1
|
Nazarahari M, Ajami S, Jeon S, Arami A. Visual feedback decoding during bimanual circle drawing. J Neurophysiol 2023; 130:1200-1213. [PMID: 37820018 DOI: 10.1152/jn.00372.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The between-hand interference during bimanual tasks is a consequence of the connection between the neural controllers of movement. Previous studies showed the existence of an asymmetric between-hand interference (caused by neural cross talk) when different kinematics plans were to be executed by each hand or when only one was visually guided and received perturbed visual feedback. Here, in continuous bimanual circle drawing tasks, we investigated if the central nervous system (CNS) can benefit from visual composite feedback, i.e., a weighted sum of hands' positions presented for the visually guided hand, to control the nonvisible hand. Our results demonstrated improvement in the nonvisible nondominant hand (NDH) performance in the presence of the composite feedback. When NDH was visually guided, the dominant hand's (DH) performance during asymmetric drawing deteriorated, whereas its performance during symmetric drawing improved. This indicates that the CNS's ability to leverage composite feedback, which can be the result of decoding the nonvisible hand positional information from the composite feedback, is task-dependent and can be asymmetric. Also, the nonvisible hand's performance degraded when DH or NDH was visually guided with amplified error feedback. The results of the amplified feedback condition do not strongly support the asymmetry of the interference during asymmetric circle drawing. Comparing muscle activations in the asymmetric experiment, we concluded that the observed kinematic differences were not due to alternation in muscle co-contractions.NEW & NOTEWORTHY Many daily activities involve bimanual coordination while simultaneous movement of the hands may result in interference with their movements. Here, we studied whether the central nervous system could use the relevant information in composite feedback, i.e., a weighted sum of positional information of nonvisible and visible hands, to improve the movement of the nonvisible hand. Our results suggest the ability to decode and associate task-relevant information from the composite feedback.
Collapse
Affiliation(s)
- Milad Nazarahari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sahand Ajami
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Soo Jeon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Arash Arami
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
- KITE Institute, University Health Network (UHN), Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chen Z, Yan J, Song X, Qiao Y, Loh YJ, Xie Q, Niu CM. Heavier Load Alters Upper Limb Muscle Synergy with Correlated fNIRS Responses in BA4 and BA6. CYBORG AND BIONIC SYSTEMS 2023; 4:0033. [PMID: 37275578 PMCID: PMC10233656 DOI: 10.34133/cbsystems.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
In neurorehabilitation, motor performances may improve if patients could accomplish the training by overcoming mechanical loads. When the load inertia is increased, it has been found to trigger linear responses in motor-related cortices. The cortical responses, however, are unclear whether they also correlate to changes in muscular patterns. Therefore, it remains difficult to justify the magnitude of load during rehabilitation because of the gap between cortical and muscular activation. Here, we test the hypothesis that increases in load inertia may alter the muscle synergies, and the change in synergy may correlate with cortical activation. Twelve healthy subjects participated in the study. Each subject lifted dumbbells (either 0, 3, or 15 pounds) from the resting position to the armpit repetitively at 1 Hz. Surface electromyographic signals were collected from 8 muscles around the shoulder and the elbow, and hemodynamic signals were collected using functional near-infrared spectroscopy from motor-related regions Brodmann Area 4 (BA4) and BA6. Results showed that, given higher inertia, the synergy vectors differed farther from the baseline. Moreover, synergy similarity on the vector decreased linearly with cortical responses in BA4 and BA6, which associated with increases in inertia. Despite studies in literature that movements with similar kinematics tend not to differ in synergy vectors, we show a different possibility that the synergy vectors may deviate from a baseline. At least 2 consequences of adding inertia have been identified: to decrease synergy similarity and to increase motor cortical activity. The dual effects potentially provide a new benchmark for therapeutic goal setting.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Rehabilitation Medicine, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine,
Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jin Yan
- Department of Rehabilitation Medicine, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine,
Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongjun Qiao
- Department of Rehabilitation Medicine, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Joo Loh
- Department of Rehabilitation Medicine,
Tan-Tock-Seng Hospital, Singapore
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine,
Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chuanxin M. Niu
- Department of Rehabilitation Medicine, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine,
Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
3
|
Balestrucci P, Wiebusch D, Ernst MO. ReActLab: A Custom Framework for Sensorimotor Experiments “in-the-wild”. Front Psychol 2022; 13:906643. [PMID: 35800945 PMCID: PMC9254679 DOI: 10.3389/fpsyg.2022.906643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last few years online platforms for running psychology experiments beyond simple questionnaires and surveys have become increasingly popular. This trend has especially increased after many laboratory facilities had to temporarily avoid in-person data collection following COVID-19-related lockdown regulations. Yet, while offering a valid alternative to in-person experiments in many cases, platforms for online experiments are still not a viable solution for a large part of human-based behavioral research. Two situations in particular pose challenges: First, when the research question requires design features or participant interaction which exceed the customization capability provided by the online platform; and second, when variation among hardware characteristics between participants results in an inadmissible confounding factor. To mitigate the effects of these limitations, we developed ReActLab (Remote Action Laboratory), a framework for programming remote, browser-based experiments using freely available and open-source JavaScript libraries. Since the experiment is run entirely within the browser, our framework allows for portability to any operating system and many devices. In our case, we tested our approach by running experiments using only a specific model of Android tablet. Using ReActLab with this standardized hardware allowed us to optimize our experimental design for our research questions, as well as collect data outside of laboratory facilities without introducing setup variation among participants. In this paper, we describe our framework and show examples of two different experiments carried out with it: one consisting of a visuomotor adaptation task, the other of a visual localization task. Through comparison with results obtained from similar tasks in in-person laboratory settings, we discuss the advantages and limitations for developing browser-based experiments using our framework.
Collapse
|
4
|
Carriot J, Mackrous I, Cullen KE. Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity. Front Neural Circuits 2021; 15:760313. [PMID: 34803615 PMCID: PMC8595211 DOI: 10.3389/fncir.2021.760313] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the next century, flying civilians to space or humans to Mars will no longer be a subject of science fiction. The altered gravitational environment experienced during space flight, as well as that experienced following landing, results in impaired perceptual and motor performance-particularly in the first days of the new environmental challenge. Notably, the absence of gravity unloads the vestibular otolith organs such that they are no longer stimulated as they would be on earth. Understanding how the brain responds initially and then adapts to altered sensory input has important implications for understanding the inherent abilities as well as limitations of human performance. Space-based experiments have shown that altered gravity causes structural and functional changes at multiple stages of vestibular processing, spanning from the hair cells of its sensory organs to the Purkinje cells of the vestibular cerebellum. Furthermore, ground-based experiments have established the adaptive capacity of vestibular pathways and neural mechanism that likely underlie this adaptation. We review these studies and suggest that the brain likely uses two key strategies to adapt to changes in gravity: (i) the updating of a cerebellum-based internal model of the sensory consequences of gravity; and (ii) the re-weighting of extra-vestibular information as the vestibular system becomes less (i.e., entering microgravity) and then again more reliable (i.e., return to earth).
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Zobeiri OA, Ostrander B, Roat J, Agrawal Y, Cullen KE. Loss of peripheral vestibular input alters the statistics of head movement experienced during natural self-motion. J Physiol 2021; 599:2239-2254. [PMID: 33599981 DOI: 10.1113/jp281183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing neural coding. Head motion during natural activities is first sensed and then processed by central vestibulo-motor pathways to influence subsequent behaviour, thereby establishing a feedback loop. To investigate the role of this vestibular feedback on the statistical structure of the head movements, we compared head movements in patients with unilateral vestibular loss and healthy controls. We show that the loss of vestibular feedback substantially alters the statistical structure of head motion for activities that require rapid online feedback control and predict this change by modelling the effects of increased movement variability. Our findings suggest that, following peripheral vestibular loss, changes in the reliability of the sensory input to central pathways impact the statistical structure of head motion during voluntary behaviours. ABSTRACT It is widely believed that sensory systems are adapted to optimize neural coding of their natural stimuli. Recent evidence suggests that this is the case for the vestibular system, which senses head movement and contributes to essential functions ranging from the most automatic reflexes to voluntary motor control. During everyday behaviours, head motion is sensed by the vestibular system. In turn, this sensory feedback influences subsequent behaviour, raising the questions of whether and how real-time feedback provided by the vestibular system alters the statistical structure of head movements. We predicted that a reduction in vestibular feedback would alter head movement statistics, particularly for tasks reliant on rapid vestibular feedback. To test this proposal, we recorded six-dimensional head motion in patients with variable degrees of unilateral vestibular loss during standard balance and gait tasks, as well as dynamic self-paced activities. While distributions of linear accelerations and rotational velocities were comparable for patients and age-matched healthy controls, comparison of power spectra revealed significant differences during more dynamic and challenging activities. Specifically, consistent with our prediction, head movement power spectra were significantly altered in patients during two tasks that required rapid online vestibular feedback: active repetitive jumping and walking on foam. Using computational methods, we analysed concurrently measured torso motion and identified increases in head-torso movement variability. Taken together, our results demonstrate that vestibular loss significantly alters head movement statistics and further suggest that increased variability and impaired feedback to internal models required for accurate motor control contribute to the observed changes.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Benjamin Ostrander
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Roat
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen E Cullen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
6
|
Banker LA, Salazar AP, Lee JK, Beltran NE, Kofman IS, De Dios YE, Mulder E, Bloomberg JJ, Mulavara AP, Seidler RD. The effects of a spaceflight analog with elevated CO 2 on sensorimotor adaptation. J Neurophysiol 2020; 125:426-436. [PMID: 33296611 DOI: 10.1152/jn.00306.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aboard the International Space Station (ISS), astronauts must adapt to altered vestibular and somatosensory inputs due to microgravity. Sensorimotor adaptation on Earth is often studied with a task that introduces visuomotor conflict. Retention of the adaptation process, known as savings, can be measured when subjects are exposed to the same adaptive task multiple times. It is unclear how adaptation demands found on the ISS might interfere with the ability to adapt to other sensory conflict at the same time. In the present study, we investigated the impact of 30 days' head-down tilt bed rest combined with elevated carbon dioxide (HDBR + CO2) as a spaceflight analog on sensorimotor adaptation. Eleven subjects used a joystick to move a cursor to targets presented on a computer screen under veridical cursor feedback and 45° rotated feedback. During this NASA campaign, five individuals presented with optic disk edema, a sign of spaceflight-associated neuro-ocular syndrome (SANS). Thus, we also performed post hoc exploratory analyses between subgroups who did and did not show signs of SANS. HDBR + CO2 had some impact on sensorimotor adaptation, with a lack of savings across the whole group. SANS individuals showed larger, more persistent after-effects, suggesting a shift from relying on cognitive to more implicit processing of adaptive behaviors. Overall, these findings suggest that HDBR + CO2 alters the way in which individuals engage in sensorimotor processing. These findings have important implications for missions and mission training, which require individuals to adapt to altered sensory inputs over long periods in space.NEW & NOTEWORTHY This is the first bed rest campaign examining sensorimotor adaptation and savings in response to the combined effect of HDBR + CO2 and to observe signs of spaceflight-associated neuro-ocular syndrome (SANS) in HDBR participants. Our findings suggest that HDBR + CO2 alters the way that individuals engage in sensorimotor processing. Individuals who developed signs of SANS seem to rely more on implicit rather than cognitive processing of adaptive behaviors than subjects who did not present signs of SANS.
Collapse
Affiliation(s)
- Lauren A Banker
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ana Paula Salazar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Jessica K Lee
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | | | | | | | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | | | | | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida.,Department of Neurology, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Opposing force fields induce direction-specific sensorimotor adaptation but a non-specific perceptual shift consistent with a contraction of peripersonal space representation. Exp Brain Res 2020; 239:31-46. [PMID: 33097985 DOI: 10.1007/s00221-020-05945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Most of our daily interactions with objects occur in the space immediately surrounding the body, i.e. the peripersonal space. The peripersonal space is characterized by multisensory processing of objects which are coded in terms of potential actions, specifying for instance whether objects are within reach or not. Our recent work suggested a link between exposure to a new force field, which changed the effector dynamics, and the representation of peripersonal space. To better understand the interplay between the plasticity of the motor system and peripersonal space representation, the present study examined whether changing the direction of the force field specifically modified the perception of action boundaries. Participants seated at the centre of an experimental platform estimated visual targets' reachability before and after adapting upper-limb reaching movements to the Coriolis force generated by either clockwise or counter clockwise rotation of the platform (120°/s). Opposite spatial after-effects were observed, showing that force-field adaptation depends on the direction of the rotation. In contrast, perceived action boundaries shifted leftward following exposure to the new force field, regardless of the direction of the rotation. Overall, these findings support the idea that abrupt exposure to a new force field results in a direction-specific updating of the central sensorimotor representations underlying the control of arm movements. Abrupt exposure to a new force field also results in a nonspecific shift in the perception of action boundaries, which is consistent with a contraction of the peripersonal space. Such effect, which does not appear to be related to state anxiety, could be related to the protective role of the peripersonal space in response to the uncertainty of the sensorimotor system induced by the abrupt modification of the environment.
Collapse
|
8
|
Rudolph JL, Stapel JC, Selen LPJ, Medendorp WP. Single versus dual-rate learning when exposed to Coriolis forces during reaching movements. PLoS One 2020; 15:e0240666. [PMID: 33075104 PMCID: PMC7571717 DOI: 10.1371/journal.pone.0240666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
When we reach for an object during a passive whole body rotation, a tangential Coriolis force is generated on the arm. Yet, within a few trials, the brain adapts to this force so it does not disrupt the reach. Is this adaptation governed by a single-rate or dual-rate learning process? Here, guided by state-space modeling, we studied human reach adaptation in a fully-enclosed rotating room. After 90 pre-rotation reaches (baseline), participants were trained to make 240 to-and-fro reaches while the room rotated at 10 rpm (block A), then performed 6 reaches under opposite room rotation (block B), and subsequently made 100 post-rotation reaches (washout). A control group performed the same paradigm, but without the reaches during rotation block B. Single-rate and dual-rate models can be best dissociated if there would be full un-learning of compensation A during block B, but minimal learning of B. From the perspective of a dual-rate model, the un-learning observed in block B would mainly be caused by the faster state, such that the washout reaches would show retention effects of the slower state, called spontaneous recovery. Alternatively, following a single-rate model, the same state would govern the learning in block A and un-learning in block B, such that the washout reaches mimic the baseline reaches. Our results do not provide clear signs of spontaneous recovery in the washout reaches. Model fits further show that a single-rate process outperformed a dual-rate process. We suggest that a single-rate process underlies Coriolis force reach adaptation, perhaps because these forces relate to familiar body dynamics and are assigned to an internal cause.
Collapse
Affiliation(s)
- Judith L. Rudolph
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janny C. Stapel
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Luc P. J. Selen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W. Pieter Medendorp
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Sergio LE, Gorbet DJ, Adams MS, Dobney DM. The Effects of Mild Traumatic Brain Injury on Cognitive-Motor Integration for Skilled Performance. Front Neurol 2020; 11:541630. [PMID: 33041992 PMCID: PMC7525090 DOI: 10.3389/fneur.2020.541630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
Adults exposed to blast and blunt impact often experience mild traumatic brain injury, affecting neural functions related to sensory, cognitive, and motor function. In this perspective article, we will review the effects of impact and blast exposure on functional performance that requires the integration of these sensory, cognitive, and motor control systems. We describe cognitive-motor integration and how it relates to successfully navigating skilled activities crucial for work, duty, sport, and even daily life. We review our research on the behavioral effects of traumatic impact and blast exposure on cognitive-motor integration in both younger and older adults, and the neural networks that are involved in these types of skills. Overall, we have observed impairments in rule-based skilled performance as a function of both physical impact and blast exposure. The extent of these impairments depended on the age at injury and the sex of the individual. It appears, however, that cognitive-motor integration deficits can be mitigated by the level of skill expertise of the affected individual, suggesting that such experience imparts resiliency in the brain networks that underly the control of complex visuomotor performance. Finally, we discuss the next steps needed to comprehensively understand the impact of trauma and blast exposure on functional movement control.
Collapse
Affiliation(s)
- Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Meaghan S. Adams
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Vision-Science to Application (VISTA) Program, York University, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Danielle M. Dobney
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
- Vision-Science to Application (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching. eNeuro 2020; 7:ENEURO.0149-19.2019. [PMID: 31949026 PMCID: PMC7004489 DOI: 10.1523/eneuro.0149-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
Humans and other animals adapt motor commands to predictable disturbances within tens of trials in laboratory conditions. A central question is how does the nervous system adapt to disturbances in natural conditions when exactly the same movements cannot be practiced several times. Because motor commands and sensory feedback together carry continuous information about limb dynamics, we hypothesized that the nervous system could adapt to unexpected disturbances online. Humans and other animals adapt motor commands to predictable disturbances within tens of trials in laboratory conditions. A central question is how does the nervous system adapt to disturbances in natural conditions when exactly the same movements cannot be practiced several times. Because motor commands and sensory feedback together carry continuous information about limb dynamics, we hypothesized that the nervous system could adapt to unexpected disturbances online. We tested this hypothesis in two reaching experiments during which velocity-dependent force fields (FFs) were randomly applied. We found that within-movement feedback corrections gradually improved, despite the fact that the perturbations were unexpected. Moreover, when participants were instructed to stop at a via-point, the application of a FF prior to the via-point induced mirror-image after-effects after the via-point, consistent with within-trial adaptation to the unexpected dynamics. These findings suggest a fast time-scale of motor learning, which complements feedback control and supports adaptation of an ongoing movement.
Collapse
|
11
|
Fleury L, Prablanc C, Priot AE. Do prism and other adaptation paradigms really measure the same processes? Cortex 2019; 119:480-496. [DOI: 10.1016/j.cortex.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
|
12
|
Mackrous I, Carriot J, Jamali M, Cullen KE. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Curr Biol 2019; 29:2698-2710.e4. [PMID: 31378613 DOI: 10.1016/j.cub.2019.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world and our orientation relative to gravity. However, how the brain then accounts for gravity as we actively move and interact with our environment is not yet known. Here, we provide evidence that, although during passive movements, individual cerebellar output neurons encode representations of head motion and orientation relative to gravity, these gravity-driven responses are cancelled when head movement is a consequence of voluntary generated movement. In contrast, the gravity-driven responses of primary otolith and semicircular canal afferents remain intact during both active and passive self-motion, indicating the attenuated responses of central neurons are not inherited from afferent inputs. Taken together, our results are consistent with the view that the cerebellum builds a dynamic prediction (e.g., internal model) of the sensory consequences of gravity during active self-motion, which in turn enables the preferential encoding of unexpected motion to ensure postural and perceptual stability.
Collapse
Affiliation(s)
- Isabelle Mackrous
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Jerome Carriot
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Mohsen Jamali
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Kathleen E Cullen
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada; Department of Biomedical Engineering, Johns Hopkins University, Rm. 720, Ross Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Proprioception: Bottom-up directive for motor recovery after spinal cord injury. Neurosci Res 2019; 154:1-8. [PMID: 31336141 DOI: 10.1016/j.neures.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
Proprioceptive feedback provides movement-matched sensory information essential for motor control and recovery after spinal cord injury. While it is understood that the fundamental contribution of proprioceptive feedback circuits in locomotor recovery is to activate the local spinal cord interneurons and motor neurons in a context-dependent manner, the precise mechanisms by which proprioception enables motor recovery after a spinal cord injury remain elusive. Furthermore, how proprioception contributes to motor learning mechanisms intrinsic to spinal cord networks and gives rise to motor recovery is currently unknown. This review discusses the existence of motor learning mechanisms intrinsic to spinal cord circuits and circuit-level insights on how proprioception might contribute to spinal cord plasticity, adaptability, and learning, in addition to the logic in which proprioception helps to establish an internal motor command to execute motor output using spared circuits after a spinal cord injury.
Collapse
|
14
|
Balaban CD, Black RD, Silberstein SD. Vestibular Neuroscience for the Headache Specialist. Headache 2019; 59:1109-1127. [DOI: 10.1111/head.13550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Carey D. Balaban
- Department of Otolaryngology University of Pittsburgh Pittsburgh PA USA
- Department of Neurobiology University of Pittsburgh Pittsburgh PA USA
- Department of Communication Sciences and Disorders University of Pittsburgh Pittsburgh PA USA
- Department of Bioengineering University of Pittsburgh Pittsburgh PA USA
| | | | - Stephen D. Silberstein
- Jefferson Headache Center, Department of Neurology Thomas Jefferson University Philadelphia PA USA
| |
Collapse
|
15
|
Bakshi A, DiZio P, Lackner JR. Rapid adaptation to Coriolis force perturbations of voluntary body sway. J Neurophysiol 2019; 121:2028-2041. [PMID: 30943090 DOI: 10.1152/jn.00606.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studying adaptation to Coriolis perturbations of arm movements has advanced our understanding of motor control and learning. We have now applied this paradigm to two-dimensional postural sway. We measured how subjects (n = 8) standing at the center of a fully enclosed rotating room who made voluntary anterior-posterior swaying movements adapted to the Coriolis perturbations generated by their sway. Subjects underwent four voluntary sway trials prerotation, 20 per-rotation at 10 rpm counterclockwise, and 10 postrotation. Each trial lasted 20 s, and subjects were permitted normal vision. Their voluntary sway during rotation generated Coriolis forces that initially induced rightward deviations of their forward sway paths and leftward deviations of their backward sway. Sagittal plane sway was gradually restored over per-rotation trials, and a mirror image aftereffect occurred in postrotation trials. Dual force plate data analysis showed that subjects learned to counter the Coriolis accelerations during rotation by executing a bimodal torque pattern that was asymmetric across legs and contingent on forward vs. backward movement. The experience-dependent acquisition and washout of this compensation indicate that an internal, feedforward model underlies the leg-asymmetric bimodal torque compensation, contingent on forward vs. backward movement. The learned torque asymmetry we observed for forward vs. backward sway is not consistent with parallel two-leg models of postural control. NEW & NOTEWORTHY This paper describes adaptation to Coriolis force perturbations of voluntary sway in a rotating environment. During counterclockwise rotation, sway paths are deviated clockwise, but full restoration of fore-aft sway is regained in minutes. Negative aftereffects are briefly present postrotation. Current parallel leg models of postural control cannot account for these findings, which show that postural control, like arm movement control, can adapt rapidly and completely to the Coriolis forces generated in artificial gravity environments.
Collapse
Affiliation(s)
- Avijit Bakshi
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| | - James R Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
16
|
Bakshi A, DiZio P, Lackner JR. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model. J Neurophysiol 2019; 121:2042-2060. [PMID: 30943111 DOI: 10.1152/jn.00607.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the companion paper (Bakshi A, DiZio P, Lackner JR. J Neurophysiol. In press, 2019), we reported how voluntary forward-backward sway in a rotating room generated medial-lateral Coriolis forces that initially deviated intended body sway paths. Pure fore-aft sway was gradually restored over per-rotation trials, and a negative aftereffect occurred during postrotation sway. Force plate recordings showed that subjects learned to compensate for the Coriolis forces by executing a bimodal torque, the distribution of which was asymmetric across the two legs and of opposite sign for forward vs. backward sway. To explain these results, we have developed an asymmetric, nonparallel-leg, inverted pendulum model to characterize upright balance control in two dimensions. Fore-aft and medial-lateral sway amplitudes can be biomechanically coupled or independent. Biomechanical coupling occurs when Coriolis forces orthogonal to the direction of movement perturb sway about the ankles. The model includes a mechanism for alternating engagement/disengagement of each leg and for asymmetric drive to the ankles to achieve adaptation to Coriolis force-induced two-dimensional sway. The model predicts the adaptive control underlying the adaptation of voluntary postural sway to Coriolis forces. A stability analysis of the model generates parameter values that match those measured experimentally, and the parameterized model simulations reproduce the experimentally observed sway trajectories. NEW & NOTEWORTHY This paper presents a novel nonparallel leg model of postural control that correctly predicts the perturbations of voluntary sway that occur in a rotating environment and the adaptive changes that occur to restore faithful movement trajectories. This engaged leg model (ELM) predicts the asymmetries in force distribution and their patterns between the two legs to restore accurate movement trajectories. ELM has clinical relevance for pathologies that generate postural asymmetries and for altered gravitoinertial force conditions.
Collapse
Affiliation(s)
- Avijit Bakshi
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| | - James R Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
17
|
Abstract
The present study analyzes the learning in a coincident timing task with force perturbation. We aimed to verify whether a predictable load (constant spring) applied to hand movements could facilitate learning and, thus, performance improvement with respect to movements without any external load and an unpredictable load to perform a coincident timing task with a few number of repetitions (n = 28) under acquisition and transfer phases. The results showed that the group with a predictable load had a significant better performance with lower percentage of errors and smaller time variance in the acquisition and transfer phase. The groups with no load and unpredictable load had a similar performance in the transfer phase. It can be concluded that adding a predictable force to the coincident timing task results in performance improvement. Therefore, learning to reach a target at a correct time could be improved with the application of predictable external loads.
Collapse
|
18
|
Kong G, Zhou Z, Wang Q, Kording K, Wei K. Credit assignment between body and object probed by an object transportation task. Sci Rep 2017; 7:13415. [PMID: 29042671 PMCID: PMC5645448 DOI: 10.1038/s41598-017-13889-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
It has been proposed that learning from movement errors involves a credit assignment problem: did I misestimate properties of the object or those of my body? For example, an overestimate of arm strength and an underestimate of the weight of a coffee cup can both lead to coffee spills. Though previous studies have found signs of simultaneous learning of the object and of the body during object manipulation, there is little behavioral evidence about their quantitative relation. Here we employed a novel weight-transportation task, in which participants lift the first cup filled with liquid while assessing their learning from errors. Specifically, we examined their transfer of learning when switching to a contralateral hand, the second identical cup, or switching both hands and cups. By comparing these transfer behaviors, we found that 25% of the learning was attributed to the object (simply because of the use of the same cup) and 58% of the learning was attributed to the body (simply because of the use of the same hand). The nervous system thus seems to partition the learning of object manipulation between the object and the body.
Collapse
Affiliation(s)
- Gaiqing Kong
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China.,Key Laboratory of Machine Perception, Ministry of Education, Beijing, China.,Department of Neuroscience & Department of Bioengineering, University of Pennsylvania, Pennsylvania, PA, USA
| | - Zhihao Zhou
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China.,Key Laboratory of Machine Perception, Ministry of Education, Beijing, China
| | - Qining Wang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China.,Key Laboratory of Machine Perception, Ministry of Education, Beijing, China
| | - Konrad Kording
- Department of Neuroscience & Department of Bioengineering, University of Pennsylvania, Pennsylvania, PA, USA
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China. .,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China. .,Key Laboratory of Machine Perception, Ministry of Education, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, 100080, China.
| |
Collapse
|
19
|
Vestibular contributions to high-level sensorimotor functions. Neuropsychologia 2017; 105:144-152. [DOI: 10.1016/j.neuropsychologia.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
|
20
|
Stein P, Saltzman E, Holt K, Sternad D. Is failed predictive control a risk factor for focal dystonia? Mov Disord 2016; 31:1772-1776. [PMID: 27787939 DOI: 10.1002/mds.26818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Task-specific focal dystonia (TSFD) is a disorder marked by degraded coordination in complex and exacting psychomotor tasks, such as musical performance. Its development is associated with prolonged and intensive practice of these tasks, but the etiology of TSFD is still unknown. The prevailing hypothesis was informed by findings in primates following repetitive simple grasping actions. This model implies, however, that complex manual tasks that yield more intricate and subtly varying sensorimotor patterns, as found in musical performance and handwriting, should be unlikely to lead to focal dystonia. HYPOTHESIS We propose an alternative, "predictive-control" etiological hypothesis: When an overtaxed performer exhibits poorly controlled variability and errors in motor execution of a well-learned, high-precision task, predictive control processes deteriorate. This includes, in particular, those related to the formation or updating of a forward dynamic model that maps motor commands to predicted end-effector state, e.g. position and velocity of a key-pressing digit. CONCLUSION Based on a critical literature review we argue that this results in the characteristic signs of focal dystonia, such as freezing, halting and inappropriate co-contraction specific to the task. Directions for future research are briefly discussed. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Peter Stein
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - Elliot Saltzman
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA.,Haskins Laboratories, New Haven, Connecticut, USA
| | - Kenneth Holt
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Dagmar Sternad
- Departments of Biology, Electrical and Computer Engineering, and Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Fercho K, Baugh LA. Cognitive attribution of the source of an error in object-lifting results in differences in motor generalization. Exp Brain Res 2016; 234:2667-76. [PMID: 27150316 DOI: 10.1007/s00221-016-4670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/29/2016] [Indexed: 11/26/2022]
Abstract
To lift an object, the motor system must predict the weight of the object and use this information to program appropriate lifting forces. If this prediction is erroneous, people may assign blame for the error to either themselves or an external source-a process called credit assignment. In the present study, we explored the role of credit assignment on weight predictions during a lifting task. Participants were told that the EMG surface electrodes attached to their lifting hand were either part of a "passive" system that recorded muscular activity, or part of an "active" system that would apply energy to the muscle, influencing weight perception. Participants performed 90 lifts of the training blocks, followed by 10 lifts of a newly encountered larger test block. In between training and test trials, the experimenter turned off the recording system and removed the surface electrodes for participants in the "active" group. For each lift, we determined the initial peak rate of change of vertical load force rate and load-phase duration, estimates of predicted object weight. Analysis of the first 10 training lifts and the last 10 training lifts revealed no effect of Active versus Passive EMG on weight predictions. However, after removing the EMG equipment, participants in the "active" group failed to scale their predictive load forces in the same manner as those in the "passive" condition when lifting a novel block. We conclude that cognitive information may play a role in credit assignment, influencing weight prediction when lifting novel objects.
Collapse
Affiliation(s)
- Kelene Fercho
- Sanford School of Medicine, Lee Medical Building, University of South Dakota, Vermillion, SD, 57069, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Lee A Baugh
- Sanford School of Medicine, Lee Medical Building, University of South Dakota, Vermillion, SD, 57069, USA.
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.
| |
Collapse
|
22
|
Reichenbach A, Bresciani JP, Bülthoff HH, Thielscher A. Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex. Neuroimage 2015; 124:869-875. [PMID: 26424179 DOI: 10.1016/j.neuroimage.2015.09.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 11/25/2022] Open
Abstract
The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are challenging and have progressed far less than research on corresponding visual and proprioceptive involvement. Here, we demonstrate for the first time with event-related TMS that the posterior part of the right medial intraparietal sulcus processes vestibular signals during a goal-directed reaching task with the dominant right hand. This finding suggests a qualitative difference between the processing of vestibular vs. visual and proprioceptive signals for controlling voluntary movements, which are pre-dominantly processed in the left posterior parietal cortex. Furthermore, this study reveals a neural pathway for vestibular input that might be distinct from the processing for reflexive or cognitive functions, and opens a window into their investigation in humans.
Collapse
Affiliation(s)
- Alexandra Reichenbach
- Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany.
| | - Jean-Pierre Bresciani
- Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany; Laboratoire de Psychologie et NeuroCognition, University of Grenoble, BP47, 38040 Grenoble, Cedex 9, France; Department of Medicine, University of Fribourg, Boulevard de Pérolles 90, 1700 Fribourg, Switzerland
| | - Heinrich H Bülthoff
- Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany; Dept. of Brain and Cognitive Engineering, Korea University, Anam-dong 5ga, Seonbuk-gu, Seoul 136-713, Republic of Korea.
| | - Axel Thielscher
- Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany; Danish Research Center for Magnetic Resonance, Copenhagen University Hospital, Kettegård Alle 30, 2650 Hvidovre, Denmark; Biomedical Engineering Section, Technical University of Denmark, Anker Engelunds Vej 1, Building 101A, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Jarc AM, Nisky I. Robot-assisted surgery: an emerging platform for human neuroscience research. Front Hum Neurosci 2015; 9:315. [PMID: 26089785 PMCID: PMC4455232 DOI: 10.3389/fnhum.2015.00315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/18/2015] [Indexed: 12/26/2022] Open
Abstract
Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity-from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure-can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether.
Collapse
Affiliation(s)
- Anthony M Jarc
- Medical Research, Intuitive Surgical, Inc. Sunnyvale, CA, USA
| | - Ilana Nisky
- Biomedical Engineering, Ben-Gurion University of the Negev Beer Sheva, Israel
| |
Collapse
|
24
|
Human manual control performance in hyper-gravity. Exp Brain Res 2015; 233:1409-20. [PMID: 25651980 DOI: 10.1007/s00221-015-4215-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G's of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.
Collapse
|
25
|
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR. Human perceptual overestimation of whole body roll tilt in hypergravity. J Neurophysiol 2014; 113:2062-77. [PMID: 25540216 DOI: 10.1152/jn.00095.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.
Collapse
Affiliation(s)
- Torin K Clark
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Charles Stark Draper Laboratory, Incorporated, Cambridge, Massachusetts;
| | - Michael C Newman
- National Aerospace Training and Research Center, Southampton, Pennsylvania; and
| | - Charles M Oman
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Laurence R Young
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
26
|
Gaveau V, Prablanc C, Laurent D, Rossetti Y, Priot AE. Visuomotor adaptation needs a validation of prediction error by feedback error. Front Hum Neurosci 2014; 8:880. [PMID: 25408644 PMCID: PMC4219430 DOI: 10.3389/fnhum.2014.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/13/2014] [Indexed: 11/13/2022] Open
Abstract
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated.
Collapse
Affiliation(s)
- Valérie Gaveau
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center Bron, France
| | - Claude Prablanc
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center Bron, France ; Université Claude Bernard Lyon 1 Villeurbanne, France
| | - Damien Laurent
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center Bron, France
| | - Yves Rossetti
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center Bron, France ; Université Claude Bernard Lyon 1 Villeurbanne, France ; Mouvement et Handicap, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon Bron, France
| | - Anne-Emmanuelle Priot
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center Bron, France ; Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge cedex, France
| |
Collapse
|
27
|
Gaudio S, Brooks SJ, Riva G. Nonvisual multisensory impairment of body perception in anorexia nervosa: a systematic review of neuropsychological studies. PLoS One 2014; 9:e110087. [PMID: 25303480 PMCID: PMC4193894 DOI: 10.1371/journal.pone.0110087] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023] Open
Abstract
Background Body image distortion is a central symptom of Anorexia Nervosa (AN). Even if corporeal awareness is multisensory majority of AN studies mainly investigated visual misperception. We systematically reviewed AN studies that have investigated different nonvisual sensory inputs using an integrative multisensory approach to body perception. We also discussed the findings in the light of AN neuroimaging evidence. Methods PubMed and PsycINFO were searched until March, 2014. To be included in the review, studies were mainly required to: investigate a sample of patients with current or past AN and a control group and use tasks that directly elicited one or more nonvisual sensory domains. Results Thirteen studies were included. They studied a total of 223 people with current or past AN and 273 control subjects. Overall, results show impairment in tactile and proprioceptive domains of body perception in AN patients. Interoception and multisensory integration have been poorly explored directly in AN patients. A limitation of this review is the relatively small amount of literature available. Conclusions Our results showed that AN patients had a multisensory impairment of body perception that goes beyond visual misperception and involves tactile and proprioceptive sensory components. Furthermore, impairment of tactile and proprioceptive components may be associated with parietal cortex alterations in AN patients. Interoception and multisensory integration have been weakly explored directly. Further research, using multisensory approaches as well as neuroimaging techniques, is needed to better define the complexity of body image distortion in AN. Key Findings The review suggests an altered capacity of AN patients in processing and integration of bodily signals: body parts are experienced as dissociated from their holistic and perceptive dimensions. Specifically, it is likely that not only perception but memory, and in particular sensorimotor/proprioceptive memory, probably shapes bodily experience in patients with AN.
Collapse
Affiliation(s)
- Santino Gaudio
- Centre for Integrated Research (CIR), Area of Diagnostic Imaging, Università “Campus Bio-Medico di Roma”, Rome, Italy
- * E-mail:
| | - Samantha Jane Brooks
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
- Department of Neuroscience, Uppsala University, BMC, Uppsala, Sweden
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
28
|
Fercho K, Baugh LA. It's too quick to blame myself-the effects of fast and slow rates of change on credit assignment during object lifting. Front Hum Neurosci 2014; 8:554. [PMID: 25120456 PMCID: PMC4114297 DOI: 10.3389/fnhum.2014.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/08/2014] [Indexed: 11/13/2022] Open
Abstract
Although there have been substantial research efforts examining the effect of various rates of change in reaching movements, there has been little to no research devoted to this issue during object manipulation tasks. In force-field and visuomotor adaptation studies, two parallel processes have been identified: first, a fast process that adapts and de-adapts quickly is thought to enable the actor to deal with potentially transient perturbations. Second, a slower, but longer lasting process adapts if these initial perturbations persist over time. In a largely separate body of research, the role of credit assignment has been examined in terms of allotting the cause of errors to changes in the body vs. changes in the outside world. Of course, these two processes are usually linked within the real world, with short lasting perturbations most often being linked to external causes and longer lasting perturbations being linked to internal causes. Here, we demonstrate that the increases in load forces associated with a gradual increase in object weight during a natural object lifting task are transferred when lifting a novel object, whereas a sudden increase in object weight is not. We speculate that gradual rates of change in the weight of the object being lifted are attributed to the self, whereas fast rates of change are more likely to be attributed to the external environment. This study extends our knowledge of the multiple timescales involved in motor learning to a more natural object manipulation scenario, while concurrently providing support for the hypothesis that the multiple time scales involved in motor learning are tuned for different learning contexts.
Collapse
Affiliation(s)
- Kelene Fercho
- Sanford School of Medicine, University of South Dakota Vermillion, SD, USA ; Center for Brain and Behavior Research, University of South Dakota Vermillion, SD, USA
| | - Lee A Baugh
- Sanford School of Medicine, University of South Dakota Vermillion, SD, USA ; Center for Brain and Behavior Research, University of South Dakota Vermillion, SD, USA
| |
Collapse
|
29
|
Block H, Celnik P. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. THE CEREBELLUM 2014; 12:781-93. [PMID: 23625383 DOI: 10.1007/s12311-013-0486-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.
Collapse
Affiliation(s)
- Hannah Block
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
30
|
Moreau-Debord I, Martin CZ, Landry M, Green AM. Evidence for a reference frame transformation of vestibular signal contributions to voluntary reaching. J Neurophysiol 2014; 111:1903-19. [DOI: 10.1152/jn.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To contribute appropriately to voluntary reaching during body motion, vestibular signals must be transformed from a head-centered to a body-centered reference frame. We quantitatively investigated the evidence for this transformation during online reach execution by using galvanic vestibular stimulation (GVS) to simulate rotation about a head-fixed, roughly naso-occipital axis as human subjects made planar reaching movements to a remembered location with their head in different orientations. If vestibular signals that contribute to reach execution have been transformed from a head-centered to a body-centered reference frame, the same stimulation should be interpreted as body tilt with the head upright but as vertical-axis rotation with the head inclined forward. Consequently, GVS should perturb reach trajectories in a head-orientation-dependent way. Consistent with this prediction, GVS applied during reach execution induced trajectory deviations that were significantly larger with the head forward compared with upright. Only with the head forward were trajectories consistently deviated in opposite directions for rightward versus leftward simulated rotation, as appropriate to compensate for body vertical-axis rotation. These results demonstrate that vestibular signals contributing to online reach execution have indeed been transformed from a head-centered to a body-centered reference frame. Reach deviation amplitudes were comparable to those predicted for ideal compensation for body rotation using a biomechanical limb model. Finally, by comparing the effects of application of GVS during reach execution versus prior to reach onset we also provide evidence that spatially transformed vestibular signals contribute to at least partially distinct compensation mechanisms for body motion during reach planning versus execution.
Collapse
Affiliation(s)
- Ian Moreau-Debord
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Marianne Landry
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Andrea M. Green
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Stockinger C, Focke A, Stein T. Catch trials in force field learning influence adaptation and consolidation of human motor memory. Front Hum Neurosci 2014; 8:231. [PMID: 24795598 PMCID: PMC4001009 DOI: 10.3389/fnhum.2014.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance.
Collapse
Affiliation(s)
- Christian Stockinger
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Anne Focke
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Thorsten Stein
- YIG "Computational Motor Control and Learning", BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology Karlsruhe, Germany
| |
Collapse
|
32
|
Brooks JX, Cullen KE. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback. J Neurophysiol 2014; 111:2465-78. [PMID: 24671531 DOI: 10.1152/jn.00600.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Most of our sensory experiences are gained by active exploration of the world. While the ability to distinguish sensory inputs resulting of our own actions (termed reafference) from those produced externally (termed exafference) is well established, the neural mechanisms underlying this distinction are not fully understood. We have previously proposed that vestibular signals arising from self-generated movements are inhibited by a mechanism that compares the internal prediction of the proprioceptive consequences of self-motion to the actual feedback. Here we directly tested this proposal by recording from single neurons in monkey during vestibular stimulation that was externally produced and/or self-generated. We show for the first time that vestibular reafference is equivalently canceled for self-generated sensory stimulation produced by activation of the neck musculature (head-on-body motion), or axial musculature (combined head and body motion), when there is no discrepancy between the predicted and actual proprioceptive consequences of self-motion. However, if a discrepancy does exist, central vestibular neurons no longer preferentially encode vestibular exafference. Specifically, when simultaneous active and passive motion resulted in activation of the same muscle proprioceptors, neurons robustly encoded the total vestibular input (i.e., responses to vestibular reafference and exafference were equally strong), rather than exafference alone. Taken together, our results show that the cancellation of vestibular reafference in early vestibular processing requires an explicit match between expected and actual proprioceptive feedback. We propose that this vital neuronal computation, necessary for both accurate sensory perception and motor control, has important implications for a variety of sensory systems that suppress self-generated signals.
Collapse
Affiliation(s)
- Jessica X Brooks
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Kathleen E Cullen
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Sağlam M, Glasauer S, Lehnen N. Vestibular and cerebellar contribution to gaze optimality. ACTA ACUST UNITED AC 2014; 137:1080-94. [PMID: 24549962 DOI: 10.1093/brain/awu006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with chronic bilateral vestibular loss have large gaze variability and experience disturbing oscillopsia, which impacts physical and social functioning, and quality of life. Gaze variability and oscillopsia in these patients are attributed to a deficient vestibulo-ocular reflex, i.e. impaired online feedback motor control. Here, we assessed whether the lack of vestibular input also affects feed-forward motor learning, i.e. the ability to choose optimal movement parameters that minimize variability during active movements such as combined eye-head gaze shifts. A failure to learn from practice and reshape feed-forward motor commands in response to sensory error signals to achieve appropriate movements has been proposed to explain dysmetric gaze shifts in patients with cerebellar ataxia. We, therefore, assessed the differential roles of both sensory vestibular information and the cerebellum in choosing optimal movement kinematics. We have previously shown that, in the course of several gaze shifts, healthy subjects adjust the motor command to minimize endpoint variability also when movements are experimentally altered by an increase in the head moment of inertia. Here, we increased the head inertia in five patients with chronic complete bilateral vestibular loss (aged 45.4±7.1 years, mean±standard deviation), nine patients with cerebellar ataxia (aged 56.7±12.6 years), and 10 healthy control subjects (aged 39.7±6.3 years) while they performed large (75° and 80°) horizontal gaze shifts towards briefly flashed targets in darkness and, using our previous optimal control model, compared their gaze shift parameters to the expected optimal movements with increased head inertia. Patients with chronic bilateral vestibular loss failed to update any of the gaze shift parameters to the new optimum with increased head inertia. Consequently, they displayed highly variable, suboptimal gaze shifts. Patients with cerebellar ataxia updated some movement parameters to serve the minimum variance optimality principle but inaccurately undershot the target leading to an average gaze error of 11.4±2.0°. Thus, vestibulopathy leads to gaze variability not only as a result of deficient online gaze control but also a failure in motor learning because of missing error signals. Patients with cerebellar ataxia in our setting can learn from practice-similar to recent findings in reaching movements-and reshape feed-forward motor commands to decrease variability. However, they compromise optimality with inaccurately short movements. The importance of vestibular information for motor learning implies that patients with incomplete bilateral vestibulopathy, and patients with cerebellar ataxia, should be advised to actively move their head whenever appropriate. This way, sensory error signals can be used to shape the motor command and optimize gaze shifts trial-by-trial.
Collapse
Affiliation(s)
- Murat Sağlam
- 1 German Centre for Vertigo and Balance Disorders, Munich University Hospital, Germany
| | | | | |
Collapse
|
34
|
Adaptation of lift forces in object manipulation through action observation. Exp Brain Res 2013; 228:221-34. [DOI: 10.1007/s00221-013-3554-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
|
35
|
Separate contributions of kinematic and kinetic errors to trajectory and grip force adaptation when transporting novel hand-held loads. J Neurosci 2013; 33:2229-36. [PMID: 23365258 DOI: 10.1523/jneurosci.3772-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous studies of motor learning have examined the adaptation of hand trajectories and grip forces when moving grasped objects with novel dynamics. Such objects initially result in both kinematic and kinetic errors; i.e., mismatches between predicted and actual trajectories and between predicted and actual load forces. Here we investigated the contribution of these errors to both trajectory and grip force adaptation. Participants grasped an object with novel dynamics using a precision grip and moved it between two targets. Kinematic errors could be effectively removed using a force channel to constrain hand motion to a straight line. When moving in the channel, participants learned to modulate grip force in synchrony with load force and this learning generalized when movement speed in the channel was doubled. When the channel was removed, these participants continued to effectively modulate grip force but exhibited substantial kinematic errors, equivalent to those seen in participants who did not previously experience the object in the channel. We also found that the rate of grip force adaptation did not depend on whether the object was initially moved with or without a channel. These results indicate that kinematic errors are necessary for trajectory but not grip force adaptation, and that kinetic errors are sufficient for grip force but not trajectory adaptation. Thus, participants can learn a component of the object's dynamics, used to control grip force, based solely on kinetic errors. However, this knowledge is apparently not accessible or usable for controlling the movement trajectory when the channel is removed.
Collapse
|
36
|
Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 110:93-103. [PMID: 23312633 DOI: 10.1016/b978-0-444-52901-5.00008-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurorehabilitation is based on the assumption that motor learning contributes to motor recovery after injury. However, little is known about how learning itself is affected by brain injury, how learning mechanisms interact with spontaneous biological recovery, and how best to incorporate learning principles into rehabilitation training protocols. Here we distinguish between two types of motor learning, adaptation and skill acquisition, and discuss how they relate to neurorehabilitation. Functional recovery can occur through resolution of impairment (reacquisition of premorbid movement patterns) and through compensation (use of alternative movements or effectors to accomplish the same goal); both these forms of recovery respond to training protocols. The emphasis in current neurorehabilitation practice is on the rapid establishment of independence in activities of daily living through compensatory strategies, rather than on the reduction of impairment. Animal models, however, show that after focal ischemic damage there is a brief, approximately 3-4-week, window of heightened plasticity, which in combination with training protocols leads to large gains in motor function. Analogously, almost all recovery from impairment in humans occurs in the first 3 months after stroke, which suggests that targeting impairment in this time-window with intense motor learning protocols could lead to gains in function that are comparable in terms of effect size to those seen in animal models.
Collapse
Affiliation(s)
- Tomoko Kitago
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | |
Collapse
|
37
|
Schaefer SY, Lang CE. Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study. J Mot Behav 2012; 44:313-27. [PMID: 22934682 DOI: 10.1080/00222895.2012.708367] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors' purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
38
|
Sciutti A, Demougeot L, Berret B, Toma S, Sandini G, Papaxanthis C, Pozzo T. Visual gravity influences arm movement planning. J Neurophysiol 2012; 107:3433-45. [DOI: 10.1152/jn.00420.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When submitted to a visuomotor rotation, subjects show rapid adaptation of visually guided arm reaching movements, indicated by a progressive reduction in reaching errors. In this study, we wanted to make a step forward by investigating to what extent this adaptation also implies changes into the motor plan. Up to now, classical visuomotor rotation paradigms have been performed on the horizontal plane, where the reaching motor plan in general requires the same kinematics (i.e., straight path and symmetric velocity profile). To overcome this limitation, we considered vertical and horizontal movement directions requiring specific velocity profiles. This way, a change in the motor plan due to the visuomotor conflict would be measurable in terms of a modification in the velocity profile of the reaching movement. Ten subjects performed horizontal and vertical reaching movements while observing a rotated visual feedback of their motion. We found that adaptation to a visuomotor rotation produces a significant change in the motor plan, i.e., changes to the symmetry of velocity profiles. This suggests that the central nervous system takes into account the visual information to plan a future motion, even if this causes the adoption of nonoptimal motor plans in terms of energy consumption. However, the influence of vision on arm movement planning is not fixed, but rather changes as a function of the visual orientation of the movement. Indeed, a clear influence on motion planning can be observed only when the movement is visually presented as oriented along the vertical direction. Thus vision contributes differently to the planning of arm pointing movements depending on motion orientation in space.
Collapse
Affiliation(s)
- Alessandra Sciutti
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laurent Demougeot
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale (INSERM), Dijon, France; and
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne, Dijon, France
| | - Bastien Berret
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Simone Toma
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulio Sandini
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Charalambos Papaxanthis
- Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale (INSERM), Dijon, France; and
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne, Dijon, France
| | - Thierry Pozzo
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Institut Universitaire de France (IUF), Paris, France
- Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale (INSERM), Dijon, France; and
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne, Dijon, France
| |
Collapse
|
39
|
Hagura N, Hirose S, Matsumura M, Naito E. Am I seeing my hand? Visual appearance and knowledge of controllability both contribute to the visual capture of a person's own body. Proc Biol Sci 2012; 279:3476-81. [PMID: 22648159 PMCID: PMC3396906 DOI: 10.1098/rspb.2012.0750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When confronted with complex visual scenes in daily life, how do we know which visual information represents our own hand? We investigated the cues used to assign visual information to one's own hand. Wrist tendon vibration elicits an illusory sensation of wrist movement. The intensity of this illusion attenuates when the actual motionless hand is visually presented. Testing what kind of visual stimuli attenuate this illusion will elucidate factors contributing to visual detection of one's own hand. The illusion was reduced when a stationary object was shown, but only when participants knew it was controllable with their hands. In contrast, the visual image of their own hand attenuated the illusion even when participants knew that it was not controllable. We suggest that long-term knowledge about the appearance of the body and short-term knowledge about controllability of a visual object are combined to robustly extract our own body from a visual scene.
Collapse
Affiliation(s)
- Nobuhiro Hagura
- ATR Brain Information Communication Research Laboratory Group, Kyoto 619-0288, Japan.
| | | | | | | |
Collapse
|
40
|
Huang FC, Patton JL. Augmented dynamics and motor exploration as training for stroke. IEEE Trans Biomed Eng 2012; 60:838-44. [PMID: 22481803 DOI: 10.1109/tbme.2012.2192116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With chronic stroke survivors (n = 30), we investigated how upper extremity training with negative viscosity affects coordination under unperturbed conditions. Subjects trained with a planar robotic interface simulating 1) negative viscosity augmented to elbow and shoulder joints; 2) negative viscosity combined with inertia; or 3) a null-field condition. Two treatment groups practiced with both force conditions (cross-over design), while a control group practiced with a null-field condition. Training (exploratory movement) and evaluations (prescribed circular movement) alternated in several phases to facilitate transfer from forces to the null field. Negative viscosity expanded exploration especially in the sagittal axis, and resulted in significant within-day improvements. Both treatment groups exhibited next day retention unobserved in the control. Our results suggest enhanced learning from forces that induce a broader range of kinematics. This study supports the use of robot-assisted training that encourages active patient involvement by preserving efferent commands for driving movement.
Collapse
Affiliation(s)
- Felix C Huang
- Department of Biomedical Engineering, Northwestern University, Chicago, IL 60208, USA.
| | | |
Collapse
|
41
|
Cullen KE. The neural encoding of self-motion. Curr Opin Neurobiol 2012; 21:587-95. [PMID: 21689924 DOI: 10.1016/j.conb.2011.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/03/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
As we move through the world, information can be combined from multiple sources in order to allow us to perceive our self-motion. The vestibular system detects and encodes the motion of the head in space. In addition, extra-vestibular cues such as retinal-image motion (optic flow), proprioception, and motor efference signals, provide valuable motion cues. Here I focus on the coding strategies that are used by the brain to create neural representations of self-motion. I review recent studies comparing the thresholds of single versus populations of vestibular afferent and central neurons. I then consider recent advances in understanding the brain's strategy for combining information from the vestibular sensors with extra-vestibular cues to estimate self-motion. These studies emphasize the need to consider not only the rules by which multiple inputs are combined, but also how differences in the behavioral context govern the nature of what defines the optimal computation.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, PQ, H3G 1Y6, Canada.
| |
Collapse
|
42
|
Cullen KE. The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 2012; 35:185-96. [PMID: 22245372 DOI: 10.1016/j.tins.2011.12.001] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 01/16/2023]
Abstract
Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight into a set of interrelated questions. What neural code is used to represent sensory information in vestibular pathways? How do the interactions between the organism and the environment shape encoding? How is self-motion information processing adjusted to meet the needs of specific tasks? This review highlights progress that has recently been made towards understanding how the brain encodes and processes self-motion to ensure accurate motor control.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
43
|
Hudson TE, Landy MS. Adaptation to sensory-motor reflex perturbations is blind to the source of errors. J Vis 2012; 12:4. [PMID: 22228797 DOI: 10.1167/12.1.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
Collapse
Affiliation(s)
- Todd E Hudson
- Department of Psychology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
44
|
Ciofani G, Ricotti L, Rigosa J, Menciassi A, Mattoli V, Monici M. Hypergravity effects on myoblast proliferation and differentiation. J Biosci Bioeng 2011; 113:258-61. [PMID: 22055920 DOI: 10.1016/j.jbiosc.2011.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 10/15/2022]
Abstract
This study aimed at the investigation of behavior of myoblasts in conditions of altered gravity. C2C12 cells underwent stimulations by different hypergravity intensities (2 h at 5 g, 10 g, and 20 g) in the Large Diameter Centrifuge of the European Space Agency (ESA), highlighting positive effects on both proliferation and differentiation.
Collapse
Affiliation(s)
- Gianni Ciofani
- Italian Institute of Technology, Center of MicroBioRobotics c/o Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy. ,
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
Collapse
|
46
|
Stratton P, Milford M, Wyeth G, Wiles J. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots. PLoS One 2011; 6:e25687. [PMID: 21991332 PMCID: PMC3186777 DOI: 10.1371/journal.pone.0025687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/07/2011] [Indexed: 01/29/2023] Open
Abstract
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Collapse
Affiliation(s)
- Peter Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
47
|
Ingram JN, Howard IS, Flanagan JR, Wolpert DM. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics. PLoS Comput Biol 2011; 7:e1002196. [PMID: 21980277 PMCID: PMC3182866 DOI: 10.1371/journal.pcbi.1002196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 07/30/2011] [Indexed: 11/18/2022] Open
Abstract
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process. Skillful object manipulation is an essential feature of human behavior. How humans process and represent information associated with objects is thus a fundamental question in neuroscience. Here, we examine the representation of the mechanical properties of objects which define the mapping between the forces applied to an object and the motion that results. Knowledge of this mapping, which can change depending on the orientation with which an object is grasped, is essential for skillful manipulation. Subjects performed a virtual object manipulation task by grasping the handle of a novel robotic interface which simulated the dynamics of a familiar object which could be presented at different orientations. Using this task, we show that adaptation to the properties of a particular object is extremely rapid, and that such adaptation is confined to the specific orientation at which the object is experienced. Moreover, the pattern of adaptation observed when the orientation of the object and its mechanical properties were changed from trial-to-trial was reproduced by a model which included multiple representations and a generalization function tuned for object orientation. These results suggest that the skillful manipulation of objects with familiar dynamics is mediated by multiple context-specific representations.
Collapse
Affiliation(s)
- James N Ingram
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Abstract
Human sensorimotor control has been predominantly studied using fixed tasks performed under laboratory conditions. This approach has greatly advanced our understanding of the mechanisms that integrate sensory information and generate motor commands during voluntary movement. However, experimental tasks necessarily restrict the range of behaviors that are studied. Moreover, the processes studied in the laboratory may not be the same processes that subjects call upon during their everyday lives. Naturalistic approaches thus provide an important adjunct to traditional laboratory-based studies. For example, wearable self-contained tracking systems can allow subjects to be monitored outside the laboratory, where they engage spontaneously in natural everyday behavior. Similarly, advances in virtual reality technology allow laboratory-based tasks to be made more naturalistic. Here, we review naturalistic approaches, including perspectives from psychology and visual neuroscience, as well as studies and technological advances in the field of sensorimotor control.
Collapse
Affiliation(s)
- James N Ingram
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
49
|
Hudson TE, Tassinari H, Landy MS. Compensation for changing motor uncertainty. PLoS Comput Biol 2010; 6:e1000982. [PMID: 21079679 PMCID: PMC2973820 DOI: 10.1371/journal.pcbi.1000982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/01/2010] [Indexed: 11/19/2022] Open
Abstract
When movement outcome differs consistently from the intended movement, errors are used to correct subsequent movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes. We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution. Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of unambiguous information regarding the anisotropic distribution of actual motor errors.
Collapse
Affiliation(s)
- Todd E Hudson
- Department of Psychology, New York University, New York, New York, United States of America.
| | | | | |
Collapse
|
50
|
Wolpert DM, Flanagan JR. Q&A: Robotics as a tool to understand the brain. BMC Biol 2010; 8:92. [PMID: 20659354 PMCID: PMC2909176 DOI: 10.1186/1741-7007-8-92] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/28/2010] [Indexed: 11/11/2022] Open
|