1
|
Gupta S, Rishi V, Elipilla P, Aggarwal A. Upregulation of HDAC3 mediates behavioral impairment in the bile duct ligation model of hepatic encephalopathy. Int J Biol Macromol 2025; 307:141596. [PMID: 40054811 DOI: 10.1016/j.ijbiomac.2025.141596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 05/07/2025]
Abstract
Hepatic encephalopathy (HE), an outcome of chronic liver disease is characterized by behavioral impairments. The present study investigated the role of HDAC-mediated transcriptional regulation causing behavioral impairments in the bile duct ligation (BDL) model of HE. Post-BDL surgery in rats, dynamic alterations in liver function tests, liver morphology were observed. In BDL rats, histological staining in brain demonstrated reduced neuronal viability and warped neuronal architecture. Additionally, BDL animals showed impaired spatial learning, memory, and increased anxiety in the open field, Barnes maze, and Y maze tests. Further, the Golgi cox staining revealed a significantly altered spine density and spine clustering patterns of granular neuron in dentate gyrus of BDL rats. Concordantly, a significant downregulation of memory encoding genes was also observed in BDL rats that may account for aberrant behavior. Molecular analysis of modifiers, such as HDAC, showed significant changes in the expression of HDAC3 and HDAC6 in both the cortex and hippocampus of BDL rats. Upregulation of HDAC3 promoted its localization on the promoter of genes like c-Fos, NPAS4, Arc, and others, likely causing their decreased expression. Our findings suggest that increased HDAC3 activity downregulates key synaptic plasticity and memory-related genes, potentially driving neurobehavioral changes in BDL rats.
Collapse
Affiliation(s)
- Shiwangi Gupta
- National Agri-Food and Biomanufacturing Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India; Department of Biotechnology, Sector-25, BMS block I, Panjab University, Chandigarh, India
| | - Vikas Rishi
- National Agri-Food and Biomanufacturing Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India
| | - Pavani Elipilla
- National Agri-Food and Biomanufacturing Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India
| | - Aanchal Aggarwal
- National Agri-Food and Biomanufacturing Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India.
| |
Collapse
|
2
|
Zhang Y, Zhang J, Liu J, Liang L, Zhou N, Liang S, Huang J, Hong M, Wang R, Xu S, Gu C, Tan B, Cao H. Imbalance of bladder neurohomeostasis by Myosin 5a aggravates diabetic cystopathy. Mol Med 2025; 31:91. [PMID: 40065210 PMCID: PMC11892272 DOI: 10.1186/s10020-025-01140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Diabetic cystopathy (DCP) is linked to bladder nerve conduction disorders, with diabetes-induced neuropathy impairing nerve signal transmission and causing bladder dysfunction. Myosin 5a, vital for neuronal transport, has been linked to neurological disorders, though its role in DCP remains unclear. The objective of this study was to investigate whether Myosin 5a plays a potential regulatory role in Diabetic Cystopathy. METHODS Bladder strips from diabetic rats were use to assess heightened responsiveness to external stimuli. Urodynamic assessments were conducted to track the progression of bladder voiding dysfunction over time, following streptozotocin (STZ) injection. Single-cell RNA-Seq mining was employed to identify associations between Myosin 5a and bladder overactivity. Cellular and tissue analyses were performed to determine the co-localization of Myosin 5a with neurotransmitter-related proteins. The impact of Myosin 5a knockdown on ChAT and SP expression in bladder neurons was also evaluated. Additionally, Myosin 5a-deficient DBA mice were studied for voiding function and sensitivity to stimuli. Student's t-test (two-tailed) or Mann-Whitney's U test analysis of variance was used to analyze the difference between groups. RESULTS Bladder strips from diabetic rats exhibit increased responsiveness to external stimuli, with urodynamic assessments showing a progressive decline in bladder function, culminating in overactivity by the fourth week post-STZ injection. Co-localization of Myosin 5a with neurotransmitter-related proteins was observed, and the knockdown of Myosin 5a in bladder neurons led to a significant reduction in ChAT and SP expression. Myosin 5a-deficient DBA mice exhibited abnormal voiding function and reduced sensitivity to stimuli, along with significant downregulation of SLC17A9. Single-cell RNA-Seq analysis revealed a significant link between Myosin 5a and bladder overactivity, with Myosin 5a expression escalating in tandem with the severity of bladder dysfunction. CONCLUSIONS Myosin 5a's dysregulation in diabetic rats may worsen bladder overactivity, suggesting its potential as a therapeutic target for diabetic OAB.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jiao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jiaye Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Lang Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Na Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Ming Hong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Chiming Gu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou, 510006, Guangdong, China
| | - Bo Tan
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
3
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
4
|
Liu X, Chen Y, Hang C, Cheng J, Peng D, Li Y, Jiang X. Coupling Nanoscale Precision with Multiscale Imaging: A Multifunctional Near-Infrared Dye for the Brain. ACS NANO 2024; 18:22233-22244. [PMID: 39102625 DOI: 10.1021/acsnano.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Live imaging of primary neural cells is crucial for monitoring neuronal activity, especially multiscale and multifunctional imaging that offers excellent biocompatibility. Multiscale imaging can provide insights into cellular structure and function from the nanoscale to the millimeter scale. Multifunctional imaging can monitor different activities in the brain. However, this remains a challenge because of the lack of dyes with a high signal-to-background ratio, water solubility, and multiscale and multifunctional imaging capabilities. In this study, we present a neural dye with near-infrared (NIR) emissions (>700 nm) that enables ultrafast staining (in less than 1 min) for the imaging of primary neurons. This dye not only enables multiscale neural live-cell imaging from vesicles in neurites, neural membranes, and single neurons to the whole brain but also facilitates multifunctional imaging, such as the monitoring and quantifying of synaptic vesicles and the changes in membrane potential. We also explore the potential of this NIR neural dye for staining brain slices and live brains. The NIR neural dye exhibits superior binding with neural membranes compared to commercial dyes, thereby achieving multiscale and multifunctional brain neuroimaging. In conclusion, our findings introduce a significant breakthrough in neuroimaging dyes by developing a category of small molecular dyes.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Chen Hang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Jinxiong Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Dinglu Peng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Tong L, Chen G, Liu T, Wang L, Zhang H, Chen F, Zhang S, Du D. IFN-γ deficiency in the rostral ventrolateral medulla contributes to stress-induced hypertension by impairing microglial synaptic engulfment. J Hypertens 2023; 41:1323-1332. [PMID: 37260264 DOI: 10.1097/hjh.0000000000003470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Dysfunctional neurons and microglia in the rostral ventrolateral medulla (RVLM) have been implicated in the pathogenesis of stress-induced hypertension (SIH). Functional perturbation of microglial synaptic engulfment can induce aberrant brain circuit activity. IFN-γ is a pleiotropic cytokine that plays a role in regulating neuronal activity. However, existing research on the exploration of the effects of microglia on synapses in the RVLM is lacking, particularly on the function of IFN-γ in microglial synaptic engulfment involved in SIH. METHODS A SIH rat model was established by electric foot shocks combined with noise stimulation. The underlying mechanism of IFN-γ on synaptic density and microglial synaptic engulfment was investigated through in-vivo and in-vitro experiments involving gain of function, immunofluorescence, quantitative real-time PCR, western blot, and morphometric analysis. Furthermore, the function of IFN-γ in neuronal activity, renal sympathetic nerve activity (RSNA), and blood pressure (BP) regulation was determined through in-vivo and in-vitro experiments involving Ca 2+ imaging, immunofluorescence, platinum-iridium electrode recording, ELISA, the femoral artery cannulation test, and the tail-cuff method. RESULTS The BP, heart rate, RSNA, plasma norepinephrine, and the number of c-Fos-positive neurons in SIH rats increased compared with those in control rats. Pre and postsynaptic densities in the RVLM also increased in SIH rats. IFN-γ and CCL2 expression levels were significantly reduced in the RVLM of the SIH group, whose microglia also exhibited an impaired capacity for synapse engulfment. IFN-γ elevation increased CCL2 expression and microglial synaptic engulfment and decreased synaptic density in vivo and in vitro . However, CCL2 inhibition reversed these effects. Moreover, the reduction of neuronal excitability, RSNA, plasma norepinephrine, and BP by IFN-γ was abrogated through CCL2 expression. CONCLUSION IFN-γ deficiency in the RVLM impaired the microglial engulfment of synapses by inhibiting CCL2 expression and increasing synaptic density and neuronal excitability, thereby contributing to SIH progression. Targeting IFN-γ may be considered a potential strategy to combat SIH.
Collapse
Affiliation(s)
- Lei Tong
- College of Life Sciences, Shanghai University, Shanghai
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai
| | - Tianfeng Liu
- College of Life Sciences, Shanghai University, Shanghai
| | - Linping Wang
- College of Life Sciences, Shanghai University, Shanghai
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze
| | - Fuxue Chen
- College of Life Sciences, Shanghai University, Shanghai
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou
| | - Dongshu Du
- College of Life Sciences, Shanghai University, Shanghai
- College of Agriculture and Bioengineering, Heze University, Heze
- Shaoxing Institute of Shanghai University, Shaoxing, China
| |
Collapse
|
6
|
Gredell M, Lu J, Zuo Y. The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity. Front Synaptic Neurosci 2023; 15:1135479. [PMID: 37035256 PMCID: PMC10076639 DOI: 10.3389/fnsyn.2023.1135479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The FMR1 gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the Fmr1 knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing in vitro and in vivo data show that wild type neurons embedded in a network of Fmr1 KO neurons or glia exhibit spine abnormalities just as neurons in Fmr1 global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these Fmr1 KO neurons by in vivo two-photon microscopy. We found that, while L5 PyrNs in adult Fmr1 global KO mice have abnormally high density of thin spines, single-cell Fmr1 KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in Fmr1 global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.
Collapse
Affiliation(s)
| | | | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
7
|
O’Brien BS, Mokry RL, Schumacher ML, Pulakanti K, Rao S, Terhune SS, Ebert AD. Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. iScience 2022; 25:104098. [PMID: 35391828 PMCID: PMC8980761 DOI: 10.1016/j.isci.2022.104098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that can cause severe birth defects including vision and hearing loss, microcephaly, and seizures. Currently, no approved treatment options exist for in utero infections. Here, we aimed to determine the impact of HCMV infection on the transcriptome of developing neurons in an organoid model system. Cell populations isolated from organoids based on a marker for infection and transcriptomes were defined. We uncovered downregulation in key cortical, neurodevelopmental, and functional gene pathways which occurred regardless of the degree of infection. To test the contributions of specific HCMV immediate early proteins known to disrupt neural differentiation, we infected NPCs using a recombinant virus harboring a destabilization domain. Despite suppressing their expression, HCMV-mediated transcriptional downregulation still occurred. Together, our studies have revealed that HCMV infection causes a profound downregulation of neurodevelopmental genes and suggest a role for other viral factors in this process.
Collapse
Affiliation(s)
- Benjamin S. O’Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Hoffe B, Holahan MR. Hyperacute Excitotoxic Mechanisms and Synaptic Dysfunction Involved in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:831825. [PMID: 35283730 PMCID: PMC8907921 DOI: 10.3389/fnmol.2022.831825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The biological response of brain tissue to biomechanical strain are of fundamental importance in understanding sequela of a brain injury. The time after impact can be broken into four main phases: hyperacute, acute, subacute and chronic. It is crucial to understand the hyperacute neural outcomes from the biomechanical responses that produce traumatic brain injury (TBI) as these often result in the brain becoming sensitized and vulnerable to subsequent TBIs. While the precise physical mechanisms responsible for TBI are still a matter of debate, strain-induced shearing and stretching of neural elements are considered a primary factor in pathology; however, the injury-strain thresholds as well as the earliest onset of identifiable pathologies remain unclear. Dendritic spines are sites along the dendrite where the communication between neurons occurs. These spines are dynamic in their morphology, constantly changing between stubby, thin, filopodia and mushroom depending on the environment and signaling that takes place. Dendritic spines have been shown to react to the excitotoxic conditions that take place after an impact has occurred, with a shift to the excitatory, mushroom phenotype. Glutamate released into the synaptic cleft binds to NMDA and AMPA receptors leading to increased Ca2+ entry resulting in an excitotoxic cascade. If not properly cleared, elevated levels of glutamate within the synaptic cleft will have detrimental consequences on cellular signaling and survival of the pre- and post-synaptic elements. This review will focus on the synaptic changes during the hyperacute phase that occur after a TBI. With repetitive head trauma being linked to devastating medium – and long-term maladaptive neurobehavioral outcomes, including chronic traumatic encephalopathy (CTE), understanding the hyperacute cellular mechanisms can help understand the course of the pathology and the development of effective therapeutics.
Collapse
|
9
|
Liu GP, Lei P, Dong ZF, Li SP. Editorial: The Molecular Mechanisms of Synaptic Plasticity Impairments in Alzheimer’s Disease. Front Cell Dev Biol 2022; 10:832728. [PMID: 35127687 PMCID: PMC8814519 DOI: 10.3389/fcell.2022.832728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gong-Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, The Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- *Correspondence: Gong-Ping Liu,
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Fang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shu-Peng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
10
|
Oliver D, Ramachandran S, Philbrook A, Lambert CM, Nguyen KCQ, Hall DH, Francis MM. Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genet 2022; 18:e1010016. [PMID: 35089924 PMCID: PMC8827443 DOI: 10.1371/journal.pgen.1010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
11
|
Song LJ, Zhang H, Qu XP, Jin JG, Wang C, Jiang X, Gao L, Li G, Wang DL, Shen LL, Liu B. Increased expression of Rho-associated protein kinase 2 confers astroglial Stat3 pathway activation during epileptogenesis. Neurosci Res 2021; 177:25-37. [PMID: 34740726 DOI: 10.1016/j.neures.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Patients with TLE are prone to tolerance to antiepileptic drugs. Based on the perspective of molecular targets for drug resistance, it is necessary to explore effective drug resistant genes and signaling pathways for the treatment of TLE. We performed gene expression profiles in hippocampus of patients with drug-resistant TLE and identified ROCK2 as one of the 20 most significantly increased genes in hippocampus. In vitro and in vivo experiments were performed to identify the potential role of ROCK2 in epileptogenesis. In addition, the activity of Stat3 pathway was tested in rat hippocampal tissues and primary cultured astrocytes. The expression levels of ROCK2 in the hippocampus of TLE patients were significantly increased compared with the control group, which was due to the hypomethylation of ROCK2 promoter. Fasudil, a specific Rho-kinase inhibitor, alleviated epileptic seizures in the pilocarpine rat model of TLE. Furthermore, ROCK2 activated the Stat3 pathway in pilocarpine-treated epilepsy rats, and the spearman correlation method confirmed that ROCK2 is associated with Stat3 activation in TLE patients. In addition, ROCK2 was predominantly expressed in astrocytes during epileptogenesis, and induced epileptogenesis by activating astrocyte cell cycle progression via Stat3 pathway. The overexpressed ROCK2 plays an important role in the pathogenesis of drug-resistant epilepsy. ROCK2 accelerates astrocytes cell cycle progression via the activation of Stat3 pathway likely provides the key to explaining the process of epileptogenesis.
Collapse
Affiliation(s)
- Li-Jia Song
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Peng Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun-Gong Jin
- Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue Jiang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Li Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang-Liang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Puig-Lagunes ÁA, Rocha L, Morgado-Valle C, BeltrÁn-Parrazal L, LÓpez-Meraz ML. Brain and plasma amino acid concentration in infant rats prenatally exposed to valproic acid. AN ACAD BRAS CIENC 2021; 93:e20190861. [PMID: 33729379 DOI: 10.1590/0001-3765202120190861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/19/2019] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder is associated with alterations in GABAergic and glutamatergic neurotransmission. Here, we aimed to determine the concentration of GABA, glutamate, glutamine, aspartate, taurine, and glycine in brain tissue and plasma of rats prenatally exposed to valproic acid (VPA), a well-characterized experimental model of autism. Pregnant rats were injected with VPA (600mg/Kg) during the twelfth-embryonic-day. Control rats were injected with saline. On the fourteen-postnatal-day, rats from both groups (males and females) were anesthetized, euthanized by decapitation and their brain dissected out. The frontal cortex, hippocampus, amygdala, brain stem and cerebellum were dissected and homogenized. Homogenates were centrifuged and supernatants were used to quantify amino acid concentrations by HPLC coupled with fluorometric detection. Blood samples were obtained by a cardiac puncture; plasma was separated and deproteinized to quantify amino acid concentration by HPLC. We found that, in VPA rats, glutamate and glutamine concentrations were increased in hippocampus and glycine concentration was increased in cortex. We did not find changes in other regions or in plasma amino acid concentration in the VPA group with respect to control group. Our results suggest that VPA exposure in utero may impair inhibitory and excitatory amino acid transmission in the infant brain.
Collapse
Affiliation(s)
- Ángel Alberto Puig-Lagunes
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios, 235, 14330 Col. Granjas Coapa, Ciudad de México, México
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Luis BeltrÁn-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - MarÍa-Leonor LÓpez-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos, s/n, Col. Unidad del Bosque, 91010 Xalapa, Veracruz, México
| |
Collapse
|
13
|
Simonetti M, Paldy E, Njoo C, Bali KK, Worzfeld T, Pitzer C, Kuner T, Offermanns S, Mauceri D, Kuner R. The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology. Mol Psychiatry 2021; 26:1376-1398. [PMID: 31444474 PMCID: PMC7985029 DOI: 10.1038/s41380-019-0491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.
Collapse
Affiliation(s)
- Manuela Simonetti
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Eszter Paldy
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian Njoo
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Kiran Kumar Bali
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Thomas Worzfeld
- grid.10253.350000 0004 1936 9756Institute of Pharmacology, Marburg University, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany ,grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Claudia Pitzer
- grid.7700.00000 0001 2190 4373Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Thomas Kuner
- grid.7700.00000 0001 2190 4373Anatomy and Cell Biology Institute, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Stefan Offermanns
- grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Daniela Mauceri
- grid.7700.00000 0001 2190 4373Department of Neurobiology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
15
|
Reza-Zaldivar EE, Hernández-Sápiens MA, Minjarez B, Gómez-Pinedo U, Sánchez-González VJ, Márquez-Aguirre AL, Canales-Aguirre AA. Dendritic Spine and Synaptic Plasticity in Alzheimer's Disease: A Focus on MicroRNA. Front Cell Dev Biol 2020; 8:255. [PMID: 32432108 PMCID: PMC7214692 DOI: 10.3389/fcell.2020.00255] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
Dendrites and dendritic spines are dynamic structures with pivotal roles in brain connectivity and have been recognized as the locus of long-term synaptic plasticity related to cognitive processes such as learning and memory. In neurodegenerative diseases, the spine dynamic morphology alteration, such as shape and spine density, affects functional characteristics leading to synaptic dysfunction and cognitive impairment. Recent evidence implicates dendritic spine dysfunction as a critical feature in the pathogenesis of dementia, particularly Alzheimer’s disease. The alteration of spine morphology and their loss is correlated with the cognitive decline in Alzheimer’s disease patients even in the absence of neuronal loss, however, the underlying mechanisms are poorly understood. Currently, the microRNAs have emerged as essential regulators of synaptic plasticity. The changes in neuronal microRNA expression that contribute to the modification of synaptic function through the modulation of dendritic spine morphology or by regulating the local protein translation to synaptic transmission are determinant for synapse formation and synaptic plasticity. Focusing on microRNA and its targets may provide insight into new therapeutic opportunities. In this review we summarize the experimental evidence of the role that the microRNA plays in dendritic spine remodeling and synaptic plasticity and its potential therapeutic approach in Alzheimer’s disease. Targeting synaptic deficits through the structural alteration of dendritic spines could form part of therapeutic strategies to improve synaptic plasticity and to ameliorate cognitive impairments in Alzheimer’s disease and other neurological diseases.
Collapse
Affiliation(s)
| | | | - Benito Minjarez
- University Center of Biological and Agricultural Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ulises Gómez-Pinedo
- Institute of Neurosciences, IdISSC, San Carlos Clinical Hospital, Madrid, Spain
| | | | - Ana Laura Márquez-Aguirre
- Medical and Pharmaceutical Biotechnology Unit, CIATEJ, Guadalajara, Mexico.,Preclinical Evaluation Unit, CIATEJ, Guadalajara, Mexico
| | - Alejandro Arturo Canales-Aguirre
- Medical and Pharmaceutical Biotechnology Unit, CIATEJ, Guadalajara, Mexico.,Preclinical Evaluation Unit, CIATEJ, Guadalajara, Mexico
| |
Collapse
|
16
|
Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nervous system, calcium signals play a major role in the conversion of synaptic stimuli into transcriptional responses. Signal-regulated gene transcription is fundamental for a range of long-lasting adaptive brain functions that include learning and memory, structural plasticity of neurites and synapses, acquired neuroprotection, chronic pain, and addiction. In this review, we summarize the diverse mechanisms governing calcium-dependent transcriptional regulation associated with central nervous system plasticity. We focus on recent advances in the field of synapse-to-nucleus communication that include studies of the signal-regulated transcriptome in human neurons, identification of novel regulatory mechanisms such as activity-induced DNA double-strand breaks, and the identification of novel forms of activity- and transcription-dependent adaptations, in particular, metabolic plasticity. We summarize the reciprocal interactions between different kinds of neuroadaptations and highlight the emerging role of activity-regulated epigenetic modifiers in gating the inducibility of signal-regulated genes.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Wolpaw JR, Millán JDR, Ramsey NF. Brain-computer interfaces: Definitions and principles. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:15-23. [PMID: 32164849 DOI: 10.1016/b978-0-444-63934-9.00002-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Throughout life, the central nervous system (CNS) interacts with the world and with the body by activating muscles and excreting hormones. In contrast, brain-computer interfaces (BCIs) quantify CNS activity and translate it into new artificial outputs that replace, restore, enhance, supplement, or improve the natural CNS outputs. BCIs thereby modify the interactions between the CNS and the environment. Unlike the natural CNS outputs that come from spinal and brainstem motoneurons, BCI outputs come from brain signals that represent activity in other CNS areas, such as the sensorimotor cortex. If BCIs are to be useful for important communication and control tasks in real life, the CNS must control these brain signals nearly as reliably and accurately as it controls spinal motoneurons. To do this, they might, for example, need to incorporate software that mimics the function of the subcortical and spinal mechanisms that participate in normal movement control. The realization of high reliability and accuracy is perhaps the most difficult and critical challenge now facing BCI research and development. The ongoing adaptive modifications that maintain effective natural CNS outputs take place primarily in the CNS. The adaptive modifications that maintain effective BCI outputs can also take place in the BCI. This means that the BCI operation depends on the effective collaboration of two adaptive controllers, the CNS and the BCI. Realization of this second adaptive controller, the BCI, and management of its interactions with concurrent adaptations in the CNS comprise another complex and critical challenge for BCI development. BCIs can use different kinds of brain signals recorded in different ways from different brain areas. Decisions about which signals recorded in which ways from which brain areas should be selected for which applications are empirical questions that can only be properly answered by experiments. BCIs, like other communication and control technologies, often face artifacts that contaminate or imitate their chosen signals. Noninvasive BCIs (e.g., EEG- or fNIRS-based) need to take special care to avoid interpreting nonbrain signals (e.g., cranial EMG) as brain signals. This typically requires comprehensive topographical and spectral evaluations. In theory, the outputs of BCIs can select a goal or control a process. In the future, the most effective BCIs will probably be those that combine goal selection and process control so as to distribute control between the BCI and the application in a fashion suited to the current action. Through such distribution, BCIs may most effectively imitate natural CNS operation. The primary measure of BCI development is the extent to which BCI systems benefit people with neuromuscular disorders. Thus, BCI clinical evaluation, validation, and dissemination is a key step. It is at the same time a complex and difficult process that depends on multidisciplinary collaboration and management of the demanding requirements of clinical studies. Twenty-five years ago, BCI research was an esoteric endeavor pursued in only a few isolated laboratories. It is now a steadily growing field that engages many hundreds of scientists, engineers, and clinicians throughout the world in an increasingly interconnected community that is addressing the key issues and pursuing the high potential of BCI technology.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Wadsworth Center, Albany, NY, United States
| | - José Del R Millán
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States; Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| | - Nick F Ramsey
- Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Zou X, Wu Y, Chen J, Zhao F, Zhang F, Yu B, Cao Z. Activation of sodium channel by a novel α-scorpion toxin, BmK NT2, stimulates ERK1/2 and CERB phosphorylation through a Ca2+ dependent pathway in neocortical neurons. Int J Biol Macromol 2017; 104:70-77. [DOI: 10.1016/j.ijbiomac.2017.05.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
|
19
|
Saito A, Cai L, Matsuhisa K, Ohtake Y, Kaneko M, Kanemoto S, Asada R, Imaizumi K. Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma. J Neurochem 2017; 144:35-49. [PMID: 28921568 PMCID: PMC5765399 DOI: 10.1111/jnc.14221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Unfolded protein response (UPR) has roles not only in resolving the accumulation of unfolded proteins owing to endoplasmic reticulum (ER) stress, but also in regulation of cellular physiological functions. ER stress transducers providing the branches of UPR signaling are known to localize in distal dendritic ER of neurons. These reports suggest that local activation of UPR branches may produce integrated outputs for distant communication, and allow regulation of local events in highly polarized neurons. Here, we demonstrated that synaptic activity‐ and brain‐derived neurotrophic factor (BDNF)‐dependent local activation of UPR signaling could be associated with dendritic functions through retrograde signal propagation by using murine neuroblastoma cell line, Neuro‐2A and primary cultured hippocampal neurons derived from postnatal day 0 litter C57BL/6 mice. ER stress transducer, inositol‐requiring kinase 1 (IRE1), was activated at postsynapses in response to excitatory synaptic activation. Activated dendritic IRE1 accelerated accumulation of the downstream transcription factor, x‐box‐binding protein 1 (XBP1), in the nucleus. Interestingly, excitatory synaptic activation‐dependent up‐regulation of XBP1 directly facilitated transcriptional activation of BDNF. BDNF in turn drove its own expression via IRE1‐XBP1 pathway in a protein kinase A‐dependent manner. Exogenous treatment with BDNF promoted extension and branching of dendrites through the protein kinase A‐IRE1‐XBP1 cascade. Taken together, our findings indicate novel mechanisms for communication between soma and distal sites of polarized neurons that are coordinated by local activation of IRE1‐XBP1 signaling. Synaptic activity‐ and BDNF‐dependent distinct activation of dendritic IRE1‐XBP1 cascade drives BDNF expression in cell soma and may be involved in dendritic extension. Cover Image for this issue: doi. 10.1111/jnc.14159. ![]()
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Longjie Cai
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Koji Matsuhisa
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
20
|
Saito A, Cai L, Matsuhisa K, Ohtake Y, Kaneko M, Kanemoto S, Asada R, Imaizumi K. Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma. J Neurochem 2017. [PMID: 28921568 DOI: 10.1111/jnc.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Unfolded protein response (UPR) has roles not only in resolving the accumulation of unfolded proteins owing to endoplasmic reticulum (ER) stress, but also in regulation of cellular physiological functions. ER stress transducers providing the branches of UPR signaling are known to localize in distal dendritic ER of neurons. These reports suggest that local activation of UPR branches may produce integrated outputs for distant communication, and allow regulation of local events in highly polarized neurons. Here, we demonstrated that synaptic activity- and brain-derived neurotrophic factor (BDNF)-dependent local activation of UPR signaling could be associated with dendritic functions through retrograde signal propagation by using murine neuroblastoma cell line, Neuro-2A and primary cultured hippocampal neurons derived from postnatal day 0 litter C57BL/6 mice. ER stress transducer, inositol-requiring kinase 1 (IRE1), was activated at postsynapses in response to excitatory synaptic activation. Activated dendritic IRE1 accelerated accumulation of the downstream transcription factor, x-box-binding protein 1 (XBP1), in the nucleus. Interestingly, excitatory synaptic activation-dependent up-regulation of XBP1 directly facilitated transcriptional activation of BDNF. BDNF in turn drove its own expression via IRE1-XBP1 pathway in a protein kinase A-dependent manner. Exogenous treatment with BDNF promoted extension and branching of dendrites through the protein kinase A-IRE1-XBP1 cascade. Taken together, our findings indicate novel mechanisms for communication between soma and distal sites of polarized neurons that are coordinated by local activation of IRE1-XBP1 signaling. Synaptic activity- and BDNF-dependent distinct activation of dendritic IRE1-XBP1 cascade drives BDNF expression in cell soma and may be involved in dendritic extension. Cover Image for this issue: doi. 10.1111/jnc.14159.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Longjie Cai
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Koji Matsuhisa
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
21
|
Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron 2017; 94:304-311.e4. [PMID: 28426965 PMCID: PMC5418202 DOI: 10.1016/j.neuron.2017.03.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.
Collapse
|
22
|
Fu AKY, Ip NY. Regulation of postsynaptic signaling in structural synaptic plasticity. Curr Opin Neurobiol 2017; 45:148-155. [DOI: 10.1016/j.conb.2017.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/28/2017] [Accepted: 05/12/2017] [Indexed: 02/05/2023]
|
23
|
Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders? J Neurosci 2017; 36:11411-11417. [PMID: 27911743 DOI: 10.1523/jneurosci.2360-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Actin polymerization governs activity-dependent modulation of excitatory synapses, including their morphology and functionality. It is clear from human genetics that neuropsychiatric and neurodevelopmental disturbances are multigenetic in nature, highlighting the need to better understand the critical neural pathways associated with these disorders and how they are altered by genetic risk alleles. One such signaling pathway that is heavily implicated by candidate genes for psychiatric and neurodevelopmental disorders are regulators of signaling to the actin cytoskeleton, suggesting that its disruption and the ensuring abnormalities of spine structures and postsynaptic complexes is a commonly affected pathway in brain disorders. This review will discuss recent experimental findings that strongly support genetic evidence linking the synaptic cytoskeleton to mental disorders, such as schizophrenia and autism spectrum disorders.
Collapse
|
24
|
Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia. Biol Psychiatry 2017; 81:862-873. [PMID: 27455897 PMCID: PMC5136518 DOI: 10.1016/j.biopsych.2016.05.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022]
Abstract
Convergent evidence suggests that schizophrenia is a disorder of neurodevelopment with alterations in both early and late developmental processes hypothesized to contribute to the disease process. Abnormalities in certain clinical features of schizophrenia, such as working memory impairments, depend on distributed neural circuitry including the dorsolateral prefrontal cortex (DLPFC) and appear to arise during the protracted maturation of this circuitry across childhood and adolescence. In particular, the neural circuitry substrate for working memory in primates involves the coordinated activity of excitatory pyramidal neurons and a specific population of inhibitory gamma-aminobutyric acid neurons (i.e., parvalbumin-containing basket cells) in layer 3 of the DLPFC. Understanding the relationships between the normal development of-and the schizophrenia-associated alterations in-the DLPFC circuitry that subserves working memory could provide new insights into the nature of schizophrenia as a neurodevelopmental disorder. Consequently, we review the following in this article: 1) recent findings regarding alterations of DLPFC layer 3 circuitry in schizophrenia, 2) the developmental refinements in this circuitry that occur during the period when the working memory alterations in schizophrenia appear to arise and progress, and 3) how various adverse environmental exposures could contribute to developmental disturbances of this circuitry in individuals with schizophrenia.
Collapse
|
25
|
Lim CS, Alkon DL. Inhibition of coactivator-associated arginine methyltransferase 1 modulates dendritic arborization and spine maturation of cultured hippocampal neurons. J Biol Chem 2017; 292:6402-6413. [PMID: 28264928 DOI: 10.1074/jbc.m117.775619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
An improved understanding of the molecular mechanisms in synapse formation provides insight into both learning and memory and the etiology of neurodegenerative disorders. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein methyltransferase that negatively regulates synaptic gene expression and inhibits neuronal differentiation. Despite its regulatory function in neurons, little is known about the CARM1 cellular location and its role in dendritic maturation and synapse formation. Here, we examined the effects of CARM1 inhibition on dendritic spine and synapse morphology in the rat hippocampus. CARM1 was localized in hippocampal post-synapses, with immunocytochemistry and electron microscopy revealing co-localization of CARM1 with post-synaptic density (PSD)-95 protein, a post-synaptic marker. Specific siRNA-mediated suppression of CARM1 expression resulted in precocious dendritic maturation, with increased spine width and density at sites along dendrites and induction of mushroom-type spines. These changes were accompanied by a striking increase in the cluster size and number of key synaptic proteins, including N-methyl-d-aspartate receptor subunit 2B (NR2B) and PSD-95. Similarly, pharmacological inhibition of CARM1 activity with the CARM1-specific inhibitor AMI-1 significantly increased spine width and mushroom-type spines and also increased the cluster size and number of NR2B and cluster size of PSD-95. These results suggest that CARM1 is a post-synaptic protein that plays roles in dendritic maturation and synaptic formation and that spatiotemporal regulation of CARM1 activity modulates neuronal connectivity and improves synaptic dysfunction.
Collapse
Affiliation(s)
- Chol Seung Lim
- From the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, West Virginia 26505
| | - Daniel L Alkon
- From the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, West Virginia 26505
| |
Collapse
|
26
|
|
27
|
Watson LA, Tsai LH. In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory. Curr Opin Neurobiol 2016; 43:48-55. [PMID: 28024185 DOI: 10.1016/j.conb.2016.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such as covalent DNA modifications and histone post-translational modifications. More recently, the modulation of chromatin architecture and nuclear organization is emerging as a key factor in dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity induces relocalization of gene loci to 'transcription factories', and specific enhancer-promoter looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-dependent DNA double-strand break formation in the promoter of immediate early genes appears to overcome topological constraints on transcription. Together, these findings point to a critical role for genome topology in integrating dynamic environmental signals to define precise spatiotemporal gene expression programs supporting cognitive processes.
Collapse
Affiliation(s)
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
The pseudokinase CaMKv is required for the activity-dependent maintenance of dendritic spines. Nat Commun 2016; 7:13282. [PMID: 27796283 PMCID: PMC5095516 DOI: 10.1038/ncomms13282] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 02/03/2023] Open
Abstract
Dendritic spine stabilization depends on afferent synaptic input and requires changes in actin cytoskeleton dynamics and protein synthesis. However, the underlying molecular mechanism remains unclear. Here we report the identification of ‘calmodulin kinase-like vesicle-associated' (CaMKv), a pseudokinase of the CaMK family with unknown function, as a synaptic protein crucial for dendritic spine maintenance. CaMKv mRNA localizes at dendrites, and its protein synthesis is regulated by neuronal activity. CaMKv function is inhibited upon phosphorylation by cyclin-dependent kinase 5 (Cdk5) at Thr345. Furthermore, CaMKv knockdown in mouse hippocampal CA1 pyramidal neurons impairs synaptic transmission and plasticity in vivo, resulting in hyperactivity and spatial memory impairment. These findings collectively indicate that the precise regulation of CaMKv through activity-dependent synthesis and post-translational phosphorylation is critical for dendritic spine maintenance, revealing an unusual signalling pathway in the regulation of synaptic transmission and brain function that involves a pseudokinase. CaMKv is a pseduokinase of unknown function. Here, the authors identify the protein as a substrate of the protein kinase Cdk5, and show that CaMKv is synthesized in response to neural activity and plays an important role in maintaining dendritic spines, synaptic plasticity, and hippocampal memory via RhoA inhibition.
Collapse
|
29
|
Cao Z, Xu J, Hulsizer S, Cui Y, Dong Y, Pessah IN. Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures. Neurotoxicology 2016; 58:11-22. [PMID: 27984050 DOI: 10.1016/j.neuro.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
The spatial and temporal patterns of spontaneous synchronous Ca2+ oscillations (SCOs) regulate physiological pathways that influence neuronal development, excitability, and health. Hippocampal neuronal cultures (HN) and neuron/glia co-cultures (HNG) produced from neonatal mice were loaded with Fluo-4/AM and SCOs recorded in real-time using a Fluorescence Imaging Plate Reader at different developmental stages in vitro. HNG showed an earlier onset of SCOs, with low amplitude and low frequency SCOs at 4days in vitro (DIV), whereas HN were quiescent at this point. SCO amplitude peaked at 9 DIV for both cultures. SCO network frequency peaked at 12 DIV in HN, whereas in HNG the frequency peaked at 6 DIV. SCO patterns were associated with the temporal development of neuronal networks and their ratio of glutamatergic to GABAergic markers of excitatory/inhibitory balance. HN and HNG exhibited differential responses to the convulsant tetramethylenedisulfotetramine (TETS) and were highly dependent on DIV. In HN, TETS triggered an acute rise of intracellular Ca2+ (Phase I response) only in 14 DIV and a sustained decrease of SCO frequency with increased amplitude (Phase II response) at all developmental stages. In HNG, TETS decreased the SCO frequency and increased the amplitude at 6 and 14 but not 9 DIV. There was no acute Ca2+ rise (Phase I response) in any age of HNG tested with TETS. These data demonstrated the importance of glia and developmental stage in modulating neuronal responses to TETS. Our results illustrate the applicability of the model for investigating how caged convulsants elicit abnormal network activity during the development of HN and HNG cultures in vitro.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| | - Jian Xu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yanjun Cui
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| |
Collapse
|
30
|
Roszkowska M, Skupien A, Wójtowicz T, Konopka A, Gorlewicz A, Kisiel M, Bekisz M, Ruszczycki B, Dolezyczek H, Rejmak E, Knapska E, Mozrzymas JW, Wlodarczyk J, Wilczynski GM, Dzwonek J. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Mol Biol Cell 2016; 27:4055-4066. [PMID: 27798233 PMCID: PMC5156546 DOI: 10.1091/mbc.e16-06-0423] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 12/02/2022] Open
Abstract
CD44 is a novel molecular player that regulates structure and function of the synapse. It affects excitatory synaptic transmission, dendritic spine shape, number of functional synapses, and activity-dependent neuronal plasticity. These functions are exerted via the regulation of small Rho GTPases. Synaptic cell adhesion molecules regulate signal transduction, synaptic function, and plasticity. However, their role in neuronal interactions with the extracellular matrix (ECM) is not well understood. Here we report that the CD44, a transmembrane receptor for hyaluronan, modulates synaptic plasticity. High-resolution ultrastructural analysis showed that CD44 was localized at mature synapses in the adult brain. The reduced expression of CD44 affected the synaptic excitatory transmission of primary hippocampal neurons, simultaneously modifying dendritic spine shape. The frequency of miniature excitatory postsynaptic currents decreased, accompanied by dendritic spine elongation and thinning. These structural and functional alterations went along with a decrease in the number of presynaptic Bassoon puncta, together with a reduction of PSD-95 levels at dendritic spines, suggesting a reduced number of functional synapses. Lack of CD44 also abrogated spine head enlargement upon neuronal stimulation. Moreover, our results indicate that CD44 contributes to proper dendritic spine shape and function by modulating the activity of actin cytoskeleton regulators, that is, Rho GTPases (RhoA, Rac1, and Cdc42). Thus CD44 appears to be a novel molecular player regulating functional and structural plasticity of dendritic spines.
Collapse
Affiliation(s)
- Matylda Roszkowska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland.,Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Adam Gorlewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marek Bekisz
- Laboratory of Visual System, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Blazej Ruszczycki
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hubert Dolezyczek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Emilia Rejmak
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
31
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Shamsudin Y, Gutiérrez-de-Terán H, Sävmarker J, Ng L, Pham V, Lundbäck T, Jenmalm-Jensen A, Svensson R, Artursson P, Zelleroth S, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures. ACS Chem Neurosci 2016; 7:1383-1392. [PMID: 27501164 DOI: 10.1021/acschemneuro.6b00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of IRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug-like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors. A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leelee Ng
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | - Vi Pham
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics, Karolinska Institute , 171 77 Solna, Sweden
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics, Karolinska Institute , 171 77 Solna, Sweden
| | | | | | | | | | | | | | | | - Siew Yeen Chai
- Biomedicine Discovery Institute, Department of Physiology, Monash University , Clayton, Victoria 3800, Australia
| | | |
Collapse
|
32
|
Verbich D, Becker D, Vlachos A, Mundel P, Deller T, McKinney RA. Rewiring neuronal microcircuits of the brain via spine head protrusions--a role for synaptopodin and intracellular calcium stores. Acta Neuropathol Commun 2016; 4:38. [PMID: 27102112 PMCID: PMC4840984 DOI: 10.1186/s40478-016-0311-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/26/2022] Open
Abstract
Neurological diseases associated with neuronal death are also accompanied by axonal denervation of connected brain regions. In these areas, denervation leads to a decrease in afferent drive, which may in turn trigger active central nervous system (CNS) circuitry rearrangement. This rewiring process is important therapeutically, since it can partially recover functions and can be further enhanced using modern rehabilitation strategies. Nevertheless, the cellular mechanisms of brain rewiring are not fully understood. We recently reported a mechanism by which neurons remodel their local connectivity under conditions of network-perturbance: hippocampal pyramidal cells can extend spine head protrusions (SHPs), which reach out toward neighboring terminals and form new synapses. Since this form of activity-dependent rewiring is observed only on some spines, we investigated the required conditions. We speculated, that the actin-associated protein synaptopodin, which is involved in several synaptic plasticity mechanisms, could play a role in the formation and/or stabilization of SHPs. Using hippocampal slice cultures, we found that ~70 % of spines with protrusions in CA1 pyramidal neurons contained synaptopodin. Analysis of synaptopodin-deficient neurons revealed that synaptopodin is required for the stability but not the formation of SHPs. The effects of synaptopodin could be linked to its role in Ca2+ homeostasis, since spines with protrusions often contained ryanodine receptors and synaptopodin. Furthermore, disrupting Ca2+ signaling shortened protrusion lifetime. By transgenically reintroducing synaptopodin on a synaptopodin-deficient background, SHP stability could be rescued. Overall, we show that synaptopodin increases the stability of SHPs, and could potentially modulate the rewiring of microcircuitries by making synaptic reorganization more efficient.
Collapse
|
33
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Khan YS, Gutiérrez-de-Terán H, Ng L, Pham V, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Andersson H, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Binding to and Inhibition of Insulin-Regulated Aminopeptidase by Macrocyclic Disulfides Enhances Spine Density. Mol Pharmacol 2016; 89:413-24. [PMID: 26769413 DOI: 10.1124/mol.115.102533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/13/2016] [Indexed: 01/28/2023] Open
Abstract
Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
Collapse
Affiliation(s)
- Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Sudarsana Reddy Vanga
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Yasmin Shamsudin Khan
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hugo Gutiérrez-de-Terán
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Leelee Ng
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Vi Pham
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Thomas Lundbäck
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Annika Jenmalm-Jensen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hanna Andersson
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Karin Engen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Ulrika Rosenström
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mats Larhed
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Johan Åqvist
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Siew Yeen Chai
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Abstract
UNLABELLED Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a "precritical period" of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic-ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia-ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury.
Collapse
|
35
|
Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation. Proc Natl Acad Sci U S A 2015; 112:E5883-90. [PMID: 26460013 DOI: 10.1073/pnas.1518382112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AMPA receptors (AMPARs) are the major excitatory receptors of the brain and are fundamental to synaptic plasticity, memory, and cognition. Dynamic recycling of AMPARs in neurons is regulated through several types of posttranslational modification, including phosphorylation. Here, we identify a previously unidentified signal transduction cascade that modulates phosphorylation of serine residue 863 (S863) in the GluA1 AMPAR subunit and controls surface trafficking of GluA1 in neurons. Activation of the EphR-Ephrin signal transduction pathway enhances S863 phosphorylation. Further, EphB2 can interact with Zizimin1, a guanine-nucleotide exchange factor that activates Cdc42 and stimulates S863 phosphorylation in neurons. Among the numerous targets downstream of Cdc42, we determined that the p21-activated kinase-3 (PAK3) phosphorylates S863 in vitro. Moreover, specific loss of PAK3 expression and pharmacological inhibition of PAK both disrupt activity-dependent phosphorylation of S863 in cortical neurons. EphB2, Cdc42, and PAKs are broadly capable of controlling dendritic spine formation and synaptic plasticity and are implicated in multiple cognitive disorders. Collectively, these data delineate a novel signal cascade regulating AMPAR trafficking that may contribute to the molecular mechanisms that govern learning and cognition.
Collapse
|
36
|
Kempf SJ, Sepe S, von Toerne C, Janik D, Neff F, Hauck SM, Atkinson MJ, Mastroberardino PG, Tapio S. Neonatal Irradiation Leads to Persistent Proteome Alterations Involved in Synaptic Plasticity in the Mouse Hippocampus and Cortex. J Proteome Res 2015; 14:4674-86. [PMID: 26420666 DOI: 10.1021/acs.jproteome.5b00564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent epidemiological data indicate that radiation doses as low as those used in computer tomography may result in long-term neurocognitive side effects. The aim of this study was to elucidate long-term molecular alterations related to memory formation in the brain after low and moderate doses of γ radiation. Female C57BL/6J mice were irradiated on postnatal day 10 with total body doses of 0.1, 0.5, or 2.0 Gy; the control group was sham-irradiated. The proteome analysis of hippocampus, cortex, and synaptosomes isolated from these brain regions indicated changes in ephrin-related, RhoGDI, and axonal guidance signaling. Immunoblotting and miRNA-quantification demonstrated an imbalance in the synapse morphology-related Rac1-Cofilin pathway and long-term potentiation-related cAMP response element-binding protein (CREB) signaling. Proteome profiling also showed impaired oxidative phosphorylation, especially in the synaptic mitochondria. This was accompanied by an early (4 weeks) reduction of mitochondrial respiration capacity in the hippocampus. Although the respiratory capacity was restored by 24 weeks, the number of deregulated mitochondrial complex proteins was increased at this time. All observed changes were significant at doses of 0.5 and 2.0 Gy but not at 0.1 Gy. This study strongly suggests that ionizing radiation at the neonatal state triggers persistent proteomic alterations associated with synaptic impairment.
Collapse
Affiliation(s)
| | - Sara Sepe
- Department of Genetics, Erasmus Medical Center , 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | - Michael J Atkinson
- Chair of Radiation Biology, Technical University Munich , 80333 Munich, Germany
| | | | | |
Collapse
|
37
|
Calcyon stimulates neuregulin 1 maturation and signaling. Mol Psychiatry 2015; 20:1251-60. [PMID: 25349163 DOI: 10.1038/mp.2014.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/27/2014] [Accepted: 08/21/2014] [Indexed: 01/02/2023]
Abstract
Neuregulin1 (NRG1) is a single transmembrane protein that plays a critical role in neural development and synaptic plasticity. Both NRG1 and its receptor, ErbB4, are well-established risk genes of schizophrenia. The NRG1 ecto-domain (ED) binds and activates ErbB4 following proteolytic cleavage of pro-NRG1 precursor protein. Although several studies have addressed the function of NRG1 in brain, very little is known about the cleavage and shedding mechanism. Here we show that the neuronal vesicular protein calcyon is a potent activator and key determinant of NRG1 ED cleavage and shedding. Calcyon stimulates clathrin-mediated endocytosis and endosomal targeting; and its levels are elevated in postmortem brains of schizophrenics. Overexpression of calcyon stimulates NRG1 cleavage and signaling in vivo, and as a result, GABA transmission is enhanced in calcyon overexpressing mice. Conversely, NRG1 cleavage, ErbB4 activity and GABA transmission are decreased in calcyon null mice. Moreover, stimulation of NRG1 cleavage by calcyon was recapitulated in HEK 293 cells suggesting the mechanism involved is cell-autonomous. Finally, studies with site-specific mutants in calcyon and inhibitors for the major sheddases indicate that the stimulatory effects of calcyon on NRG1 cleavage and shedding depend on clathrin-mediated endocytosis, β-secretase 1, and interaction with clathrin adaptor proteins. Together these results identify a novel mechanism for NRG1 cleavage and shedding.
Collapse
|
38
|
Yuan L, Seong E, Beuscher JL, Arikkath J. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions. J Biol Chem 2015; 290:10947-57. [PMID: 25724647 DOI: 10.1074/jbc.m114.632679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome.
Collapse
Affiliation(s)
- Li Yuan
- From the Department of Pharmacology and Experimental Neuroscience
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James L Beuscher
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jyothi Arikkath
- From the Department of Pharmacology and Experimental Neuroscience, Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
39
|
Kempf SJ, Casciati A, Buratovic S, Janik D, von Toerne C, Ueffing M, Neff F, Moertl S, Stenerlöw B, Saran A, Atkinson MJ, Eriksson P, Pazzaglia S, Tapio S. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol Neurodegener 2014; 9:57. [PMID: 25515237 PMCID: PMC4280038 DOI: 10.1186/1750-1326-9-57] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background/purpose of the study Epidemiological evidence suggests that low doses of ionising radiation (≤1.0 Gy) produce persistent alterations in cognition if the exposure occurs at a young age. The mechanisms underlying such alterations are unknown. We investigated the long-term effects of low doses of total body gamma radiation on neonatally exposed NMRI mice on the molecular and cellular level to elucidate neurodegeneration. Results Significant alterations in spontaneous behaviour were observed at 2 and 4 months following a single 0.5 or 1.0 Gy exposure. Alterations in the brain proteome, transcriptome, and several miRNAs were analysed 6–7 months post-irradiation in the hippocampus, dentate gyrus (DG) and cortex. Signalling pathways related to synaptic actin remodelling such as the Rac1-Cofilin pathway were altered in the cortex and hippocampus. Further, synaptic proteins MAP-2 and PSD-95 were increased in the DG and hippocampus (1.0 Gy). The expression of synaptic plasticity genes Arc, c-Fos and CREB was persistently reduced at 1.0 Gy in the hippocampus and cortex. These changes were coupled to epigenetic modulation via increased levels of microRNAs (miR-132/miR-212, miR-134). Astrogliosis, activation of insulin-growth factor/insulin signalling and increased level of microglial cytokine TNFα indicated radiation-induced neuroinflammation. In addition, adult neurogenesis within the DG was persistently negatively affected after irradiation, particularly at 1.0 Gy. Conclusion These data suggest that neurocognitive disorders may be induced in adults when exposed at a young age to low and moderate cranial doses of radiation. This raises concerns about radiation safety standards and regulatory practices. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-57) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
40
|
Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC. Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 2014; 8:142. [PMID: 25538570 PMCID: PMC4255500 DOI: 10.3389/fnana.2014.00142] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022] Open
Abstract
Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development - both experimental and theoretical - that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.
Collapse
Affiliation(s)
- Max Adrian
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Remy Kusters
- Department of Applied Physics, Eindhoven University of TechnologyEindhoven, Netherlands
| | - Corette J. Wierenga
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of TechnologyEindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of TechnologyEindhoven, Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
41
|
Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization. J Neurosci 2014; 34:12745-61. [PMID: 25232112 DOI: 10.1523/jneurosci.1280-14.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most excitatory synapses in the mammalian brain are formed on dendritic spines, and spine density has a profound impact on synaptic transmission, integration, and plasticity. Membrane-associated guanylate kinase (MAGUK) proteins are intracellular scaffolding proteins with well established roles in synapse function. However, whether MAGUK proteins are required for the formation of dendritic spines in vivo is unclear. We isolated a novel disc large-5 (Dlg5) allele in mice, Dlg5(LP), which harbors a missense mutation in the DLG5 SH3 domain, greatly attenuating its ability to interact with the DLG5 GUK domain. We show here that DLG5 is a MAGUK protein that regulates spine formation, synaptogenesis, and synaptic transmission in cortical neurons. DLG5 regulates synaptogenesis by enhancing the cell surface localization of N-cadherin, revealing a key molecular mechanism for regulating the subcellular localization of this cell adhesion molecule during synaptogenesis.
Collapse
|
42
|
Hayashi K, Suzuki A, Ohno S. A novel function of the cell polarity-regulating kinase PAR-1/MARK in dendritic spines. BIOARCHITECTURE 2014; 1:261-266. [PMID: 22545177 DOI: 10.4161/bioa.1.6.19199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dendritic spines are postsynaptic structures that receive excitatory synaptic signals from presynaptic terminals in neurons. Because the morphology of spines has been considered to be a crucial factor for the efficiency of synaptic transmission, understanding the mechanisms regulating their morphology is important for neuroscience. Actin filaments and their regulatory proteins are known to actively maintain spine morphology; recent studies have also shown an essential role of microtubules (MTs). Live imaging of the plus-ends of MTs in mature neurons revealed that MTs stochastically enter spines and mediate accumulation of p140Cap, which regulates reorganization of actin filaments. However, the molecular mechanism by which MT dynamics is controlled has remained largely unknown. A cell polarity-regulating serine/threonine kinase, partitioning-defective 1 (PAR-1), phosphorylates classical MAPs and inhibits their binding to MTs. Because the interaction of MAPs with MTs can decrease MT dynamic instability, PAR-1 is supposed to activate MT dynamics through its MAP/MT affinity-regulating kinase (MARK) activity, although there is not yet any direct evidence for this. Here, we review recent findings on the localization of PAR-1b in the dendrites of mouse hippocampal neurons, and its novel function in the maintenance of mature spine morphology by regulating MT dynamics.
Collapse
Affiliation(s)
- Kenji Hayashi
- Department of Molecular Biology; Yokohama City University Graduate School of Medical Science; Yokohama, Japan
| | | | | |
Collapse
|
43
|
Kempf SJ, Buratovic S, von Toerne C, Moertl S, Stenerlöw B, Hauck SM, Atkinson MJ, Eriksson P, Tapio S. Ionising radiation immediately impairs synaptic plasticity-associated cytoskeletal signalling pathways in HT22 cells and in mouse brain: an in vitro/in vivo comparison study. PLoS One 2014; 9:e110464. [PMID: 25329592 PMCID: PMC4203799 DOI: 10.1371/journal.pone.0110464] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/08/2014] [Indexed: 02/04/2023] Open
Abstract
Patients suffering from brain malignancies are treated with high-dose ionising radiation. However, this may lead to severe learning and memory impairment. Preventive treatments to minimise these side effects have not been possible due to the lack of knowledge of the involved signalling pathways and molecular targets. Mouse hippocampal neuronal HT22 cells were irradiated with acute gamma doses of 0.5 Gy, 1.0 Gy and 4.0 Gy. Changes in the cellular proteome were investigated by isotope-coded protein label technology and tandem mass spectrometry after 4 and 24 hours. To compare the findings with the in vivo response, male NMRI mice were irradiated on postnatal day 10 with a gamma dose of 1.0 Gy, followed by evaluation of the cellular proteome of hippocampus and cortex 24 hours post-irradiation. Analysis of the in vitro proteome showed that signalling pathways related to synaptic actin-remodelling were significantly affected at 1.0 Gy and 4.0 Gy but not at 0.5 Gy after 4 and 24 hours. We observed radiation-induced reduction of the miR-132 and Rac1 levels; miR-132 is known to regulate Rac1 activity by blocking the GTPase-activating protein p250GAP. In the irradiated hippocampus and cortex we observed alterations in the signalling pathways similar to those in vitro. The decreased expression of miR-132 and Rac1 was associated with an increase in hippocampal cofilin and phospho-cofilin. The Rac1-Cofilin pathway is involved in the modulation of synaptic actin filament formation that is necessary for correct spine and synapse morphology to enable processes of learning and memory. We suggest that acute radiation exposure leads to rapid dendritic spine and synapse morphology alterations via aberrant cytoskeletal signalling and processing and that this is associated with the immediate neurocognitive side effects observed in patients treated with ionising radiation.
Collapse
Affiliation(s)
- Stefan J. Kempf
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Sonja Buratovic
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Simone Moertl
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Bo Stenerlöw
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Chair of Radiation Biology, Technical University Munich, Munich, Germany
| | - Per Eriksson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
44
|
Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res 2014; 357:407-26. [PMID: 25012522 DOI: 10.1007/s00441-014-1942-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
Acute physiological pain, the unpleasant sensory response to a noxious stimulus, is essential for animals and humans to avoid potential injury. Pathological pain that persists after the original insult or injury has subsided, however, not only results in individual suffering but also imposes a significant cost on society. Improving treatments for long-lasting pathological pain requires a comprehensive understanding of the biological mechanisms underlying pain perception and the development of pain chronicity. In this review, we aim to highlight some of the major findings related to the involvement of neuronal calcium signaling in the processes that mediate chronic pain.
Collapse
Affiliation(s)
- Anna M Hagenston
- University of Heidelberg, Neurobiology, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany,
| | | |
Collapse
|
45
|
Kim IH, Wang H, Soderling SH, Yasuda R. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. eLife 2014; 3. [PMID: 25006034 PMCID: PMC4115656 DOI: 10.7554/elife.02839] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/06/2014] [Indexed: 12/17/2022] Open
Abstract
Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors such as learning and memory are not well understood. Here we report that postnatal forebrain deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but instead significantly impaired remote memory recall. Together these results indicate that the postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, which contribute to the capacity for remote memory recall.
Collapse
Affiliation(s)
- Il Hwan Kim
- Department of Cell Biology, Duke University Medical School, Durham, United States
| | - Hong Wang
- Department of Neurobiology, Duke University Medical School, Durham, United States
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, United States
| | - Ryohei Yasuda
- Department of Neurobiology, Duke University Medical School, Durham, United States
| |
Collapse
|
46
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
47
|
Bellot A, Guivernau B, Tajes M, Bosch-Morató M, Valls-Comamala V, Muñoz FJ. The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 2014; 1573:1-16. [DOI: 10.1016/j.brainres.2014.05.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022]
|
48
|
Chen Y, Wang Y, Ertürk A, Kallop D, Jiang Z, Weimer RM, Kaminker J, Sheng M. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron 2014; 83:431-443. [PMID: 24976215 DOI: 10.1016/j.neuron.2014.05.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Excitatory synapses occur mainly on dendritic spines, and spine density is usually correlated with the strength of excitatory synaptic transmission. We report that Nr4a1, an activity-inducible gene encoding a nuclear receptor, regulates the density and distribution of dendritic spines in CA1 pyramidal neurons. Nr4a1 overexpression resulted in elimination of the majority of spines; however, postsynaptic densities were preserved on dendritic shafts, and the strength of excitatory synaptic transmission was unaffected, showing that excitatory synapses can be dissociated from spines. mRNA expression profiling studies suggest that Nr4a1-mediated transcriptional regulation of the actin cytoskeleton contributes to this effect. Under conditions of chronically elevated activity, when Nr4a1 was induced, Nr4a1 knockdown increased the density of spines and PSDs specifically at the distal ends of dendrites. Thus, Nr4a1 is a key component of an activity-induced transcriptional program that regulates the density and distribution of spines and synapses.
Collapse
Affiliation(s)
- Yelin Chen
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yuanyuan Wang
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Ali Ertürk
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Dara Kallop
- Department of Biomedical Imaging, Genentech Inc, South San Francisco, CA 94080, USA
| | - Zhiyu Jiang
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Robby M Weimer
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA; Department of Biomedical Imaging, Genentech Inc, South San Francisco, CA 94080, USA
| | - Joshua Kaminker
- Department of Bioinformatics & Computational Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
49
|
Jimenez-Mateos EM, Engel T, Merino-Serrais P, Fernaud-Espinosa I, Rodriguez-Alvarez N, Reynolds J, Reschke CR, Conroy RM, McKiernan RC, deFelipe J, Henshall DC. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct 2014; 220:2387-99. [PMID: 24874920 DOI: 10.1007/s00429-014-0798-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/14/2014] [Indexed: 12/18/2022]
Abstract
Emerging data support roles for microRNA (miRNA) in the pathogenesis of various neurologic disorders including epilepsy. MicroRNA-134 (miR-134) is enriched in dendrites of hippocampal neurons, where it negatively regulates spine volume. Recent work identified upregulation of miR-134 in experimental and human epilepsy. Targeting miR-134 in vivo using antagomirs had potent anticonvulsant effects against kainic acid-induced seizures and was associated with a reduction in dendritic spine number. In the present study, we measured dendritic spine volume in mice injected with miR-134-targeting antagomirs and tested effects of the antagomirs on status epilepticus triggered by the cholinergic agonist pilocarpine. Morphometric analysis of over 6,400 dendritic spines in Lucifer yellow-injected CA3 pyramidal neurons revealed increased spine volume in mice given antagomirs compared to controls that received a scrambled sequence. Treatment of mice with miR-134 antagomirs did not alter performance in a behavioral test (novel object location). Status epilepticus induced by pilocarpine was associated with upregulation of miR-134 within the hippocampus of mice. Pretreatment of mice with miR-134 antagomirs reduced the proportion of animals that developed status epilepticus following pilocarpine and increased animal survival. In antagomir-treated mice that did develop status epilepticus, seizure onset was delayed and total seizure power was reduced. These studies provide in vivo evidence that miR-134 regulates spine volume in the hippocampus and validation of the seizure-suppressive effects of miR-134 antagomirs in a model with a different triggering mechanism, indicating broad conservation of anticonvulsant effects.
Collapse
Affiliation(s)
- Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 2014; 34:717-25. [PMID: 24431430 DOI: 10.1523/jneurosci.2884-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.
Collapse
|