1
|
Baba H, Ohashi N. Visualization of primary afferent-evoked excitation of spinal dorsal horn neurons using an intracellular Ca 2+ imaging technique in adult rat spinal cord slices. J Anesth 2025; 39:231-247. [PMID: 39757318 DOI: 10.1007/s00540-024-03451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE Intracellular Ca2+ imaging is a valuable tool for studying neuronal activity; however, its application in the spinal cord of mature animals remains underdeveloped. This study aimed to establish an intracellular Ca2+ imaging method in adult rat spinal cord slices without complex genetic modifications and characterize primary afferent-evoked intracellular Ca2+ responses in spinal dorsal horn neurons. METHODS L5 lumbar spinal cord slices from adult rats were stained with a Ca2+ indicator. The relationship between intracellular Ca2+ signals and electrophysiological responses induced by dorsal root stimulation was examined. Additionally, the effects of analgesics, anesthetics, and hyperalgesics on the Ca2+ responses were analyzed. RESULTS Monophasic intracellular Ca2+ responses were observed with A-fiber intensity stimulation, while biphasic responses were noted with C-fiber intensity stimulation. These responses were not photobleached after repeated measurements (n = 12). The rising phase of Ca2+ responses coincided with action potential generation, whereas the falling phase did not. Dorsal root stimulation-induced Ca2+ responses were significantly suppressed by morphine (10 μM, 43.9 ± 4.9% of control, n = 8) but not by remimazolam (10 μM, 98.0 ± 2.0% of control, n = 8). Conversely, bicuculline (40 μM, 288.4 ± 48.4% of control, n = 10) and high concentrations of tranexamic acid (3, 10 mM, 132.6 ± 19.9%, 152.6 ± 25.3%, respectively, n = 8) significantly enhanced Ca2⁺ responses. CONCLUSION This is a simple and effective approach to examining the effects of drugs that target the spinal cord and investigating nociceptive transmission and modulation mechanisms in the spinal dorsal horn.
Collapse
Affiliation(s)
- Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
2
|
Milicevic KD, Ivanova VO, Brazil TN, Varillas CA, Zhu YMD, Andjus PR, Antic SD. The Impact of Optical Undersampling on the Ca 2+ Signal Resolution in Ca 2+ Imaging of Spontaneous Neuronal Activity. J Integr Neurosci 2025; 24:26242. [PMID: 39862012 DOI: 10.31083/jin26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND In neuroscience, Ca2+ imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds. METHODS Primary neuronal cultures were prepared from the cortex of newborn pups. Neurons were loaded with Oregon Green BAPTA-1 AM (OGB1-AM) fluorescent indicator. Spontaneous neuronal activity was recorded at low (14 Hz) and high (500 Hz) sampling rates, and the same neurons (n = 269) were analyzed under both conditions. We compared optical signal amplitude, duration, and frequency. RESULTS Although recurring Ca2+ transients appeared visually similar at 14 Hz and 500 Hz, quantitative analysis revealed significantly faster rise times and shorter durations (half-widths) at the higher sampling rate. Small-amplitude Ca2+ transients, undetectable at 14 Hz, became evident at 500 Hz, particularly in the neuropil (putative dendrites and axons), but not in nearby cell bodies. Large Ca2+ transients exhibited greater amplitudes and faster temporal dynamics in dendrites compared with somas, potentially due to the higher surface-to-volume ratio of dendrites. In neurons bulk-loaded with OGB1-AM, cell nucleus-mediated signal distortions were observed in every neuron examined (n = 57). Specifically, two regions of interest (ROIs) on different segments of the same cell body displayed significantly different signal amplitudes and durations due to dye accumulation in the nucleus. CONCLUSIONS Our findings reveal that Ca2+ signal undersampling leads to three types of information loss: (1) distortion of rise times and durations for large-amplitude transients, (2) failure to detect small-amplitude transients in cell bodies, and (3) omission of small-amplitude transients in the neuropil.
Collapse
Affiliation(s)
- Katarina D Milicevic
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
- Center for Laser Microscopy, Institute of Physiology and Biochemistry 'Jean Giaja' , Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Violetta O Ivanova
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Tina N Brazil
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Cesar A Varillas
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Yan M D Zhu
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Pavle R Andjus
- Center for Laser Microscopy, Institute of Physiology and Biochemistry 'Jean Giaja' , Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Srdjan D Antic
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Zhou Y, Wang G, Liang X, Xu Z. Hindbrain networks: Exploring the hidden anxiety circuits in rodents. Behav Brain Res 2025; 476:115281. [PMID: 39374875 DOI: 10.1016/j.bbr.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Anxiety disorders are multifaceted conditions that engage numerous brain regions and circuits. While the hindbrain is pivotal in fundamental biological functions, its role in modulating emotions has been underappreciated. This review will uncover critical targets and circuits within the hindbrain that are essential for both anxiety and anxiolytic effects, expanding on research obtained through behavioral tests. The bidirectional neural pathways between the hindbrain and other brain regions, with a spotlight on vagal afferent signaling, provide a crucial framework for unraveling the neural mechanisms underlying anxiety. Exploring neural circuits within the hindbrain can help to unravel the neurobiological mechanisms of anxiety and elucidate differences in the expression of these circuits between genders, thereby providing valuable insights for the development of future anxiolytic drugs.
Collapse
Affiliation(s)
- Yifu Zhou
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaosong Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhidi Xu
- Department of Anesthesia and Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
4
|
Watanabe K, Chiu H, Anderson DJ. Whole-brain in situ mapping of neuronal activation in Drosophila during social behaviors and optogenetic stimulation. eLife 2024; 12:RP92380. [PMID: 39607760 PMCID: PMC11604218 DOI: 10.7554/elife.92380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - Hui Chiu
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
| | - David J Anderson
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
5
|
Gosselin E, Bagur S, Bathellier B. Massive perturbation of sound representations by anesthesia in the auditory brainstem. SCIENCE ADVANCES 2024; 10:eado2291. [PMID: 39423272 PMCID: PMC11488538 DOI: 10.1126/sciadv.ado2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Anesthesia modifies sensory representations in the thalamo-cortical circuit but is considered to have a milder impact on peripheral sensory processing. Here, tracking the same neurons across wakefulness and isoflurane or ketamine medetomidine anesthesia, we show that the amplitude and sign of single neuron responses to sounds are massively modified by anesthesia in the cochlear nucleus of the brainstem, the first relay of the auditory system. The reorganization of activity is so profound that decoding of sound representation under anesthesia is not possible based on awake activity. However, population-level parameters, such as average tuning strength and population decoding accuracy, are weakly affected by anesthesia, explaining why its effect has previously gone unnoticed when comparing independently sampled neurons. Together, our results indicate that the functional organization of the auditory brainstem largely depends on the network state and is ill-defined under anesthesia. This demonstrates a remarkable sensitivity of an early sensory stage to anesthesia, which is bound to disrupt downstream processing.
Collapse
Affiliation(s)
- Etienne Gosselin
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Sophie Bagur
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| |
Collapse
|
6
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
7
|
Watanabe K, Chiu H, Anderson DJ. HI-FISH: WHOLE BRAIN IN SITU MAPPING OF NEURONAL ACTIVATION IN DROSOPHILA DURING SOCIAL BEHAVIORS AND OPTOGENETIC STIMULATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560045. [PMID: 37808781 PMCID: PMC10557720 DOI: 10.1101/2023.09.28.560045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background FISH amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH) we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA USA
- Present address: International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
- Present address: Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan
| | - Hui Chiu
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA USA
- Present address: Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - David J. Anderson
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA USA
- Howard Hughes Medical Institute
| |
Collapse
|
8
|
Onishi T, Hirose K, Sakaba T. Molecular tools to capture active neural circuits. Front Neural Circuits 2024; 18:1449459. [PMID: 39100199 PMCID: PMC11294111 DOI: 10.3389/fncir.2024.1449459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain in vivo. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.
Collapse
Affiliation(s)
- Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
9
|
Manley J, Lu S, Barber K, Demas J, Kim H, Meyer D, Traub FM, Vaziri A. Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron 2024; 112:1694-1709.e5. [PMID: 38452763 PMCID: PMC11098699 DOI: 10.1016/j.neuron.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/18/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The brain's remarkable properties arise from the collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, can such low-dimensional representations truly explain the vast range of brain activity, and if not, what is the appropriate resolution and scale of recording to capture them? Imaging neural activity at cellular resolution and near-simultaneously across the mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number in populations up to 1 million neurons. Although half of the neural variance is contained within sixteen dimensions correlated with behavior, our discovered scaling of dimensionality corresponds to an ever-increasing number of neuronal ensembles without immediate behavioral or sensory correlates. The activity patterns underlying these higher dimensions are fine grained and cortex wide, highlighting that large-scale, cellular-resolution recording is required to uncover the full substrates of neuronal computations.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sihao Lu
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Barber
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - David Meyer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Varma A, Udupa S, Sengupta M, Ghosh PK, Thirumalai V. A machine-learning tool to identify bistable states from calcium imaging data. J Physiol 2024; 602:1243-1271. [PMID: 38482722 DOI: 10.1113/jp284373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Mapping neuronal activation using calcium imaging in vivo during behavioural tasks has advanced our understanding of nervous system function. In almost all of these studies, calcium imaging is used to infer spike probabilities because action potentials activate voltage-gated calcium channels and increase intracellular calcium levels. However, neurons not only fire action potentials, but also convey information via intrinsic dynamics such as by generating bistable membrane potential states. Although a number of tools for spike inference have been developed and are currently being used, no tool exists for converting calcium imaging signals to maps of cellular state in bistable neurons. Purkinje neurons in the larval zebrafish cerebellum exhibit membrane potential bistability, firing either tonically or in bursts. Several studies have implicated the role of a population code in cerebellar function, with bistability adding an extra layer of complexity to this code. In the present study, we develop a tool, CaMLSort, which uses convolutional recurrent neural networks to classify calcium imaging traces as arising from either tonic or bursting cells. We validate this classifier using a number of different methods and find that it performs well on simulated event rasters as well as real biological data that it had not previously seen. Moreover, we find that CaMLsort generalizes to other bistable neurons, such as dopaminergic neurons in the ventral tegmental area of mice. Thus, this tool offers a new way of analysing calcium imaging data from bistable neurons to understand how they participate in network computation and natural behaviours. KEY POINTS: Calcium imaging, compriising the gold standard of inferring neuronal activity, does not report cellular state in neurons that are bistable, such as Purkinje neurons in the cerebellum of larval zebrafish. We model the relationship between Purkinje neuron electrical activity and its corresponding calcium signal to compile a dataset of state-labelled simulated calcium signals. We apply machine-learning methods to this dataset to develop a tool that can classify the state of a Purkinje neuron using only its calcium signal, which works well on real data even though it was trained only on simulated data. CaMLsort (Calcium imaging and Machine Learning based tool to sort intracellular state) also generalizes well to bistable neurons in a different brain region (ventral tegmental area) in a different model organism (mouse). This tool can facilitate our understanding of how these neurons carry out their functions in a circuit.
Collapse
Affiliation(s)
- Aalok Varma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sathvik Udupa
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Mohini Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Prasanta Kumar Ghosh
- Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
11
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
12
|
Manley J, Demas J, Kim H, Traub FM, Vaziri A. Simultaneous, cortex-wide and cellular-resolution neuronal population dynamics reveal an unbounded scaling of dimensionality with neuron number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575721. [PMID: 38293036 PMCID: PMC10827059 DOI: 10.1101/2024.01.15.575721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The brain's remarkable properties arise from collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, what would be the biological utility of such a redundant and metabolically costly encoding scheme and what is the appropriate resolution and scale of neural recording to understand brain function? Imaging the activity of one million neurons at cellular resolution and near-simultaneously across mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number. While half of the neural variance lies within sixteen behavior-related dimensions, we find this unbounded scaling of dimensionality to correspond to an ever-increasing number of internal variables without immediate behavioral correlates. The activity patterns underlying these higher dimensions are fine-grained and cortex-wide, highlighting that large-scale recording is required to uncover the full neural substrates of internal and potentially cognitive processes.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
13
|
Leikvoll A, Kara P. High fidelity sensory-evoked responses in neocortex after intravenous injection of genetically encoded calcium sensors. Front Neurosci 2023; 17:1181828. [PMID: 37250396 PMCID: PMC10213453 DOI: 10.3389/fnins.2023.1181828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Two-photon imaging of genetically-encoded calcium indicators (GECIs) has traditionally relied on intracranial injections of adeno-associated virus (AAV) or transgenic animals to achieve expression. Intracranial injections require an invasive surgery and result in a relatively small volume of tissue labeling. Transgenic animals, although they can have brain-wide GECI expression, often express GECIs in only a small subset of neurons, may have abnormal behavioral phenotypes, and are currently limited to older generations of GECIs. Inspired by recent developments in the synthesis of AAVs that readily cross the blood brain barrier, we tested whether an alternative strategy of intravenously injecting AAV-PHP.eB is suitable for two-photon calcium imaging of neurons over many months after injection. We injected C57BL/6 J mice with AAV-PHP.eB-Synapsin-jGCaMP7s via the retro-orbital sinus. After allowing 5 to 34 weeks for expression, we performed conventional and widefield two-photon imaging of layers 2/3, 4 and 5 of the primary visual cortex. We found reproducible trial-by-trial neural responses and tuning properties consistent with known feature selectivity in the visual cortex. Thus, intravenous injection of AAV-PHP.eB does not interfere with the normal processing in neural circuits. In vivo and histological images show no nuclear expression of jGCaMP7s for at least 34 weeks post-injection.
Collapse
Affiliation(s)
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Leikvoll A, Kara P. High fidelity sensory-evoked responses in neocortex after intravenous injection of genetically encoded calcium sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531938. [PMID: 36945523 PMCID: PMC10028972 DOI: 10.1101/2023.03.09.531938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Two-photon imaging of genetically-encoded calcium indicators (GECIs) has traditionally relied on intracranial injections of adeno-associated virus (AAV) or transgenic animals to achieve expression. Intracranial injections require an invasive surgery and result in a relatively small volume of tissue labeling. Transgenic animals, although they can have brain-wide GECI expression, often express GECIs in only a small subset of neurons, may have abnormal behavioral phenotypes, and are currently limited to older generations of GECIs. Inspired by recent developments in the synthesis of AAVs that readily cross the blood brain barrier, we tested whether an alternative strategy of intravenously injecting AAV-PhP.eB is suitable for two-photon calcium imaging of neurons over many months after injection. We injected young (postnatal day 23 to 31) C57BL/6J mice with AAV-PhP.eB-Synapsin-jGCaMP7s via the retro-orbital sinus. After allowing 5 to 34 weeks for expression, we performed conventional and widefield two-photon imaging of layers 2/3, 4 and 5 of the primary visual cortex. We found reproducible trial-by-trial neural responses and tuning properties consistent with known feature selectivity in the visual cortex. Thus, intravenous injection of AAV-PhP.eB does not interfere with the normal processing in neural circuits. In vivo and histological images show no nuclear expression of jGCaMP7s for at least 34 weeks post-injection.
Collapse
Affiliation(s)
- Austin Leikvoll
- Department of Neuroscience, University of Minnesota, Minneapolis MN
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis MN
| |
Collapse
|
15
|
Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. NATURE REVIEWS. METHODS PRIMERS 2022; 2:67. [PMID: 38124998 PMCID: PMC10732251 DOI: 10.1038/s43586-022-00147-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/23/2023]
Abstract
In vivo two-photon calcium imaging (2PCI) is a technique used for recording neuronal activity in the intact brain. It is based on the principle that, when neurons fire action potentials, intracellular calcium levels rise, which can be detected using fluorescent molecules that bind to calcium. This Primer is designed for scientists who are considering embarking on experiments with 2PCI. We provide the reader with a background on the basic concepts behind calcium imaging and on the reasons why 2PCI is an increasingly powerful and versatile technique in neuroscience. The Primer explains the different steps involved in experiments with 2PCI, provides examples of what ideal preparations should look like and explains how data are analysed. We also discuss some of the current limitations of the technique, and the types of solutions to circumvent them. Finally, we conclude by anticipating what the future of 2PCI might look like, emphasizing some of the analysis pipelines that are being developed and international efforts for data sharing.
Collapse
Affiliation(s)
- Christine Grienberger
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Trautmann EM, O'Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, Vesuna S, Cofer L, Bohner G, Allen W, Kauvar I, Quirin S, MacDougall M, Chen Y, Whitmire MP, Ramakrishnan C, Sahani M, Seidemann E, Ryu SI, Deisseroth K, Shenoy KV. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun 2021; 12:3689. [PMID: 34140486 PMCID: PMC8211867 DOI: 10.1038/s41467-021-23884-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.
Collapse
Affiliation(s)
- Eric M Trautmann
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucas Cofer
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Will Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Isaac Kauvar
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Matthew P Whitmire
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | | | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Karl Deisseroth
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
18
|
Malvaut S, Constantinescu VS, Dehez H, Doric S, Saghatelyan A. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals. Front Neurosci 2020; 14:819. [PMID: 32848576 PMCID: PMC7432153 DOI: 10.3389/fnins.2020.00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Animal behavior is regulated by environmental stimuli and is shaped by the activity of neural networks, underscoring the importance of assessing the morpho-functional properties of different populations of cells in freely behaving animals. In recent years, a number of optical tools have been developed to monitor and modulate neuronal and glial activity at the protein, cellular, or network level and have opened up new avenues for studying brain function in freely behaving animals. Tools such as genetically encoded sensors and actuators are now commonly used for studying brain activity and function through their expression in different neuronal ensembles. In parallel, microscopy has also made major progress over the last decades. The advent of miniature microscopes (mini-microscopes also called mini-endoscopes) has become a method of choice for studying brain activity at the cellular and network levels in different brain regions of freely behaving mice. This technique also allows for longitudinal investigations while animals carrying the microscope on their head are performing behavioral tasks. In this review, we will discuss mini-endoscopic imaging and the advantages that these devices offer to research. We will also discuss current limitations of and potential future improvements in mini-endoscopic imaging.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | | | - Sead Doric
- Doric Lenses Inc., Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| |
Collapse
|
19
|
Cantu DA, Wang B, Gongwer MW, He CX, Goel A, Suresh A, Kourdougli N, Arroyo ED, Zeiger W, Portera-Cailliau C. EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data. Front Neural Circuits 2020; 14:25. [PMID: 32499682 PMCID: PMC7244005 DOI: 10.3389/fncir.2020.00025] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Fluorescence calcium imaging using a range of microscopy approaches, such as two-photon excitation or head-mounted “miniscopes,” is one of the preferred methods to record neuronal activity and glial signals in various experimental settings, including acute brain slices, brain organoids, and behaving animals. Because changes in the fluorescence intensity of genetically encoded or chemical calcium indicators correlate with action potential firing in neurons, data analysis is based on inferring such spiking from changes in pixel intensity values across time within different regions of interest. However, the algorithms necessary to extract biologically relevant information from these fluorescent signals are complex and require significant expertise in programming to develop robust analysis pipelines. For decades, the only way to perform these analyses was for individual laboratories to write their custom code. These routines were typically not well annotated and lacked intuitive graphical user interfaces (GUIs), which made it difficult for scientists in other laboratories to adopt them. Although the panorama is changing with recent tools like CaImAn, Suite2P, and others, there is still a barrier for many laboratories to adopt these packages, especially for potential users without sophisticated programming skills. As two-photon microscopes are becoming increasingly affordable, the bottleneck is no longer the hardware, but the software used to analyze the calcium data optimally and consistently across different groups. We addressed this unmet need by incorporating recent software solutions, namely NoRMCorre and CaImAn, for motion correction, segmentation, signal extraction, and deconvolution of calcium imaging data into an open-source, easy to use, GUI-based, intuitive and automated data analysis software package, which we named EZcalcium.
Collapse
Affiliation(s)
- Daniel A Cantu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Neuroscience Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Bo Wang
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael W Gongwer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Cynthia X He
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anubhuti Goel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anand Suresh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Erica D Arroyo
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Neuroscience Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc 2020; 278:3-17. [PMID: 32072642 PMCID: PMC7187339 DOI: 10.1111/jmi.12880] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Since its invention 29 years ago, two‐photon laser‐scanning microscopy has evolved from a promising imaging technique, to an established widely available imaging modality used throughout the biomedical research community. The establishment of two‐photon microscopy as the preferred method for imaging fluorescently labelled cells and structures in living animals can be attributed to the biophysical mechanism by which the generation of fluorescence is accomplished. The use of powerful lasers capable of delivering infrared light pulses within femtosecond intervals, facilitates the nonlinear excitation of fluorescent molecules only at the focal plane and determines by objective lens position. This offers numerous benefits for studies of biological samples at high spatial and temporal resolutions with limited photo‐damage and superior tissue penetration. Indeed, these attributes have established two‐photon microscopy as the ideal method for live‐animal imaging in several areas of biology and have led to a whole new field of study dedicated to imaging biological phenomena in intact tissues and living organisms. However, despite its appealing features, two‐photon intravital microscopy is inherently limited by tissue motion from heartbeat, respiratory cycles, peristalsis, muscle/vascular tone and physiological functions that change tissue geometry. Because these movements impede temporal and spatial resolution, they must be properly addressed to harness the full potential of two‐photon intravital microscopy and enable accurate data analysis and interpretation. In addition, the sources and features of these motion artefacts are varied, sometimes unpredictable and unique to specific organs and multiple complex strategies have previously been devised to address them. This review will discuss these motion artefacts requirement and technical solutions for their correction and after intravital two‐photon microscopy.
Collapse
Affiliation(s)
- D Soulet
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - J Lamontagne-Proulx
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - B Aubé
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada
| | - D Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
21
|
Ali F, Kwan AC. Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review. NEUROPHOTONICS 2020; 7:011402. [PMID: 31372367 PMCID: PMC6664352 DOI: 10.1117/1.nph.7.1.011402] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Calcium imaging is emerging as a popular technique in neuroscience. A major reason is that intracellular calcium transients are reflections of electrical events in neurons. For example, calcium influx in the soma and axonal boutons accompanies spiking activity, whereas elevations in dendrites and dendritic spines are associated with synaptic inputs and local regenerative events. However, calcium transients have complex spatiotemporal dynamics, and since most optical methods visualize only one of the somatic, axonal, and dendritic compartments, a straightforward inference of the underlying electrical event is typically challenging. We highlight experiments that have directly calibrated in vivo calcium signals recorded using fluorescent indicators against electrophysiological events. We address commonly asked questions such as: Can calcium imaging be used to characterize neurons with high firing rates? Can the fluorescent signal report a decrease in spiking activity? What is the evidence that calcium transients in subcellular compartments correspond to distinct presynaptic axonal and postsynaptic dendritic events? By reviewing the empirical evidence and limitations, we suggest that, despite some caveats, calcium imaging is a versatile method to characterize a variety of neuronal events in vivo.
Collapse
Affiliation(s)
- Farhan Ali
- Yale University, Department of Psychiatry, School of Medicine, New Haven, Connecticut, United States
| | - Alex C. Kwan
- Yale University, Department of Psychiatry, School of Medicine, New Haven, Connecticut, United States
- Yale University, Department of Neuroscience, School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
22
|
Engel TA, Steinmetz NA. New perspectives on dimensionality and variability from large-scale cortical dynamics. Curr Opin Neurobiol 2019; 58:181-190. [PMID: 31585331 PMCID: PMC6859189 DOI: 10.1016/j.conb.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The neocortex is a multi-scale network, with intricate local circuitry interwoven into a global mesh of long-range connections. Neural activity propagates within this network on a wide range of temporal and spatial scales. At the micro scale, neurophysiological recordings reveal coordinated dynamics in local neural populations, which support behaviorally relevant computations. At the macro scale, neuroimaging modalities measure global activity fluctuations organized into spatiotemporal patterns across the entire brain. Here we review recent advances linking the local and global scales of cortical dynamics and their relationship to behavior. We argue that diverse experimental observations on the dimensionality and variability of neural activity can be reconciled by considering how activity propagates in space and time on multiple spatial scales.
Collapse
Affiliation(s)
- Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States.
| | - Nicholas A Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
23
|
Albers F, Wachsmuth L, van Alst TM, Faber C. Multimodal Functional Neuroimaging by Simultaneous BOLD fMRI and Fiber-Optic Calcium Recordings and Optogenetic Control. Mol Imaging Biol 2019; 20:171-182. [PMID: 29027094 DOI: 10.1007/s11307-017-1130-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent developments of optogenetic tools and fluorescence-based calcium recording techniques enable the manipulation and monitoring of neural circuits on a cellular level. Non-invasive imaging of brain networks, however, requires the application of methods such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), which is commonly used for functional neuroimaging. While BOLD fMRI provides brain-wide non-invasive reading of the hemodynamic response, it is only an indirect measure of neural activity. Direct observation of neural responses requires electrophysiological or optical methods. The latter can be combined with optogenetic control of neuronal circuits and are MRI compatible. Yet, simultaneous optical recordings are still limited to fiber-optic-based approaches. Here, we review the integration of optical recordings and optogenetic manipulation into fMRI experiments. As a practical example, we describe how BOLD fMRI in a 9.4-T small animal MR scanner can be combined with in vivo fiber-optic calcium recordings and optogenetic control in a multimodal setup. We present simultaneous BOLD fMRI and calcium recordings under optogenetic control in rat. We outline details about MR coil configuration, choice, and usage of opsins and chemically and genetically encoded calcium sensors, fiber implantation, appropriate light power for stimulation, and calcium signal detection, to provide a glimpse into challenges and opportunities of this multimodal molecular neuroimaging approach.
Collapse
Affiliation(s)
- Franziska Albers
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | | | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
24
|
Flores Á, Fullana MÀ, Soriano-Mas C, Andero R. Lost in translation: how to upgrade fear memory research. Mol Psychiatry 2018; 23:2122-2132. [PMID: 29298989 DOI: 10.1038/s41380-017-0006-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
We address some of the current limitations of translational research in fear memory and suggest alternatives that might help to overcome them. Appropriate fear responses are adaptive, but disruption of healthy fear memory circuits can lead to anxiety and fear-based disorders. Stress is one of the main environmental factors that can disrupt memory circuits and constitutes as a key factor in the etiopathology of these psychiatric conditions. Current therapies for anxiety and fear-based disorders have limited success rate, revealing a clear need for an improved understanding of their neurobiological basis. Although animal models are excellent for dissecting fear memory circuits and have driven tremendous advances in the field, translation of these findings into the clinic has been limited so far. Animal models of stress-induced pathological fear combined with powerful cutting-edge techniques would help to improve the translational value of preclinical studies. We also encourage combining animal and human research, including psychiatric patients in order to find new pharmacological targets with real therapeutic potential that will improve the extrapolation of the findings. Finally, we highlight novel neuroimaging approaches that improve our understanding of anxiety and fear-based disorders.
Collapse
Affiliation(s)
- África Flores
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miquel À Fullana
- FIDMAG Germanes Hospitalàries-CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- Department of Psychiatry, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Spain
- CIBERSAM-G17, Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Raül Andero
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain.
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
25
|
He CX, Arroyo ED, Cantu DA, Goel A, Portera-Cailliau C. A Versatile Method for Viral Transfection of Calcium Indicators in the Neonatal Mouse Brain. Front Neural Circuits 2018; 12:56. [PMID: 30083093 PMCID: PMC6064716 DOI: 10.3389/fncir.2018.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
The first three postnatal weeks in rodents are a time when sensory experience drives the maturation of brain circuits, an important process that is not yet well understood. Alterations in this critical period of experience-dependent circuit assembly and plasticity contribute to several neurodevelopmental disorders, such as autism, epilepsy, and schizophrenia. Therefore, techniques for recording network activity and tracing neuronal connectivity over this time period are necessary for delineating circuit refinement in typical development and how it deviates in disease. Calcium imaging with GCaMP6 and other genetically encoded indicators is rapidly becoming the preferred method for recording network activity at the single-synapse and single-cell level in vivo, especially in genetically identified neuronal populations. We describe a protocol for intracortical injection of recombinant adeno-associated viruses in P1 neonatal mice and demonstrate its use for longitudinal imaging of GCaMP6s in the same neurons over several weeks to characterize the developmental desynchronization of cortical network activity. Our approach is ideally suited for chronic in vivo two-photon calcium imaging of neuronal activity from synapses to entire networks during the early postnatal period.
Collapse
Affiliation(s)
- Cynthia X He
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States.,Neuroscience Interdepartmental Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Erica D Arroyo
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States.,Neuroscience Interdepartmental Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel A Cantu
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States.,Neuroscience Interdepartmental Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anubhuti Goel
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Rahmati V, Kirmse K, Holthoff K, Kiebel SJ. Ultra-fast accurate reconstruction of spiking activity from calcium imaging data. J Neurophysiol 2018; 119:1863-1878. [PMID: 29465325 DOI: 10.1152/jn.00934.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium imaging provides an indirect observation of the underlying neural dynamics and enables the functional analysis of neuronal populations. However, the recorded fluorescence traces are temporally smeared, thus making the reconstruction of exact spiking activity challenging. Most of the established methods to tackle this issue are limited in dealing with issues such as the variability in the kinetics of fluorescence transients, fast processing of long-term data, high firing rates, and measurement noise. We propose a novel, heuristic reconstruction method to overcome these limitations. By using both synthetic and experimental data, we demonstrate the four main features of this method: 1) it accurately reconstructs both isolated spikes and within-burst spikes, and the spike count per fluorescence transient, from a given noisy fluorescence trace; 2) it performs the reconstruction of a trace extracted from 1,000,000 frames in less than 2 s; 3) it adapts to transients with different rise and decay kinetics or amplitudes, both within and across single neurons; and 4) it has only one key parameter, which we will show can be set in a nearly automatic way to an approximately optimal value. Furthermore, we demonstrate the ability of the method to effectively correct for fast and rather complex, slowly varying drifts as frequently observed in in vivo data. NEW & NOTEWORTHY Reconstruction of spiking activities from calcium imaging data remains challenging. Most of the established reconstruction methods not only have limitations in adapting to systematic variations in the data and fast processing of large amounts of data, but their results also depend on the user's experience. To overcome these limitations, we present a novel, heuristic model-free-type method that enables an ultra-fast, accurate, near-automatic reconstruction from data recorded under a wide range of experimental conditions.
Collapse
Affiliation(s)
- Vahid Rahmati
- Department of Psychology, Technische Universität Dresden , Dresden , Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, University Hospital Jena , Jena , Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena , Jena , Germany
| | - Stefan J Kiebel
- Department of Psychology, Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
27
|
Zhang Y, Xiao Y, Zhou D, Cai D. Spike-Triggered Regression for Synaptic Connectivity Reconstruction in Neuronal Networks. Front Comput Neurosci 2017; 11:101. [PMID: 29209189 PMCID: PMC5701668 DOI: 10.3389/fncom.2017.00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 10/23/2017] [Indexed: 12/03/2022] Open
Abstract
How neurons are connected in the brain to perform computation is a key issue in neuroscience. Recently, the development of calcium imaging and multi-electrode array techniques have greatly enhanced our ability to measure the firing activities of neuronal populations at single cell level. Meanwhile, the intracellular recording technique is able to measure subthreshold voltage dynamics of a neuron. Our work addresses the issue of how to combine these measurements to reveal the underlying network structure. We propose the spike-triggered regression (STR) method, which employs both the voltage trace and firing activity of the neuronal population to reconstruct the underlying synaptic connectivity. Our numerical study of the conductance-based integrate-and-fire neuronal network shows that only short data of 20 ~ 100 s is required for an accurate recovery of network topology as well as the corresponding coupling strength. Our method can yield an accurate reconstruction of a large neuronal network even in the case of dense connectivity and nearly synchronous dynamics, which many other network reconstruction methods cannot successfully handle. In addition, we point out that, for sparse networks, the STR method can infer coupling strength between each pair of neurons with high accuracy in the absence of the global information of all other neurons.
Collapse
Affiliation(s)
- Yaoyu Zhang
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Courant Institute of Mathematical Sciences and Center for Neural Sciences, New York University, New York, NY, United States
| | - Yanyang Xiao
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Courant Institute of Mathematical Sciences and Center for Neural Sciences, New York University, New York, NY, United States
| | - Douglas Zhou
- School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - David Cai
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Courant Institute of Mathematical Sciences and Center for Neural Sciences, New York University, New York, NY, United States.,School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Hirahara M, Fujiwara N, Seo K. Novel trigeminal slice preparation method for studying mechanisms of nociception transmission. J Neurosci Methods 2017; 286:6-15. [PMID: 28522210 DOI: 10.1016/j.jneumeth.2017.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The trigeminal subnucleus caudalis (Vc) plays a critical role in transmission and modulation of nociceptive afferent inputs, and exhibits a similar layer construction to the spinal dorsal horn. However, afferent inputs enter the brainstem and project to a separately located nucleus. It has previously been difficult to record responses of the Vc to afferent fiber activation in a brainstem slice preparation. The aim of the present study was to establish a novel brainstem slice preparation method to study trigeminal nociceptive transmission mechanisms. NEW METHOD Thirty adult 6-7-week-old C57/BL6J male mice were included in the study. Obliquely sliced brainstem sections at a thickness of 600μm, which included the Vc and the root entry zone to the brainstem, were prepared. The Vc response to electrical stimulation of afferent fibers was observed as a change in intracellular calcium concentration by fluorescence intensity response. RESULTS Electrical stimulation of afferent inputs to the trigeminal nerve increased fluorescent intensity in the Vc, which was completely diminished by tetrodotoxin and significantly suppressed by the AMPA/kainate antagonist CNQX (paired t-test, P<0.001), although the non-competitive NMDA antagonist (+)-MK801 maleate resulted in no changes. These results suggested a glutamate receptor-mediated response. COMPARISON WITH EXISTING METHODS/CONCLUSION This brainstem slice preparation will be useful for investigating nociceptive transmission mechanisms of the trigeminal nerve.
Collapse
Affiliation(s)
- Mikiko Hirahara
- Division of Dental Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata City 951-8514, Japan
| | - Naoshi Fujiwara
- Division of Medical Technology, Niigata University Graduate School of Health Sciences, Japan
| | - Kenji Seo
- Division of Dental Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata City 951-8514, Japan.
| |
Collapse
|
29
|
Baird-Daniel E, Daniel AGS, Wenzel M, Li D, Liou JY, Laffont P, Zhao M, Yuste R, Ma H, Schwartz TH. Glial Calcium Waves are Triggered by Seizure Activity and Not Essential for Initiating Ictal Onset or Neurovascular Coupling. Cereb Cortex 2017; 27:3318-3330. [PMID: 28369176 PMCID: PMC6433182 DOI: 10.1093/cercor/bhx072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
It has been postulated that glia play a critical role in modifying neuronal activity, mediating neurovascular coupling, and in seizure initiation. We investigated the role of glia in ictogenesis and neurovascular coupling through wide-field multicell and 2-photon single cell imaging of calcium and intrinsic signal imaging of cerebral blood volume in an in vivo rat model of focal neocortical seizures. Ictal events triggered a slowly propagating glial calcium wave that was markedly delayed after both neuronal and hemodynamic onset. Glial calcium waves exhibited a stereotypical spread that terminated prior to seizure offset and propagated to an area ~60% greater than the propagation area of neural and vascular signals. Complete blockage of glial activity with fluoroacetate resulted in no change in either neuronal or hemodynamic activity. These ictal glial waves were blocked by carbenoxolone, a gap junction blocker. Our in vivo data reveal that ictal events trigger a slowly propagating, stereotypical glial calcium wave, mediated by gap junctions, that is spatially and temporally independent of neuronal and hemodynamic activities. We introduce a novel ictally triggered propagating glial calcium wave calling into question the criticality of glial calcium wave in both ictal onset and neurovascular coupling.
Collapse
Affiliation(s)
- Eliza Baird-Daniel
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Andy G. S. Daniel
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Michael Wenzel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dan Li
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
- Department of Radiology, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jyun-You Liou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Philippe Laffont
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Theodore H. Schwartz
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
30
|
Yashiro H, Nakahara I, Funabiki K, Riquimaroux H. Micro-endoscopic system for functional assessment of neural circuits in deep brain regions: Simultaneous optical and electrical recordings of auditory responses in mouse’s inferior colliculus. Neurosci Res 2017; 119:61-69. [DOI: 10.1016/j.neures.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
|
31
|
Carrillo-Reid L, Yang W, Kang Miller JE, Peterka DS, Yuste R. Imaging and Optically Manipulating Neuronal Ensembles. Annu Rev Biophys 2017; 46:271-293. [PMID: 28301770 DOI: 10.1146/annurev-biophys-070816-033647] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo. Moreover, two-photon optogenetics enable the possibility of artificially imprinting neuronal ensembles into awake, behaving animals and of later recalling those ensembles selectively by stimulating individual cells. These methods could enable deciphering the neural code and also be used to understand the pathophysiology of and design novel therapies for neurological and mental diseases.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Weijian Yang
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Jae-Eun Kang Miller
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027.,Department of Neuroscience, Columbia University, New York, NY 10027;
| |
Collapse
|
32
|
O'Shea DJ, Trautmann E, Chandrasekaran C, Stavisky S, Kao JC, Sahani M, Ryu S, Deisseroth K, Shenoy KV. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Exp Neurol 2017; 287:437-451. [PMID: 27511294 PMCID: PMC5154795 DOI: 10.1016/j.expneurol.2016.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/19/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Eric Trautmann
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | | | - Sergey Stavisky
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Jonathan C Kao
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Maneesh Sahani
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Stephen Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States; Deparment of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
33
|
Sørensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, Fropf R, LaVerriere E, Xue J, Young A, Schneider C, Gøtzsche CR, Hemberg M, Yin JC, Maier SF, Lin Y. A robust activity marking system for exploring active neuronal ensembles. eLife 2016; 5. [PMID: 27661450 PMCID: PMC5035142 DOI: 10.7554/elife.13918] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system's versatility.
Collapse
Affiliation(s)
- Andreas T Sørensen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yonatan A Cooper
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael V Baratta
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, United States
| | - Feng-Ju Weng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yuxiang Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Kartik Ramamoorthi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Robin Fropf
- Department of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, United States
| | - Emily LaVerriere
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Jian Xue
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrew Young
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Colleen Schneider
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Casper René Gøtzsche
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jerry Cp Yin
- Department of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
34
|
Quan T, Lv X, Liu X, Zeng S. Reconstruction of burst activity from calcium imaging of neuronal population via Lq minimization and interval screening. BIOMEDICAL OPTICS EXPRESS 2016; 7:2103-2117. [PMID: 27375930 PMCID: PMC4918568 DOI: 10.1364/boe.7.002103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Calcium imaging is becoming an increasingly popular technology to indirectly measure activity patterns in local neuronal networks. Based on the dependence of calcium fluorescence on neuronal spiking, two-photon calcium imaging affords single-cell resolution of neuronal population activity. However, it is still difficult to reconstruct neuronal activity from complex calcium fluorescence traces, particularly for traces contaminated by noise. Here, we describe a robust and efficient neuronal-activity reconstruction method that utilizes Lq minimization and interval screening (IS), which we refer to as LqIS. The simulation results show that LqIS performs satisfactorily in terms of both accuracy and speed of reconstruction. Reconstruction of simulation and experimental data also shows that LqIS has advantages in terms of the recall rate, precision rate, and timing error. Finally, LqIS is demonstrated to effectively reconstruct neuronal burst activity from calcium fluorescence traces recorded from large-size neuronal population.
Collapse
Affiliation(s)
- Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Mathematics and Economics, Hubei University of Education, Wuhan 430205, China
| | - Xiaohua Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
35
|
Kong L, Tang J, Cui M. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering. OPTICS EXPRESS 2016; 24:1214-1221. [PMID: 26832504 PMCID: PMC4741314 DOI: 10.1364/oe.24.001214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/25/2015] [Accepted: 12/25/2015] [Indexed: 05/29/2023]
Abstract
Biological systems undergo dynamical changes continuously which span multiple spatial and temporal scales. To study these complex biological dynamics in vivo, high-speed volumetric imaging that can work at large imaging depth is highly desired. However, deep tissue imaging suffers from wavefront distortion, resulting in reduced Strehl ratio and image quality. Here we combine the two wavefront engineering methods developed in our lab, namely the optical phase-locked ultrasound lens based volumetric imaging and the iterative multiphoton adaptive compensation technique, and demonstrate in vivo volumetric imaging of microglial and mitochondrial dynamics at large depth in mouse brain cortex and lymph node, respectively.
Collapse
Affiliation(s)
- Lingjie Kong
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jianyong Tang
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Integrated imaging cluster, Purdue University, West Lafayette, IN 47907, USA
- Bindley bioscience center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
36
|
Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016; 2016:7539065. [PMID: 26904302 PMCID: PMC4745936 DOI: 10.1155/2016/7539065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| |
Collapse
|
37
|
Abstract
Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time.
Collapse
|
38
|
Kong L, Tang J, Little JP, Yu Y, Lämmermann T, Lin CP, Germain RN, Cui M. Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat Methods 2015; 12:759-62. [PMID: 26167641 PMCID: PMC4551496 DOI: 10.1038/nmeth.3476] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/05/2015] [Indexed: 01/21/2023]
Abstract
In vivo imaging at high spatiotemporal resolution is key to the understanding of complex biological systems. We integrated an optical phase-locked ultrasound lens into a two-photon fluorescence microscope and achieved microsecond-scale axial scanning, thus enabling volumetric imaging at tens of hertz. We applied this system to multicolor volumetric imaging of processes sensitive to motion artifacts, including calcium dynamics in behaving mouse brain and transient morphology changes and trafficking of immune cells.
Collapse
Affiliation(s)
- Lingjie Kong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Jianyong Tang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin P Little
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Yang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Tim Lämmermann
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Lin
- 1] Center for System Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. [3] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Meng Cui
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| |
Collapse
|
39
|
Zaytsev YV, Morrison A, Deger M. Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity. J Comput Neurosci 2015; 39:77-103. [PMID: 26041729 PMCID: PMC4493949 DOI: 10.1007/s10827-015-0565-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 10/30/2022]
Abstract
Dynamics and function of neuronal networks are determined by their synaptic connectivity. Current experimental methods to analyze synaptic network structure on the cellular level, however, cover only small fractions of functional neuronal circuits, typically without a simultaneous record of neuronal spiking activity. Here we present a method for the reconstruction of large recurrent neuronal networks from thousands of parallel spike train recordings. We employ maximum likelihood estimation of a generalized linear model of the spiking activity in continuous time. For this model the point process likelihood is concave, such that a global optimum of the parameters can be obtained by gradient ascent. Previous methods, including those of the same class, did not allow recurrent networks of that order of magnitude to be reconstructed due to prohibitive computational cost and numerical instabilities. We describe a minimal model that is optimized for large networks and an efficient scheme for its parallelized numerical optimization on generic computing clusters. For a simulated balanced random network of 1000 neurons, synaptic connectivity is recovered with a misclassification error rate of less than 1 % under ideal conditions. We show that the error rate remains low in a series of example cases under progressively less ideal conditions. Finally, we successfully reconstruct the connectivity of a hidden synfire chain that is embedded in a random network, which requires clustering of the network connectivity to reveal the synfire groups. Our results demonstrate how synaptic connectivity could potentially be inferred from large-scale parallel spike train recordings.
Collapse
Affiliation(s)
- Yury V. Zaytsev
- Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Jülich Research Center, Jülich, Germany
- Faculty of Biology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
- Forschungszentrum Jülich GmbH, Jülich Supercomputing Center (JSC), 52425 Jülich, Germany
| | - Abigail Morrison
- Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Jülich Research Center, Jülich, Germany
- Institute for Advanced Simulation (IAS-6), Theoretical Neuroscience & Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Jülich Research Center and JARA, Jülich, Germany
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Moritz Deger
- School of Life Sciences, Brain Mind Institute and School of Computer and Communication Sciences, École polytechnique fédérale de Lausanne, 1015 Lausanne, EPFL Switzerland
| |
Collapse
|
40
|
Liu X, Lv X, Quan T, Zeng S. Error estimation for reconstruction of neuronal spike firing from fast calcium imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:421-432. [PMID: 25780733 PMCID: PMC4354587 DOI: 10.1364/boe.6.000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/22/2014] [Accepted: 12/28/2014] [Indexed: 06/04/2023]
Abstract
Calcium imaging is becoming an increasingly popular technology to indirectly measure activity patterns in local neuronal networks. Calcium transients reflect neuronal spike patterns allowing for spike train reconstructed from calcium traces. The key to judging spiking train authenticity is error estimation. However, due to the lack of an appropriate mathematical model to adequately describe this spike-calcium relationship, little attention has been paid to quantifying error ranges of the reconstructed spike results. By turning attention to the data characteristics close to the reconstruction rather than to a complex mathematic model, we have provided an error estimation method for the reconstructed neuronal spiking from calcium imaging. Real false-negative and false-positive rates of 10 experimental Ca(2+) traces were within the estimated error ranges and confirmed that this evaluation method was effective. Estimation performance of the reconstruction of spikes from calcium transients within a neuronal population demonstrated a reasonable evaluation of the reconstructed spikes without having real electrical signals. These results suggest that our method might be valuable for the quantification of research based on reconstructed neuronal activity, such as to affirm communication between different neurons.
Collapse
Affiliation(s)
- Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074,
China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074,
China
| | - Xiaohua Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074,
China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074,
China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074,
China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074,
China
- College of Mathematics and Economics, Hubei University of Education, Wuhan 430205,
China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074,
China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074,
China
| |
Collapse
|
41
|
Mostany R, Miquelajauregui A, Shtrahman M, Portera-Cailliau C. Two-photon excitation microscopy and its applications in neuroscience. Methods Mol Biol 2015; 1251:25-42. [PMID: 25391792 PMCID: PMC9809210 DOI: 10.1007/978-1-4939-2080-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two-photon excitation (2PE) overcomes many challenges in fluorescence microscopy. Compared to confocal microscopy, 2PE microscopy improves depth penetration, owing to the longer excitation wavelength required and to the ability to collect scattered emission photons as a useful signal. It also minimizes photodamage because lower energy photons are used and because fluorescence is confined to the geometrical focus of the laser spot. 2PE is therefore ideal for high-resolution, deep-tissue, time-lapse imaging of dynamic processes in cell biology. Here, we provide examples of important applications of 2PE for in vivo imaging of neuronal structure and signals; we also describe how it can be combined with optogenetics or photolysis of caged molecules to simultaneously probe and control neuronal activity.
Collapse
Affiliation(s)
- Ricardo Mostany
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
42
|
Kim Y, Venkataraju KU, Pradhan K, Mende C, Taranda J, Turaga SC, Arganda-Carreras I, Ng L, Hawrylycz MJ, Rockland KS, Seung HS, Osten P. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep 2014; 10:292-305. [PMID: 25558063 DOI: 10.1016/j.celrep.2014.12.014] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/21/2014] [Accepted: 12/05/2014] [Indexed: 12/22/2022] Open
Abstract
Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.
Collapse
Affiliation(s)
- Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Kith Pradhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Carolin Mende
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Srinivas C Turaga
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Ignacio Arganda-Carreras
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | | | - Kathleen S Rockland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Boston University School of Medicine, Boston, MA 02118, USA
| | - H Sebastian Seung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
43
|
Ma H, Harris S, Rahmani R, Lacefield CO, Zhao M, Daniel AGS, Zhou Z, Bruno RM, Berwick J, Schwartz TH. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. NEUROPHOTONICS 2014; 1:015003. [PMID: 25525611 PMCID: PMC4267117 DOI: 10.1117/1.nph.1.1.015003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.
Collapse
Affiliation(s)
- Hongtao Ma
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
- Address all correspondence to: Hongtao Ma,
| | - Samuel Harris
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
- University of Sheffield, Department of Psychology, Sheffield S10 2TN, United Kingdom
| | - Redi Rahmani
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Clay O. Lacefield
- Columbia University, Department of Neuroscience, New York, New York 10032
| | - Mingrui Zhao
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| | - Andy G. S. Daniel
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| | - Zhiping Zhou
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| | - Randy M. Bruno
- Columbia University, Department of Neuroscience, New York, New York 10032
| | - Jason Berwick
- University of Sheffield, Department of Psychology, Sheffield S10 2TN, United Kingdom
| | - Theodore H. Schwartz
- Weill Cornell Medical College, New York Presbyterian Hospital, Department of Neurological Surgery, Brain and Mind Research Institute, Brain and Spine Center, 525 East 68th Street, Box 99, New York, New York 10021
| |
Collapse
|
44
|
Grewe BF, Helmchen F. High-speed two-photon calcium imaging of neuronal population activity using acousto-optic deflectors. Cold Spring Harb Protoc 2014; 2014:618-29. [PMID: 24890212 DOI: 10.1101/pdb.prot081778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two-photon calcium imaging of neuronal populations allows optical measurements of spiking activity in living animals. However, laser-scanning microscopes with galvanometric scan mirrors are too slow to capture population activity on a millisecond timescale. This protocol describes a two-photon microscope that is based on two-dimensional laser scanning with acousto-optic deflectors (AODs), enabling high-speed in vivo recording of neuronal population activity at temporal resolutions of several hundred hertz. The detailed construction plan of the AOD-based microscope is accompanied by equally detailed optimization procedures. We also introduce a novel random-access pattern scanning (RAPS) technique for high-speed in vivo measurements of neuronal population activity. AOD-based RAPS can measure calcium transients in neocortical neuronal populations, revealing spike trains with near-millisecond precision. The current limitations of the AOD-based microscope are discussed, and we provide an outlook of its future applications.
Collapse
|
45
|
Bovetti S, Moretti C, Fellin T. Mapping brain circuit functionin vivousing two-photon fluorescence microscopy. Microsc Res Tech 2014; 77:492-501. [DOI: 10.1002/jemt.22342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Serena Bovetti
- Department of Neuroscience and Brain Technologies; Istituto Italiano di Tecnologia; 16163 Genova Italy
| | - Claudio Moretti
- Department of Neuroscience and Brain Technologies; Istituto Italiano di Tecnologia; 16163 Genova Italy
| | - Tommaso Fellin
- Department of Neuroscience and Brain Technologies; Istituto Italiano di Tecnologia; 16163 Genova Italy
| |
Collapse
|
46
|
Takerkart S, Katz P, Garcia F, Roux S, Reynaud A, Chavane F. Vobi One: a data processing software package for functional optical imaging. Front Neurosci 2014; 8:2. [PMID: 24478623 PMCID: PMC3901006 DOI: 10.3389/fnins.2014.00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
Optical imaging is the only technique that allows to record the activity of a neuronal population at the mesoscopic scale. A large region of the cortex (10-20 mm diameter) is directly imaged with a CCD camera while the animal performs a behavioral task, producing spatio-temporal data with an unprecedented combination of spatial and temporal resolutions (respectively, tens of micrometers and milliseconds). However, researchers who have developed and used this technique have relied on heterogeneous software and methods to analyze their data. In this paper, we introduce Vobi One, a software package entirely dedicated to the processing of functional optical imaging data. It has been designed to facilitate the processing of data and the comparison of different analysis methods. Moreover, it should help bring good analysis practices to the community because it relies on a database and a standard format for data handling and it provides tools that allow producing reproducible research. Vobi One is an extension of the BrainVISA software platform, entirely written with the Python programming language, open source and freely available for download at https://trac.int.univ-amu.fr/vobi_one.
Collapse
Affiliation(s)
- Sylvain Takerkart
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Philippe Katz
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France ; LabISEN, Vision Department, Institut Supérieur de lElectronique et du Numérique Brest, France
| | - Flavien Garcia
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Sébastien Roux
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophtalmology, McGill University Montréal, QC, Canada
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| |
Collapse
|
47
|
Tada M, Takeuchi A, Hashizume M, Kitamura K, Kano M. A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo. Eur J Neurosci 2014; 39:1720-8. [PMID: 24405482 PMCID: PMC4232931 DOI: 10.1111/ejn.12476] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 11/30/2022]
Abstract
Calcium imaging of individual neurons is widely used for monitoring their activity in vitro and in vivo. Synthetic fluorescent calcium indicator dyes are commonly used, but the resulting calcium signals sometimes suffer from a low signal-to-noise ratio (SNR). Therefore, it is difficult to detect signals caused by single action potentials (APs) particularly from neurons in vivo. Here we showed that a recently developed calcium indicator dye, Cal-520, is sufficiently sensitive to reliably detect single APs both in vitro and in vivo. In neocortical neurons, calcium signals were linearly correlated with the number of APs, and the SNR was > 6 for in vitro slice preparations and > 1.6 for in vivo anesthetised mice. In cerebellar Purkinje cells, dendritic calcium transients evoked by climbing fiber inputs were clearly observed in anesthetised mice with a high SNR and fast decay time. These characteristics of Cal-520 are a great advantage over those of Oregon Green BAPTA-1, the most commonly used calcium indicator dye, for monitoring the activity of individual neurons both in vitro and in vivo.
Collapse
Affiliation(s)
- Mayumi Tada
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | |
Collapse
|
48
|
Simultaneous Multi-Wavelength Optical Imaging of Neuronal and Hemodynamic Activity. NEUROVASCULAR COUPLING METHODS 2014. [DOI: 10.1007/978-1-4939-0724-3_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Lütcke H, Gerhard F, Zenke F, Gerstner W, Helmchen F. Inference of neuronal network spike dynamics and topology from calcium imaging data. Front Neural Circuits 2013; 7:201. [PMID: 24399936 PMCID: PMC3871709 DOI: 10.3389/fncir.2013.00201] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/04/2013] [Indexed: 01/25/2023] Open
Abstract
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence ("spike trains") from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties.
Collapse
Affiliation(s)
- Henry Lütcke
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich Zurich, Switzerland
| | - Felipe Gerhard
- School of Computer and Communication Sciences and School of Life Sciences, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Friedemann Zenke
- School of Computer and Communication Sciences and School of Life Sciences, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| |
Collapse
|
50
|
Helmchen F, Denk W, Kerr JND. Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc 2013; 2013:904-13. [PMID: 24086055 DOI: 10.1101/pdb.top078147] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article describes the development and application of miniaturized two-photon-excited fluorescence microscopes ("two-photon fiberscopes"). Two-photon fiberscopes have been developed with the aim of enabling high-resolution imaging of neural activity in freely behaving animals. They use fiber optics to deliver laser light for two-photon excitation. Their small front piece typically contains a miniature scanning mechanism and imaging optics. Two-photon fiberscopes can be made sufficiently small and lightweight to be carried by rats and mice and to allow virtually unrestricted movement within a behavioral arena. Typically mounted to the animal's skull above a cranial window, two-photon fiberscopes permit imaging of cells down to at least 250 µm below the brain surface (e.g., in rat neocortex). In freely exploring animals, action-potential-evoked calcium transients can be imaged in individual somata of visual cortex neurons bulk-labeled with a calcium indicator. Two-photon fiberscopes thus enable high-resolution optical recording of neural activity with cellular resolution during natural behaviors.
Collapse
|