMID: 33848175 DOI: 10.1021/acs.nanolett.1c00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm-2 and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.
Collapse
Affiliation(s)
- Zhongwei Man
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongtu Cui
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing 100191, China
| | - Zheng Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Wu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Meihui Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100160, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Zorkau M, Proctor-Kent Y, Berlinguer-Palmini R, Hamilton A, Chrzanowska-Lightowlers ZM, Lightowlers RN. Visualizing Mitochondrial Ribosomal RNA and Mitochondrial Protein Synthesis in Human Cell Lines. Methods Mol Biol 2021; 2192:159-181. [PMID: 33230773 DOI: 10.1007/978-1-0716-0834-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human mitochondria contain their own DNA (mtDNA) that encodes 13 proteins all of which are core subunits of oxidative phosphorylation (OXPHOS) complexes. To form functional complexes, these 13 components need to be correctly assembled with approximately 70 nuclear-encoded subunits that are imported following synthesis in the cytosol. How this complicated coordinated translation and assembly is choreographed is still not clear. Methods are being developed to determine whether all members of a particular complex are translated in close proximity, whether protein synthesis is clustered in submitochondrial factories, whether these align with incoming polypeptides, and if there is evidence for co-translational translation that is regulated and limited by the interaction of the incoming proteins with synthesis of their mtDNA-encoded partners. Two methods are described in this chapter to visualize the distribution of mitochondrial ribosomal RNAs in conjunction with newly synthesized mitochondrial proteins. The first combines RNA Fluorescent In Situ Hybridization (FISH) and super-resolution immunocytochemistry to pinpoint mitochondrial ribosomal RNA. The second localizes nascent translation within the mitochondrial network through non-canonical amino acid labeling, click chemistry and fluorescent microscopy.
Collapse
Affiliation(s)
- Matthew Zorkau
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK
| | - Yasmin Proctor-Kent
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK
| | | | - Andrew Hamilton
- School of Medicine, Dentistry and Nursing, Glasgow University, Glasgow, UK
| | - Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK.
| |
Collapse
|
22
|
Schnorrenberg S, Ghareeb H, Frahm L, Grotjohann T, Jensen N, Teichmann T, Hell SW, Lipka V, Jakobs S. Live-cell RESOLFT nanoscopy of transgenic Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00261. [PMID: 32995700 PMCID: PMC7507094 DOI: 10.1002/pld3.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Subdiffraction super-resolution fluorescence microscopy, or nanoscopy, has seen remarkable developments in the last two decades. Yet, for the visualization of plant cells, nanoscopy is still rarely used. In this study, we established RESOLFT nanoscopy on living green plant tissue. Live-cell RESOLFT nanoscopy requires and utilizes comparatively low light doses and intensities to overcome the diffraction barrier. We generated a transgenic Arabidopsis thaliana plant line expressing the reversibly switchable fluorescent protein rsEGFP2 fused to the mammalian microtubule-associated protein 4 (MAP4) in order to ubiquitously label the microtubule cytoskeleton. We demonstrate the use of RESOLFT nanoscopy for extended time-lapse imaging of cortical microtubules in Arabidopsis leaf discs. By combining our approach with fluorescence lifetime gating, we were able to acquire live-cell RESOLFT images even close to chloroplasts, which exhibit very strong autofluorescence. The data demonstrate the feasibility of subdiffraction resolution imaging in transgenic plant material with minimal requirements for sample preparation.
Collapse
Affiliation(s)
- Sebastian Schnorrenberg
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Hassan Ghareeb
- Department of Plant Cell BiologyAlbrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Present address:
Department of Plant BiotechnologyNational Research CentreCairoEgypt
| | - Lars Frahm
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Tim Grotjohann
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Nickels Jensen
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Thomas Teichmann
- Department of Plant Cell BiologyAlbrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
| | - Stefan W. Hell
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Volker Lipka
- Department of Plant Cell BiologyAlbrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Central Microscopy Facility of the Faculty of Biology and PsychologyUniversity of GöttingenGöttingenGermany
| | - Stefan Jakobs
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Clinic of NeurologyUniversity Medical Center of GöttingenGöttingenGermany
| |
Collapse
|
23
|
Frawley AT, Wycisk V, Xiong Y, Galiani S, Sezgin E, Urbančič I, Vargas Jentzsch A, Leslie KG, Eggeling C, Anderson HL. Super-resolution RESOLFT microscopy of lipid bilayers using a fluorophore-switch dyad. Chem Sci 2020; 11:8955-8960. [PMID: 34123149 PMCID: PMC8163400 DOI: 10.1039/d0sc02447c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023] Open
Abstract
Dyads consisting of a photochromic switch covalently linked to a fluorescent dye allow the emission from the dye to be controlled by reversible photoisomerization of the switch; one form of the switch quenches fluorescence by accepting energy from the dye. Here we investigate the use of dyads of this type for super-resolution imaging of lipid bilayers. Giant unilamellar vesicles stained with the dyads were imaged with about a two-fold resolution-enhancement compared with conventional confocal microscopy. This was achieved by exciting the fluorophore at 594 nm, using a switch activated by violet and red light (405/640 nm).
Collapse
Affiliation(s)
- Andrew T Frawley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Virginia Wycisk
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Yaoyao Xiong
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Oxford OX3 9DS UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Oxford OX3 9DS UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Oxford OX3 9DS UK
| | - Andreas Vargas Jentzsch
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
- SAMS Research Group, Institut Charles Sadron, CNRS-UPR 22, University of Strasbourg Strasbourg Cedex 2 67034 France
| | - Kathryn G Leslie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Oxford OX3 9DS UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena Max-Wien Platz 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology e.V. Albert-Einstein-Straße 9 07745 Jena Germany
- Jena Center for Soft Matter (JCSM) Philosophenweg 7 07743 Jena Germany
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
24
|
Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P. Quo vadis FRET? Förster's method in the era of superresolution. Methods Appl Fluoresc 2020; 8:032003. [PMID: 32521530 DOI: 10.1088/2050-6120/ab9b72] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the theoretical foundations of Förster resonance energy transfer (FRET) were laid in the 1940s as part of the quantum physical revolution of the 20th century, it was only in the 1970s that it made its way to biology as a result of the availability of suitable measuring and labeling technologies. Thanks to its ease of application, FRET became widely used for studying molecular associations on the nanometer scale. The development of superresolution techniques at the turn of the millennium promised an unprecedented insight into the structure and function of molecular complexes. Without downplaying the significance of superresolution microscopies this review expresses our view that FRET is still a legitimate tool in the armamentarium of biologists for studying molecular associations since it offers distinct advantages and overcomes certain limitations of superresolution approaches.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary. MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
25
|
Szalai AM, Lopez LF, Morales-Vásquez MÁ, Stefani FD, Aramendía PF. Analysis of sparse molecular distributions in fibrous arrangements based on the distance to the first neighbor in single molecule localization microscopy. NANOSCALE 2020; 12:9495-9506. [PMID: 32313910 DOI: 10.1039/c9nr10805j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single Molecule Localization Microscopy (SMLM) currently attains a lateral resolution of around 10 nm approaching molecular size. Together with increasingly specific fluorescent labeling, it opens the possibility to quantitatively analyze molecular organization. When the labeling density is high enough, SMLM provides clear images of the molecular organization. However, either due to limited labeling efficiency or due to intrinsically low molecular abundance, SMLM delivers a small set of sparse and highly precise localizations. In this work, we introduce a correlation analysis of molecular locations based on the functional dependence of the complementary cumulative distribution function (CCDF) of the distance to the first neighbor (r1). We demonstrate that the log(-log(CCDF(r1))) vs. log(r1) is characterized by a scaling exponent n that takes extreme values of 2 for a random 2D distribution and 1 for a strictly linear arrangement, and find that n is a robust and sensitive metric to distinguish characteristics of the underlying structure responsible for the molecular distribution, even at a very low labeling density. The method enables the detection of fibrillary organization and the estimation of the diameter of host fibers under conditions where a visual inspection provides no clue.
Collapse
Affiliation(s)
- Alan M Szalai
- Centro de Investigaciones en Bionanociencias "Elizabeth Jares-Erijman" (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Mitochondria are essential for eukaryotic life. These double-membrane organelles often form highly dynamic tubular networks interacting with many cellular structures. Their highly convoluted contiguous inner membrane compartmentalizes the organelle, which is crucial for mitochondrial function. Since the diameter of the mitochondrial tubules is generally close to the diffraction limit of light microscopy, it is often challenging, if not impossible, to visualize submitochondrial structures or protein distributions using conventional light microscopy. This renders super-resolution microscopy particularly valuable, and attractive, for studying mitochondria. Super-resolution microscopy encompasses a diverse set of approaches that extend resolution, as well as nanoscopy techniques that can even overcome the diffraction limit. In this review, we provide an overview of recent studies using super-resolution microscopy to investigate mitochondria, discuss the strengths and opportunities of the various methods in addressing specific questions in mitochondrial biology, and highlight potential future developments.
Collapse
Affiliation(s)
- Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
27
|
Baksh PD, Ostrčil M, Miszczak M, Pooley C, Chapman RT, Wyatt AS, Springate E, Chad JE, Deinhardt K, Frey JG, Brocklesby WS. Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution. SCIENCE ADVANCES 2020; 6:eaaz3025. [PMID: 32494674 PMCID: PMC7195139 DOI: 10.1126/sciadv.aaz3025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/10/2020] [Indexed: 05/25/2023]
Abstract
Imaging using coherent extreme ultraviolet radiation from laser sources provides high-resolution images of biological samples.
Collapse
Affiliation(s)
- Peter D. Baksh
- University of Southampton, Zepler Institute, Southampton, SO17 1BJ, UK
| | - Michal Ostrčil
- University of Southampton, Zepler Institute, Southampton, SO17 1BJ, UK
- RWTH Aachen University, Experimental Physics of EUV, JARA-FIT, Steinbachstrasse 15, 52074 Aachen, Germany
| | - Magdalena Miszczak
- University of Southampton, Zepler Institute, Southampton, SO17 1BJ, UK
- Dipartimento di Ingegneria dell’Informazione, University of Padova, Dei, Via Gradenigo, 6B - Padova, Italy
| | - Charles Pooley
- University of Southampton, Zepler Institute, Southampton, SO17 1BJ, UK
| | - Richard T. Chapman
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, UK
| | - Adam S. Wyatt
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Emma Springate
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, UK
| | - John E. Chad
- University of Southampton, Biological Sciences, Southampton, SO17 1BJ, UK
| | - Katrin Deinhardt
- University of Southampton, Biological Sciences, Southampton, SO17 1BJ, UK
| | - Jeremy G. Frey
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | | |
Collapse
|
28
|
Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation. Nat Commun 2019; 10:5761. [PMID: 31848354 PMCID: PMC6917796 DOI: 10.1038/s41467-019-13780-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/27/2019] [Indexed: 11/11/2022] Open
Abstract
Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck’s law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects. Here, the authors propose a new principle to achieve super-resolution for a wide class of targets. If an object is heated up by a beam, electromagnetic or acoustic, they show that the super-linearity of the induced thermal radiation leads to an arbitrarily high spatial compression factor relative to diffraction-limited beam profile.
Collapse
|
29
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Frahm L, Keller-Findeisen J, Alt P, Schnorrenberg S, Del Álamo Ruiz M, Aspelmeier T, Munk A, Jakobs S, Hell SW. Molecular contribution function in RESOLFT nanoscopy. OPTICS EXPRESS 2019; 27:21956-21987. [PMID: 31510262 DOI: 10.1364/oe.27.021956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
The ultimate objective of a microscope of the highest resolution is to map the molecules of interest in the sample. Traditionally, linear imaging systems are characterized by their spatial frequency transfer function, which is given, in real space, by the point spread function (PSF). By extending the concept of the PSF towards the molecular contribution function (MCF), that quantifies the average contribution of a single fluorophore to the image, a straightforward concept for counting fluorophores is obtained. Using reversible saturable optical fluorescence transitions (RESOLFT), fluorophores are effectively activated only in a small, subdiffraction-sized volume before they are read out. During readout the signal exhibits an increased variance due to the stochastic nature of prior activation, which scales quadratically with the brightness of the active fluorophores while the mean of the signal scales only linearly with it. Using a two-state Markov model for the activation, showing comparable behavior to the switching kinetics of the switchable fluorescent protein rsEGFP2, we can approximate quantitatively the MCF of RESOLFT nanoscopy allowing to count the number of fluorophores within a subdiffraction-sized region of the sample. The method is validated on measurements of tubulin structures in Drosophila melagonaster larvae. Modeling and estimation of the MCF is a promising approach to quantitative microscopy.
Collapse
|
31
|
Man Z, Lv Z, Xu Z, Cui H, Liao Q, Zheng L, Jin X, He Q, Fu H. Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy. NANOSCALE 2019; 11:12990-12996. [PMID: 31264678 DOI: 10.1039/c9nr02781e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a powerful sub-diffraction imaging tool to probe subcellular structures and organelles. Conventional organic dyes require high STED power (PSTED) to obtain sub-diffraction resolution, leading to serious photo-bleaching. Herein, this study demonstrates highly emissive silica-coated core-shell organic nanoparticles (CSONPs) as a new type of photostable probe with ultrahigh stimulated emission depletion efficiency for low-power super-resolution STED nanoscopy. The CSONPs offer (i) efficient red emission with high solid-state fluorescence quantum yields around 0.6, (ii) large Stokes shift of 150 nm and (iii) high photostability owing to silica shell protection. The stimulated emission depletion efficiency (η) of CSONPs was extremely high up to η = 99% (the highest value reported so far) with a saturation intensity as low as Isat = 0.18 MW cm-2. Moreover, this research demonstrates the super-resolution imaging of living HeLa cells stained using CSONPs with a lateral spatial resolution of 63 nm at an extremely low depletion power of ISTED = 0.89 MW cm-2 and a long-term stability >600 s at η = 80% without obvious fatigue. The excellent and comprehensive performances of the CSONPs are promising for super-resolution imaging in biological applications.
Collapse
Affiliation(s)
- Zhongwei Man
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Zheng Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Hongtu Cui
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Lemin Zheng
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Xue Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Qihua He
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China. and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Taylor GT. Windows into Microbial Seascapes: Advances in Nanoscale Imaging and Application to Marine Sciences. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:465-490. [PMID: 30134123 DOI: 10.1146/annurev-marine-121916-063612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geochemical cycles of all nonconservative elements are mediated by microorganisms over nanometer spatial scales. The pelagic seascape is known to possess microstructure imposed by heterogeneous distributions of particles, polymeric gels, biologically important chemicals, and microbes. While indispensable, most traditional oceanographic observational approaches overlook this heterogeneity and ignore subtleties, such as activity hot spots, symbioses, niche partitioning, and intrapopulation phenotypic variations, that can provide a deeper mechanistic understanding of planktonic ecosystem function. As part of the movement toward cultivation-independent tools in microbial oceanography, techniques to examine the ecophysiology of individual populations and their role in chemical transformations at spatial scales relevant to microorganisms have been developed. This review presents technologies that enable geochemical and microbiological interrogations at spatial scales ranging from 0.02 to a few hundred micrometers, particularly focusing on atomic force microscopy, nanoscale secondary ion mass spectrometry, and confocal Raman microspectroscopy and introducing promising approaches for future applications in marine sciences.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
33
|
Saarinen J, Gütter F, Lindman M, Agopov M, Fraser-Miller SJ, Scherließ R, Jokitalo E, Santos HA, Peltonen L, Isomäki A, Strachan CJ. Cell-Nanoparticle Interactions at (Sub)-Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Anti-Stokes Raman Scattering. Biotechnol J 2018; 14:e1800413. [PMID: 30350922 DOI: 10.1002/biot.201800413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/25/2018] [Indexed: 01/15/2023]
Abstract
A wide variety of nanoparticles are playing an increasingly important role in drug delivery. Label-free imaging techniques are especially desirable to follow the cellular uptake and intracellular fate of nanoparticles. The combined correlative use of different techniques, each with unique advantages, facilitates more detailed investigation about such interactions. The synergistic use of correlative coherent anti-Stokes Raman scattering and electron microscopy (C-CARS-EM) imaging offers label-free, chemically-specific, and (sub)-nanometer spatial resolution for studying nanoparticle uptake into cells as demonstrated in the current study. Coherent anti-Stokes Raman scattering (CARS) microscopy offers chemically-specific (sub)micron spatial resolution imaging without fluorescent labels while transmission electron microscopy (TEM) offers (sub)-nanometer scale spatial resolution and thus visualization of precise nanoparticle localization at the sub-cellular level. This proof-of-concept imaging platform with unlabeled drug nanocrystals and macrophage cells revealed good colocalization between the CARS signal and electron dense nanocrystals in TEM images. The correlative TEM images revealed subcellular localization of nanocrystals inside membrane bound vesicles, showing multivesicular body (MVB)-like morphology typical for late endosomes (LEs), endolysosomes, and phagolysosomes. C-CARS-EM imaging has much potential to study the interactions between a wide range of nanoparticles and cells with high precision and confidence.
Collapse
Affiliation(s)
- Jukka Saarinen
- Drug Research Program, Division of Pharmaceutical Chemistry and , University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014 Helsinki, Finland
| | - Friederike Gütter
- Pharmaceutical Institute Department of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Mervi Lindman
- Institute of Biotechnology, Electron Microscopy Unit, University of Helsinki, Viikinkaari 9 (PO Box 56), 00014 Helsinki, Finland
| | - Mikael Agopov
- Drug Research Program, Division of Pharmaceutical Chemistry and , University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014 Helsinki, Finland
| | - Sara J Fraser-Miller
- Drug Research Program, Division of Pharmaceutical Chemistry and , University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014 Helsinki, Finland.,Dodd-Walls Centre, Department of Chemistry, University of Otago, PO Box 56, 9056 Dunedin, New Zealand
| | - Regina Scherließ
- Pharmaceutical Institute Department of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Eija Jokitalo
- Institute of Biotechnology, Electron Microscopy Unit, University of Helsinki, Viikinkaari 9 (PO Box 56), 00014 Helsinki, Finland
| | - Hélder A Santos
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014 Helsinki, Finland
| | - Leena Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and , University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014 Helsinki, Finland
| | - Antti Isomäki
- Biomedicum Imaging Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 (PO Box 63), 00014 Helsinki, Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and , University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014 Helsinki, Finland
| |
Collapse
|
34
|
Baddeley D, Bewersdorf J. Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. Annu Rev Biochem 2018; 87:965-989. [PMID: 29272143 DOI: 10.1146/annurev-biochem-060815-014801] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Super-resolution optical imaging based on the switching and localization of individual fluorescent molecules [photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), etc.] has evolved remarkably over the last decade. Originally driven by pushing technological limits, it has become a tool of biological discovery. The initial demand for impressive pictures showing well-studied biological structures has been replaced by a need for quantitative, reliable data providing dependable evidence for specific unresolved biological hypotheses. In this review, we highlight applications that showcase this development, identify the features that led to their success, and discuss remaining challenges and difficulties. In this context, we consider the complex topic of defining resolution for this imaging modality and address some of the more common analytical methods used with this data.
Collapse
Affiliation(s)
- David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA; , .,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA; , .,Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
35
|
Ye S, Yan W, Zhao M, Peng X, Song J, Qu J. Low-Saturation-Intensity, High-Photostability, and High-Resolution STED Nanoscopy Assisted by CsPbBr 3 Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800167. [PMID: 29687514 DOI: 10.1002/adma.201800167] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is one of the most promising super-resolution imaging techniques for microstructure imaging. Commercial CdSe@ZnS quantum dots are used as STED probes and ≈50 nm lateral resolution is obtained. Compared with other quantum dots, perovskite CsPbBr3 nanoparticles (NPs) possess higher photoluminescence quantum yield and larger absorption cross-section, making them a more effective probe for STED nanoscopy. In this study, CsPbBr3 NPs are used as probes for STED nanoscopy imaging. The fluorescence intensity of the CsPbBr3 sample is hardly weakened at all after 200 min irradiation with a 39.8 mW depletion laser, indicating excellent photobleaching resistance of the CsPbBr3 NPs. The saturation intensity of the CsPbBr3 NPs is extremely low and estimated to be only 0.4 mW (0.126 MW cm-2 ). Finally, an ultrahigh lateral resolution of 20.6 nm is obtained for a single nanoparticle under 27.5 mW STED laser irradiation in CsPbBr3 -based STED nanoscopy imaging, which is a tenfold improvement compared with confocal microscopy. Because of its high fluorescence stability and ultrahigh resolution under lower depletion power, CsPbBr3 -assisted STED nanoscopy has great potential to investigate microstructures that require super-resolution and long-term imaging.
Collapse
Affiliation(s)
- Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Mengjie Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
36
|
Bhat SV, Sultana T, Körnig A, McGrath S, Shahina Z, Dahms TES. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time. Sci Rep 2018; 8:8305. [PMID: 29844489 PMCID: PMC5973941 DOI: 10.1038/s41598-018-26433-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/04/2018] [Indexed: 11/14/2022] Open
Abstract
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - André Körnig
- JPK Instruments, JPK Instruments AG, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Seamus McGrath
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
37
|
Wang S, Chen X, Chang L, Ding M, Xue R, Duan H, Sun Y. GMars-T Enabling Multimodal Subdiffraction Structural and Functional Fluorescence Imaging in Live Cells. Anal Chem 2018; 90:6626-6634. [PMID: 29722976 DOI: 10.1021/acs.analchem.8b00418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluorescent probes with multimodal and multilevel imaging capabilities are highly valuable as imaging with such probes not only can obtain new layers of information but also enable cross-validation of results under different experimental conditions. In recent years, the development of genetically encoded reversibly photoswitchable fluorescent proteins (RSFPs) has greatly promoted the application of various kinds of live-cell nanoscopy approaches, including reversible saturable optical fluorescence transitions (RESOLFT) and stochastic optical fluctuation imaging (SOFI). However, these two classes of live-cell nanoscopy approaches require different optical characteristics of specific RSFPs. In this work, we developed GMars-T, a monomeric bright green RSFP which can satisfy both RESOLFT and photochromic SOFI (pcSOFI) imaging in live cells. We further generated biosensor based on bimolecular fluorescence complementation (BiFC) of GMars-T which offers high specificity and sensitivity in detecting and visualizing various protein-protein interactions (PPIs) in different subcellular compartments under physiological conditions (e.g., 37 °C) in live mammalian cells. Thus, the newly developed GMars-T can serve as both structural imaging probe with multimodal super-resolution imaging capability and functional imaging probe for reporting PPIs with high specificity and sensitivity based on its derived biosensor.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Xuanze Chen
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China.,Department of Biomedical Engineering, College of Engineering , Peking University , Beijing 100871 , China.,Cowin Venture Shanghai 200040 , China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Miao Ding
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Ruiying Xue
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Haifeng Duan
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
38
|
Miller H, Zhou Z, Shepherd J, Wollman AJM, Leake MC. Single-molecule techniques in biophysics: a review of the progress in methods and applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024601. [PMID: 28869217 DOI: 10.1088/1361-6633/aa8a02] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Collapse
Affiliation(s)
- Helen Miller
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Kim D, Choi DS, Kwon J, Shim SH, Rhee H, Cho M. Selective Suppression of Stimulated Raman Scattering with Another Competing Stimulated Raman Scattering. J Phys Chem Lett 2017; 8:6118-6123. [PMID: 29210582 DOI: 10.1021/acs.jpclett.7b02752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A three-beam femtosecond stimulated Raman scattering (SRS) scheme is formulated and demonstrated to simultaneously induce two different SRS processes associated with Raman-active modes in the same molecule. Two SR gains involving a common pump pulse are coupled and compete: As one of the Stokes beam intensities increases, the other SRS is selectively suppressed. We provide theoretical description and experimental evidence that the selective suppression behavior is due to the limited number of pump photons used for both of the two SRS processes when an intense depletion beam induces one SRS process. The maximum suppression efficiency was ∼60% with our experimental setup, where the SR gain of the ring breathing mode of benzene is the target SRS signal, which is allowed to compete with another SRS process, induced by an intense depletion beam, of the CH stretching mode. We anticipate a potential of this new switching-off concept in super-resolution label-free microscopy.
Collapse
Affiliation(s)
- Doyeon Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Dae Sik Choi
- Technology Human Resource Support for SMEs Center, Korea Institute of Industrial Technology (KITECH) , Cheonan 31056, Republic of Korea
- Research Institute , Smart Korea, Daejeon 34141, Republic of Korea
| | - Jiwoong Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Republic of Korea
| | - Sang-Hee Shim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Hanju Rhee
- Seoul Center, Korea Basic Science Institute , Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
40
|
Li D, Qin W, Xu B, Qian J, Tang BZ. AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Long-Term Super-Resolution Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703643. [PMID: 28977700 DOI: 10.1002/adma.201703643] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a typical super-resolution imaging technique that has become a powerful tool for visualizing intracellular structures on the nanometer scale. Aggregation-induced emission (AIE) luminogens are ideal fluorescent agents for bioimaging. Herein, long-term super-resolution fluorescence imaging of cancer cells, based on STED nanoscopy assisted by AIE nanoparticles (NPs) is realized. 2,3-Bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaronitrile (TTF), a typical AIE luminogen, is doped into colloidal mesoporous silica to form fluorescent NPs. TTF@SiO2 NPs bear three significant features, which are all essential for STED nanoscopy. First, their STED efficiency can reach more than 60%. Second, they are highly resistant to photobleaching, even under long-term and high-power STED light irradiation. Third, they have a large Stokes' shift of ≈150 nm, which is beneficial for restraining the fluorescence background induced by the STED light irradiation. STED nanoscopy imaging of TTF@SiO2 -NPs-stained HeLa cells is performed, exhibiting a high lateral spatial resolution of 30 nm. More importantly, long-term (more than half an hour) super-resolution cell imaging is achieved with low fluorescence loss. Considering that AIE luminogens are widely used for organelle targeting, cellular mapping, and tracing, AIE-NPs-based STED nanoscopy holds great potential for many basic biomedical studies that require super-resolution and long-term imaging.
Collapse
Affiliation(s)
- Dongyu Li
- State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou, 310058, China
| | - Wei Qin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bin Xu
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
41
|
Zhou L, Cai M, Tong T, Wang H. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy. SENSORS 2017; 17:s17040938. [PMID: 28441775 PMCID: PMC5426934 DOI: 10.3390/s17040938] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/07/2023]
Abstract
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.
Collapse
Affiliation(s)
- Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ti Tong
- The Second Hospital of Jilin University, Changchun 130041, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
42
|
Wang Y, Bai Z, Wang Q, Wang G. Experimental Investigations on Fluorescence Excitation and Depletion of Carbon Dots. J Fluoresc 2017; 27:1435-1441. [PMID: 28421321 DOI: 10.1007/s10895-017-2082-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/04/2017] [Indexed: 01/15/2023]
Abstract
Carbon dots (CDs) can be readily synthesized and utilized as attractive fluorescent probes for a variety of applications. In this study, we have synthesized CDs using a previously published method and characterized their photo-physical properties. The resultant CDs possess prominent photo-stability and short emission wavelength in the violet region. Our study reveals that CDs, with weak photo-bleaching, enable them to be employed to achieve high spatial resolution in stimulated emission depletion (STED) microscopy. The depletion efficiency can reach 60%. More importantly, the shorter excitation wavelength of CDs contributes to further improvement of resolution for STED microscopy. An excellent candidate for fluorophores, these CDs have potential to be used in super-resolution imaging for STED microscopy.
Collapse
Affiliation(s)
- Yunxia Wang
- Biomedical Engineering Program & Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Zhenhua Bai
- Biomedical Engineering Program & Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Guiren Wang
- Biomedical Engineering Program & Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
43
|
Richter KN, Rizzoli SO, Jähne S, Vogts A, Lovric J. Review of combined isotopic and optical nanoscopy. NEUROPHOTONICS 2017; 4:020901. [PMID: 28466025 PMCID: PMC5400889 DOI: 10.1117/1.nph.4.2.020901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/10/2017] [Indexed: 05/31/2023]
Abstract
Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the "history" of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology.
Collapse
Affiliation(s)
- Katharina N. Richter
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
| | - Silvio O. Rizzoli
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
| | - Sebastian Jähne
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Angela Vogts
- Leibniz-Institute for Baltic Sea Research, Rostock, Germany
| | - Jelena Lovric
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Gothenburg, Sweden
| |
Collapse
|
44
|
Chmyrov A, Leutenegger M, Grotjohann T, Schönle A, Keller-Findeisen J, Kastrup L, Jakobs S, Donnert G, Sahl SJ, Hell SW. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy. Sci Rep 2017; 7:44619. [PMID: 28317930 PMCID: PMC5357911 DOI: 10.1038/srep44619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/10/2017] [Indexed: 01/29/2023] Open
Abstract
Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between 'on' and 'off' states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells for ~100 × 100 μm2 fields of view. Individual keratin filaments were rendered at a FWHM of ~60-80 nm, with effective resolution for the filaments of ~80-100 nm. We discuss the impact of novel image reconstruction algorithms featuring background elimination by spatial bandpass filtering, as well as strategies that incorporate complete image formation models.
Collapse
Affiliation(s)
- Andriy Chmyrov
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany.,Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Marcel Leutenegger
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Tim Grotjohann
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Andreas Schönle
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Jan Keller-Findeisen
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Lars Kastrup
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany.,University of Göttingen, Medical Faculty, Department of Neurology, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Gerald Donnert
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Steffen J Sahl
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Stefan W Hell
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Tavernaro I, Cavelius C, Peuschel H, Kraegeloh A. Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1283-1296. [PMID: 28690964 PMCID: PMC5496580 DOI: 10.3762/bjnano.8.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/16/2017] [Indexed: 05/05/2023]
Abstract
In recent years, fluorescent nanomaterials have gained high relevance in biological applications as probes for various fluorescence-based spectroscopy and imaging techniques. Among these materials, dye-doped silica nanoparticles have demonstrated a high potential to overcome the limitations presented by conventional organic dyes such as high photobleaching, low stability and limited fluorescence intensity. In the present work we describe an effective approach for the preparation of fluorescent silica nanoparticles in the size range between 15 and 80 nm based on L-arginine-controlled hydrolysis of tetraethoxysilane in a biphasic cyclohexane-water system. Commercially available far-red fluorescent dyes (Atto647N, Abberior STAR 635, Dy-647, Dy-648 and Dy-649) were embedded covalently into the particle matrix, which was achieved by aminosilane coupling. The physical particle attributes (particle size, dispersion, degree of agglomeration and stability) and the fluorescence properties of the obtained particles were compared to particles from commonly known synthesis methods. As a result, the spectroscopic characteristics of the presented monodisperse dye-doped silica nanoparticles were similar to those of the free uncoupled dyes, but indicate a much higher photostability and brightness. As revealed by dynamic light scattering and ζ-potential measurements, all particle suspensions were stable in water and cell culture medium. In addition, uptake studies on A549 cells were performed, using confocal and stimulated emission depletion (STED) microscopy. Our approach allows for a step-by-step formation of dye-doped silica nanoparticles in the form of dye-incorporated spheres, which can be used as versatile fluorescent probes in confocal and STED imaging.
Collapse
Affiliation(s)
- Isabella Tavernaro
- INM - Leibniz Institute for New Materials, Nano Cell Interactions Group, Campus D2 2, D-66123 Saarbrücken, Germany
| | | | - Henrike Peuschel
- INM - Leibniz Institute for New Materials, Nano Cell Interactions Group, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Annette Kraegeloh
- INM - Leibniz Institute for New Materials, Nano Cell Interactions Group, Campus D2 2, D-66123 Saarbrücken, Germany
| |
Collapse
|
46
|
Kang KA, Maldonado C, Vodyanoy V. Technical Challenges in Current Primo Vascular System Research and Potential Solutions. J Acupunct Meridian Stud 2016; 9:297-306. [PMID: 28010831 DOI: 10.1016/j.jams.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/28/2016] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
Since Bonghan Kim's discovery of the Bonghan system (BHS) in the 1960s, numerous reports have suggested that the system is fundamental for maintaining mammalian life. The BHS is a circulatory system independent of the blood or the lymphatic system, forms an extensive network throughout the entire mammalian body, has been reported to be the acupuncture meridian, stores distinct types of stem cells, and appears to have some roles in cancer metastasis. Despite Kim's first report having been published as early as 1962, research progress has been rather slow mainly because the system is very small and translucent, making it optically difficult to distinguish it from the hemoglobin-rich surrounding tissues. Unfortunately, Kim did not describe in detail the methods that he used for identifying and harvesting the system and the components of the system. In 2000, Kwang-Sup Soh reopened the BHS research, and since then, new and important scientific findings on the system have been reported, and many of Kim's results have been verified. In 2010, the BHS was renamed the primo vascular system. Nevertheless, good tools to properly deal with this system are still lacking. In this article, we address some of the technical difficulties involved in studying the primo vascular system and attempt to discuss potential ways to overcome those difficulties.
Collapse
Affiliation(s)
- Kyung A Kang
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| | - Claudio Maldonado
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Vitaly Vodyanoy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, and School of Kinesiology, Auburn University, Auburn, AL, USA; The Research Department, The Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| |
Collapse
|
47
|
Wang S, Chen X, Chang L, Xue R, Duan H, Sun Y. GMars-Q Enables Long-Term Live-Cell Parallelized Reversible Saturable Optical Fluorescence Transitions Nanoscopy. ACS NANO 2016; 10:9136-9144. [PMID: 27541837 DOI: 10.1021/acsnano.6b04254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The recent development of reversibly switchable fluorescent proteins (RSFPs) has promoted reversible saturable optical fluorescence transitions (RESOLFT) nanoscopy as a general scheme for live-cell super-resolution imaging. However, continuous, long-term live-cell RESOLFT nanoscopy is still hindered mainly because of the unsatisfactory properties of existing RSFPs. In this work, we report GMars-Q, a monomeric RSFP with low residual off-state fluorescence and strong fatigue resistance attributed to a biphasic photobleaching process. We further demonstrate that GMars-Q is particularly suitable for long-term parallelized RESOLFT nanoscopy as it supports an order of magnitude longer imaging durations than existing RSFPs. The excellent photophysical properties of GMars-Q also suggest that it would be of general interest for other RESOLFT nanoscopic methods.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences and ‡Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Xuanze Chen
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences and ‡Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences and ‡Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Ruiying Xue
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences and ‡Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Haifeng Duan
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences and ‡Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences and ‡Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
48
|
Lim K, Ropp C, Barik S, Fourkas J, Shapiro B, Waks E. Nanostructure-Induced Distortion in Single-Emitter Microscopy. NANO LETTERS 2016; 16:5415-5419. [PMID: 27552289 DOI: 10.1021/acs.nanolett.6b01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitter's far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Previous work has shown that these distortions can significantly degrade the imaging of the local density of states in metallic nanowires using polarization-resolved imaging. But unlike nanowires, nanoparticles do not have a well-defined axis of symmetry, which makes polarization-resolved imaging difficult to apply. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, which is in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter toward its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, subdiffraction spatial imaging. These results provide a better understanding of the complex near-field coupling between emitters and nanostructures and open up new opportunities to perform super-resolution microscopy with higher accuracy.
Collapse
Affiliation(s)
- Kangmook Lim
- Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | | | - Sabyasachi Barik
- Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | | | | | - Edo Waks
- Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology , College Park, Maryland 20742, United States
| |
Collapse
|
49
|
Schnorrenberg S, Grotjohann T, Vorbrüggen G, Herzig A, Hell SW, Jakobs S. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster. eLife 2016; 5. [PMID: 27355614 PMCID: PMC4927295 DOI: 10.7554/elife.15567] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 µm deep within fly tissues. DOI:http://dx.doi.org/10.7554/eLife.15567.001
Collapse
Affiliation(s)
- Sebastian Schnorrenberg
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tim Grotjohann
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gerd Vorbrüggen
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Abteilung Entwicklungsbiologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alf Herzig
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center of Göttingen, Göttingen, Germany
| |
Collapse
|
50
|
Metzger M, Konrad A, Skandary S, Ashraf I, Meixner AJ, Brecht M. Resolution enhancement for low-temperature scanning microscopy by cryo-immersion. OPTICS EXPRESS 2016; 24:13023-13032. [PMID: 27410321 DOI: 10.1364/oe.24.013023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we report a simple way to enhance the resolution of a confocal scanning microscope under cryogenic conditions. Using a microscope objective (MO) with high numerical aperture (NA = 1.25) and 1-propanol as an immersion fluid with low freezing temperature we were able to reach an imaging resolution at 160 K comparable to ambient conditions. The MO and the sample were both placed inside the inner chamber of the cryostat to reduce distortions induced by temperature gradients. The image quality of our commercially available MO was further enhanced by scanning the sample (sample scanning) in contrast to beam scanning. The ease of the whole procedure marks an essential step towards the development of cryo high-resolution microscopy and correlative light and electron cryo microscopy (cryoCLEM).
Collapse
|