1
|
Du T, Liu S, Yu H, Hu T, Huang L, Gao L, Jia L, Hu J, Yu Y, Sun Q. Chronic sleep deprivation disturbs energy balance modulated by suprachiasmatic nucleus efferents in mice. BMC Biol 2024; 22:296. [PMID: 39710657 DOI: 10.1186/s12915-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN). RESULTS We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN. The potential mechanism may be related to the disruptions of SCN efferent mediated by BMAL1. CONCLUSIONS Chronic SD impairs energy balance through directly dampening BMAL1 expression, probably in the transcription level, in the SCN, which in turn affects the neuron projections to ARC and PVN. Remarkably, we provide evidence that may explain the causal mechanisms associated with sleep curtailment and obesity in adolescents.
Collapse
Affiliation(s)
- Tingting Du
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shuailing Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Honghong Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Tian Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lina Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lanyue Gao
- Experimental Center, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lihong Jia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qi Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
2
|
Singh AK, Rai A, Joshi I, Reddy DN, Guha R, Alka K, Shukla S, Rath SK, Nazir A, Clement JP, Kundu TK. Oral Administration of a Specific p300/CBP Lysine Acetyltransferase Activator Induces Synaptic Plasticity and Repairs Spinal Cord Injury. ACS Chem Neurosci 2024; 15:2741-2755. [PMID: 38795032 DOI: 10.1021/acschemneuro.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.
Collapse
Affiliation(s)
- Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amrish Rai
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ila Joshi
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
3
|
Kuhn HG, Skau S, Nyberg J. A lifetime perspective on risk factors for cognitive decline with a special focus on early events. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100217. [PMID: 39071743 PMCID: PMC11273094 DOI: 10.1016/j.cccb.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 07/30/2024]
Abstract
Both Alzheimer's disease and vascular dementia are the result of disease processes that typically develop over several decades. Population studies have estimated that more than half of the risk for dementia is preventable or at least modifiable through behavioral adaptations. The association between these lifestyle factors and the risk of dementia is most evident for exposure in midlife. However, habits formed in middle age often reflect a lifetime of behavior patterns and living conditions. Therefore, individuals who, for example, are able to maintain healthy diets and regular exercise during their middle years are likely to benefit from these cognition-protective habits they have practiced throughout their lives. For numerous adult diseases, significant risks can often be traced back to early childhood. Suboptimal conditions during the perinatal period, childhood and adolescence can increase the risk of adult diseases, including stroke, heart disease, insulin resistance, hypertension and dementia. This review aims at summarizing some of the evidence for dementia risks from a life-time perspective with the goal of raising awareness for early dementia prevention and successful aging.
Collapse
Affiliation(s)
- H. Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Simon Skau
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Pedagogical, Curricular and Professional Studies, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Giacoman-Lozano M, Meléndez-Ramírez C, Martinez-Ledesma E, Cuevas-Diaz Duran R, Velasco I. Epigenetics of neural differentiation: Spotlight on enhancers. Front Cell Dev Biol 2022; 10:1001701. [PMID: 36313573 PMCID: PMC9606577 DOI: 10.3389/fcell.2022.1001701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mayela Giacoman-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, Mexico
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| |
Collapse
|
5
|
Bertile F, Plumel M, Maes P, Hirschler A, Challet E. Daytime Restricted Feeding Affects Day-Night Variations in Mouse Cerebellar Proteome. Front Mol Neurosci 2021; 14:613161. [PMID: 33912010 PMCID: PMC8072461 DOI: 10.3389/fnmol.2021.613161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The cerebellum harbors a circadian clock that can be shifted by scheduled mealtime and participates in behavioral anticipation of food access. Large-scale two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry was used to identify day–night variations in the cerebellar proteome of mice fed either during daytime or nighttime. Experimental conditions led to modified expression of 89 cerebellar proteins contained in 63 protein spots. Five and 33 spots were changed respectively by time-of-day or feeding conditions. Strikingly, several proteins of the heat-shock protein family (i.e., Hsp90aa1, 90ab1, 90b1, and Hspa2, 4, 5, 8, 9) were down-regulated in the cerebellum of daytime food-restricted mice. This was also the case for brain fatty acid protein (Fabp7) and enzymes involved in oxidative phosphorylation (Ndufs1) or folate metabolism (Aldh1l1). In contrast, aldolase C (Aldoc or zebrin II) and pyruvate carboxylase (Pc), two enzymes involved in carbohydrate metabolism, and vesicle-fusing ATPase (Nsf) were up-regulated during daytime restricted feeding, possibly reflecting increased neuronal activity. Significant feeding × time-of-day interactions were found for changes in the intensity of 20 spots. Guanine nucleotide-binding protein G(o) subunit alpha (Gnao1) was more expressed in the cerebellum before food access. Neuronal calcium-sensor proteins [i.e., parvalbumin (Pvalb) and visinin-like protein 1 (Vsnl1)] were inversely regulated in daytime food-restricted mice, compared to control mice fed at night. Furthermore, expression of three enzymes modulating the circadian clockwork, namely heterogeneous nuclear ribonucleoprotein K (Hnrnpk), serine/threonine-protein phosphatases 1 (Ppp1cc and Ppp1cb subunits) and 5 (Ppp5), was differentially altered by daytime restricted feeding. Besides cerebellar proteins affected only by feeding conditions or daily cues, specific changes in in protein abundance before food access may be related to behavioral anticipation of food access and/or feeding-induced shift of the cerebellar clockwork.
Collapse
Affiliation(s)
- Fabrice Bertile
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Marine Plumel
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Pauline Maes
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Aurélie Hirschler
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Etienne Challet
- Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
6
|
Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 2019; 15:657-669. [PMID: 31530940 PMCID: PMC7261498 DOI: 10.1038/s41582-019-0246-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain 'wiring'.
Collapse
Affiliation(s)
- Annabel K Short
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Departments of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Azad GK, Ito K, Sailaja BS, Biran A, Nissim-Rafinia M, Yamada Y, Brown DT, Takizawa T, Meshorer E. PARP1-dependent eviction of the linker histone H1 mediates immediate early gene expression during neuronal activation. J Cell Biol 2017; 217:473-481. [PMID: 29284668 PMCID: PMC5800798 DOI: 10.1083/jcb.201703141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/12/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Neuronal stimulation leads to the expression of immediate early genes (IEGs). Azad et al. show that neuronal depolarization induces replacement of the linker histone H1 by PARP1 at IEG promoters in a manner that requires H1 phosphorylation and H1 poly-ADP ribosylation. Neuronal stimulation leads to immediate early gene (IEG) expression through calcium-dependent mechanisms. In recent years, considerable attention has been devoted to the transcriptional responses after neuronal stimulation, but relatively little is known about the changes in chromatin dynamics that follow neuronal activation. Here, we use fluorescence recovery after photobleaching, biochemical fractionations, and chromatin immunoprecipitation to show that KCl-induced depolarization in primary cultured cortical neurons causes a rapid release of the linker histone H1 from chromatin, concomitant with IEG expression. H1 release is repressed by PARP inhibition, PARP1 deletion, a non-PARylatable H1, as well as phosphorylation inhibitions and a nonphosphorylatable H1, leading to hindered IEG expression. Further, H1 is replaced by PARP1 on IEG promoters after neuronal stimulation, and PARP inhibition blocks this reciprocal binding response. Our results demonstrate the relationship between neuronal excitation and chromatin plasticity by identifying the roles of polyadenosine diphosphate ribosylation and phosphorylation of H1 in regulating H1 chromatin eviction and IEG expression in stimulated neurons.
Collapse
Affiliation(s)
- Gajendra Kumar Azad
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kenji Ito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Badi Sri Sailaja
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alva Biran
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yasuhiro Yamada
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
9
|
mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity. Psychopharmacology (Berl) 2017; 234:1713-1724. [PMID: 28243713 DOI: 10.1007/s00213-017-4574-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
RATIONALE Previous studies have shown that repeated exposure to drugs of abuse is associated with changes in clock genes expression and that mice strains with various mutations in clock genes show alterations in drug-induced behaviors. OBJECTIVE The objective of this study is to characterize the role of the clock gene mPer1 in the development of morphine-induced behaviors and a possible link to histone deacetylase (HDAC) activity. METHODS In Per1 Brdm1 null mutant mice and wild-type (WT) littermates, we examined whether there were any differences in the development of morphine antinociception, tolerance to antinociception, withdrawal, sensitization to locomotion, and conditioned place preference (CPP). RESULTS Per1 Brdm1 mutant mice did not show any difference in morphine antinociception, tolerance development, nor in physical withdrawal signs precipitated by naloxone administration compared to WT. However, morphine-induced locomotor sensitization and CPP were significantly impaired in Per1 Brdm1 mutant mice. Because a very similar dissociation between tolerance and dependence vs. sensitization and CPP was recently observed after the co-administration of morphine and the HDAC inhibitor sodium butyrate (NaBut), we studied a possible link between mPer1 and HDAC activity. As opposed to WT controls, Per1 Brdm1 mutant mice showed significantly enhanced striatal global HDAC activity within the striatum when exposed to a locomotor-sensitizing morphine administration regimen. Furthermore, the administration of the HDAC inhibitor NaBut restored the ability of morphine to promote locomotor sensitization and reward in Per1 Brdm1 mutant mice. CONCLUSIONS Our results reveal that although the mPer1 gene does not alter morphine-induced antinociception nor withdrawal, it plays a prominent role in the development of morphine-induced behavioral sensitization and reward via inhibitory modulation of striatal HDAC activity. These data suggest that PER1 inhibits deacetylation to promote drug-induced neuroplastic changes.
Collapse
|
10
|
Eleftheriou C, Cesca F, Maragliano L, Benfenati F, Maya-Vetencourt JF. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. J Exp Neurosci 2017; 11:1179069517703354. [PMID: 28579827 PMCID: PMC5415353 DOI: 10.1177/1179069517703354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.
Collapse
Affiliation(s)
- Cyril Eleftheriou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | | |
Collapse
|
11
|
Tochiki KK, Maiarú M, Norris C, Hunt SP, Géranton SM. The mitogen and stress-activated protein kinase 1 regulates the rapid epigenetic tagging of dorsal horn neurons and nocifensive behaviour. Pain 2016; 157:2594-2604. [PMID: 27482631 PMCID: PMC5065054 DOI: 10.1097/j.pain.0000000000000679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Phosphorylation of histone H3 at serine 10 (p-H3S10) is a marker of active gene transcription. Using cognitive models of neural plasticity, p-H3S10 was shown to be downstream of extracellular signal-regulated kinase (ERK) signalling in the hippocampus. In this study, we show that nociceptive signalling after peripheral formalin injection increased p-H3S10 expression in the ipsilateral dorsal horn. This increase was maximal 30 minutes after formalin injection and occurred mainly within p-ERK-positive neurons. Spinal p-H3S10-enhanced expression was also observed in neurokinin 1 receptor (NK1R), c-Fos, and Zif268 positive neurons and was inhibited by ablation of serotonergic descending controls. The mitogen and stress-activated protein kinase 1 (MSK1) is downstream of ERK and can induce p-H3S10. We found that, after formalin injection, most phospho-MSK1 (p-MSK1)-positive cells (87% ± 3%) expressed p-ERK and the majority of p-H3S10-positive cells (85% ± 5%) expressed p-MSK1. Inhibition of ERK activity with the MEK inhibitor SL327 reduced formalin-induced p-ERK, p-MSK1, and p-H3S10, demonstrating that spinal p-MSK1 and p-H3S10 were at least partly downstream of ERK signalling. Crucially, pharmacological blockade of spinal MSK1 activity with the novel MSK1 inhibitor SB727651A inhibited formalin-induced spinal p-H3S10 and nocifensive behaviour. These findings are the first to establish the involvement of p-H3S10 and its main kinase, MSK1, in ERK regulation of nociception. Given the general importance of ERK signalling in pain processing, our results suggest that p-H3S10 could play a role in the response to injury.
Collapse
Affiliation(s)
- Keri K. Tochiki
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Maria Maiarú
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Caspar Norris
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen P. Hunt
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sandrine M. Géranton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Lomvardas S, Maniatis T. Histone and DNA Modifications as Regulators of Neuronal Development and Function. Cold Spring Harb Perspect Biol 2016; 8:8/7/a024208. [PMID: 27371659 DOI: 10.1101/cshperspect.a024208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA and histone modifications, together with constraints imposed by nuclear architecture, contribute to the transcriptional regulatory landscape of the nervous system. Here, we provide select examples showing how these regulatory layers, often referred to as epigenetic, contribute to neuronal differentiation and function. We describe the interplay between DNA methylation and Polycomb-mediated repression during neuronal differentiation, the role of DNA methylation and long-range enhancer-promoter interactions in Protocadherin promoter choice, and the contribution of heterochromatic silencing and nuclear organization in singular olfactory receptor expression. Finally, we explain how the activity-dependent expression of a histone variant determines the longevity of olfactory sensory neurons.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
13
|
Lopez-Atalaya JP, Valor LM, Barco A. Epigenetic factors in intellectual disability: the Rubinstein-Taybi syndrome as a paradigm of neurodevelopmental disorder with epigenetic origin. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:139-76. [PMID: 25410544 DOI: 10.1016/b978-0-12-800977-2.00006-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The number of genetic syndromes associated with intellectual disability that are caused by mutations in genes encoding chromatin-modifying enzymes has sharply risen in the last decade. We discuss here a neurodevelopmental disorder, the Rubinstein-Taybi syndrome (RSTS), originated by mutations in the genes encoding the lysine acetyltransferases CBP and p300. We first describe clinical and genetic aspects of the syndrome to later focus on the insight provided by the research in animal models of this disease. These studies have not only clarified the molecular etiology of RSTS and helped to dissect the developmental and adult components of the syndrome but also contributed to outline some important connections between epigenetics and cognition. We finally discuss how this body of research has opened new venues for the therapeutic intervention of this currently untreatable disease and present some of the outstanding questions in the field. We believe that the progress in the understanding of this rare disorder also has important implications for other intellectual disability disorders that share an epigenetic origin.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Luis M Valor
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| |
Collapse
|
14
|
Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis 2015; 74:281-94. [DOI: 10.1016/j.nbd.2014.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022] Open
|
15
|
Satterlee JS, Beckel-Mitchener A, Little R, Procaccini D, Rutter JL, Lossie AC. Neuroepigenomics: Resources, Obstacles, and Opportunities. NEUROEPIGENETICS 2015; 1:2-13. [PMID: 25722961 PMCID: PMC4337407 DOI: 10.1016/j.nepig.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-lived post-mitotic cells, such as the majority of human neurons, must respond effectively to ongoing changes in neuronal stimulation or microenvironmental cues through transcriptional and epigenomic regulation of gene expression. The role of epigenomic regulation in neuronal function is of fundamental interest to the neuroscience community, as these types of studies have transformed our understanding of gene regulation in post-mitotic cells. This perspective article highlights many of the resources available to researchers interested in neuroepigenomic investigations and discusses some of the current obstacles and opportunities in neuroepigenomics.
Collapse
Affiliation(s)
- John S. Satterlee
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Andrea Beckel-Mitchener
- National Institute on Mental Health (NIMH), Division of Neuroscience and Basic Behavioral Science, 6001 Executive Boulevard Bethesda, MD 20892-9641, USA
| | - Roger Little
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Dena Procaccini
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Joni L. Rutter
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Amy C. Lossie
- Office of Behavioral and Social Sciences Research (OBSSR), Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director/National Institutes of Health (NIH), 31 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Hong S, Zheng G, Wiley JW. Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology 2015; 148:148-157.e7. [PMID: 25263804 PMCID: PMC4274248 DOI: 10.1053/j.gastro.2014.09.032] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Chronic stress alters the hypothalamic-pituitary-adrenal axis, increases gut motility, and increases the perception of visceral pain. We investigated whether epigenetic mechanisms regulate chronic stress-induced visceral pain in the peripheral nervous systems of rats. METHODS Male rats were subjected to 1 hour of water avoidance stress each day, or given daily subcutaneous injections of corticosterone, for 10 consecutive days. L4-L5 and L6-S2 dorsal root ganglia (DRG) were collected and compared between stressed and control rats (placed for 1 hour each day in a tank without water). Levels of cannabinoid receptor 1 (CNR1), DNA (cytosine-5-)-methyltransferase 1 (DNMT1), transient receptor potential vanilloid type 1 (TRPV1), and EP300 were knocked down in DRG neurons in situ with small interfering RNAs. We measured DNA methylation and histone acetylation at genes encoding the glucocorticoid receptor (NR3C1), CNR1, and TRPV1. Visceral pain was measured in response to colorectal distention. RESULTS Chronic stress was associated with increased methylation of the Nr3c1 promoter and reduced expression of this gene in L6-S2, but not L4-L5, DRGs. Stress also was associated with up-regulation in DNMT1-associated methylation of the Cnr1 promoter and down-regulation of glucocorticoid-receptor-mediated expression of CNR1 in L6-S2, but not L4-L5, DRGs. Concurrently, chronic stress increased expression of the histone acetyltransferase EP300 and increased histone acetylation at the Trpv1 promoter and expression of the TRPV1 receptor in L6-S2 DRG neurons. Knockdown of DNMT1 and EP300 in L6-S2 DRG neurons of rats reduced DNA methylation and histone acetylation, respectively, and prevented chronic stress-induced increases in visceral pain. CONCLUSIONS Chronic stress increases DNA methylation and histone acetylation of genes that regulate visceral pain sensation in the peripheral nervous system of rats. Blocking epigenetic regulatory pathways in specific regions of the spinal cord might be developed to treat patients with chronic abdominal pain.
Collapse
Affiliation(s)
- Shuangsong Hong
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | | | | |
Collapse
|
17
|
The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice. Mol Metab 2014; 3:619-29. [PMID: 25161885 PMCID: PMC4142401 DOI: 10.1016/j.molmet.2014.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/11/2022] Open
Abstract
Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance.
Collapse
|
18
|
Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr Pharm Des 2014; 19:5051-64. [PMID: 23448461 PMCID: PMC3722569 DOI: 10.2174/13816128113199990382] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 01/27/2023]
Abstract
Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias, Av. Santiago Ramon y Cajal s/n. Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | | | |
Collapse
|
19
|
Ciccarelli A, Giustetto M. Role of ERK signaling in activity-dependent modifications of histone proteins. Neuropharmacology 2014; 80:34-44. [PMID: 24486378 DOI: 10.1016/j.neuropharm.2014.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
It is well-established that neuronal intracellular signaling governed by the extracellular signal-regulated kinase (ERK/MAPK) plays a crucial role in long-term adaptive changes that occur during cognitive processes. ERK is a downstream component of a conserved signaling module that is activated by the serine/threonine kinase, Raf, which activates the MAPK/ERK kinase (MEK)1/2 protein kinases, which, in turn, activate ERK1/2. This signaling pathway has been reported to be activated in numerous physiological conditions due to a variety of stimuli, ranging from the activation of ionotropic glutamatergic receptors to metabotropic dopaminergic receptors and neurotrophin receptors. Interestingly, activated ERK can have early and late downstream effects at both the nuclear and synaptic levels. Locally, ERK signaling results in transient changes in the efficacy of synaptic transmission by modifying both pre- and post-synaptic targets. Once translocated into the nucleus, ERK signaling may control transcription by targeting several different regulators of gene expression such as transcription factors and histone proteins. ERK function is considered fundamental in processes such as long-term memory storage and drug addiction, by means of its role in activity-dependent epigenetic modifications that occur in the brain. In this review, we summarize the current understanding of ERK action in the neuroepigenetic processes underlying physiological responses, cognitive processes and drug addiction.
Collapse
Affiliation(s)
- Alessandro Ciccarelli
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy
| | - Maurizio Giustetto
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, C.so M. D'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
20
|
Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 2014; 264:76-87. [PMID: 24486964 DOI: 10.1016/j.neuroscience.2014.01.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 01/01/2023]
Abstract
Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape.
Collapse
Affiliation(s)
- R Orozco-Solis
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, United States
| | - P Sassone-Corsi
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
21
|
Schneider A, Chatterjee S, Bousiges O, Selvi BR, Swaminathan A, Cassel R, Blanc F, Kundu TK, Boutillier AL. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 2013; 10:568-88. [PMID: 24006237 PMCID: PMC3805875 DOI: 10.1007/s13311-013-0204-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The acetylation of histone and non-histone proteins controls a great deal of cellular functions, thereby affecting the entire organism, including the brain. Acetylation modifications are mediated through histone acetyltransferases (HAT) and deacetylases (HDAC), and the balance of these enzymes regulates neuronal homeostasis, maintaining the pre-existing acetyl marks responsible for the global chromatin structure, as well as regulating specific dynamic acetyl marks that respond to changes and facilitate neurons to encode and strengthen long-term events in the brain circuitry (e.g., memory formation). Unfortunately, the dysfunction of these finely-tuned regulations might lead to pathological conditions, and the deregulation of the HAT/HDAC balance has been implicated in neurological disorders. During the last decade, research has focused on HDAC inhibitors that induce a histone hyperacetylated state to compensate acetylation deficits. The use of these inhibitors as a therapeutic option was efficient in several animal models of neurological disorders. The elaboration of new cell-permeant HAT activators opens a new era of research on acetylation regulation. Although pathological animal models have not been tested yet, HAT activator molecules have already proven to be beneficial in ameliorating brain functions associated with learning and memory, and adult neurogenesis in wild-type animals. Thus, HAT activator molecules contribute to an exciting area of research.
Collapse
Affiliation(s)
- Anne Schneider
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Snehajyoti Chatterjee
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Olivier Bousiges
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - B. Ruthrotha Selvi
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Amrutha Swaminathan
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Raphaelle Cassel
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Frédéric Blanc
- />Service de Neuropsychologie and CMRR (Centre Mémoire de Ressources et de recherche) Laboratoire ICube, Université de Strasbourg, CNRS, équipe IMIS-Neurocrypto, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Tapas K. Kundu
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Anne-Laurence Boutillier
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
22
|
Activity-dependent NPAS4 expression and the regulation of gene programs underlying plasticity in the central nervous system. Neural Plast 2013; 2013:683909. [PMID: 24024041 PMCID: PMC3759247 DOI: 10.1155/2013/683909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/09/2013] [Indexed: 11/17/2022] Open
Abstract
The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.
Collapse
|
23
|
Kasprzyk L, Defossez PA, Miotto B. [Epigenetic regulation in neuronal differentiation and brain function]. Biol Aujourdhui 2013; 207:1-17. [PMID: 23694721 DOI: 10.1051/jbio/2013001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Indexed: 11/15/2022]
Abstract
DNA methylation compacts chromatin structure and represses gene transcription. It is important for numerous cellular processes, including embryonic development, X-chromosome inactivation, suppression of transposable elements, and cellular differentiation. In addition, environmental cues, including drugs, pollutants, trauma or early-life social environment, alter DNA methylation patterns in different organs. For instance, studies have unravelled a complex and dynamic interplay between environment, DNA methylation and neuron function during development and in the adult. This crosstalk is hypothesized as an essential molecular event underlying the effects of long-term memory, drug addiction, and several psychotic and behavioural disorders. In this review, we give a summary of this exciting field of research and highlight the molecular functions of DNA methylation and of proteins interacting with methylated DNA.
Collapse
Affiliation(s)
- Laetitia Kasprzyk
- Unité d'Épigénétique et Destin Cellulaire, CNRS UMR7216, Université Paris Diderot 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
24
|
Paraíso AF, Mendes KL, Santos SHS. Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 2013; 48:681-9. [PMID: 23615921 DOI: 10.1007/s12035-013-8459-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
Abstract
Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.
Collapse
Affiliation(s)
- Alanna Fernandes Paraíso
- Laboratory of Health Science, Postgraduate Program in Health Science, State University of Montes Claros (Unimontes), Av. Cula Mangabeira, 562-Santo Expedito, Montes Claros, Minas Gerais, 39401-001, Brazil
| | | | | |
Collapse
|
25
|
Li W, Pozzo-Miller L. BDNF deregulation in Rett syndrome. Neuropharmacology 2013; 76 Pt C:737-46. [PMID: 23597512 DOI: 10.1016/j.neuropharm.2013.03.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 12/21/2022]
Abstract
BDNF is the best-characterized neurotrophin in terms of its gene structure and modulation, secretion processing, and signaling cascades following its release. In addition to diverse features at the genetic and molecular levels, the abundant expression in several regions of the central nervous system has implicated BDNF as a potent modulator in many aspects of neuronal development, as well as synaptic transmission and plasticity. Impairments in any of these critical functions likely contribute to a wide array of neurodevelopmental, neurodegenerative, and neuropsychiatric diseases. In this review, we focus on a prevalent neurodevelopmental disorder, Rett syndrome (RTT), which afflicts 1:15,000 women world-wide. We describe the consequences of loss-of-function mutations in the gene encoding the transcription factor methyl-CpG binding protein 2 (MeCP2) in RTT, and then elaborate on the current understanding of how MeCP2 controls BDNF expression. Finally, we discuss the literature regarding alterations in BDNF levels in RTT individuals and MeCP2-based mouse models, as well as recent progress in searching for rational therapeutic interventions. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
26
|
Pirooznia SK, Elefant F. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci 2013; 7:30. [PMID: 23543406 PMCID: PMC3610086 DOI: 10.3389/fncel.2013.00030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/10/2013] [Indexed: 12/28/2022] Open
Abstract
Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in neurodegenerative diseases and the future promising prospects of using specific HAT based therapeutic approaches.
Collapse
|
27
|
Ciccarelli A, Calza A, Santoru F, Grasso F, Concas A, Sassoè-Pognetto M, Giustetto M. Morphine withdrawal produces ERK-dependent and ERK-independent epigenetic marks in neurons of the nucleus accumbens and lateral septum. Neuropharmacology 2013; 70:168-79. [PMID: 23347952 DOI: 10.1016/j.neuropharm.2012.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/30/2012] [Accepted: 12/14/2012] [Indexed: 01/29/2023]
Abstract
Epigenetic changes such as covalent modifications of histone proteins represent complex molecular signatures that provide a cellular memory of previously experienced stimuli without irreversible changes of the genetic code. In this study we show that new gene expression induced in vivo by morphine withdrawal occurs with concomitant epigenetic modifications in brain regions critically involved in drug-dependent behaviors. We found that naloxone-precipitated withdrawal, but not chronic morphine administration, caused a strong induction of phospho-histone H3 immunoreactivity in the nucleus accumbens (NAc) shell/core and in the lateral septum (LS), a change that was accompanied by augmented H3 acetylation (lys14) in neurons of the NAc shell. Morphine withdrawal induced the phosphorylation of the epigenetic factor methyl-CpG-binding protein 2 (MeCP2) in Ser421 both in the LS and the NAc shell. These epigenetic changes were accompanied by the activation of members of the ERK pathway as well as increased expression of the immediate early genes (IEG) c-fos and activity-regulated cytoskeleton-associated protein (Arc/Arg3.1). Using a pharmacological approach, we found that H3 phosphorylation and IEG expression were partially dependent on ERK activation, while MeCP2 phosphorylation was fully ERK-independent. These findings provide new important information on the role of the ERK pathway in the regulation of epigenetic marks and gene expression that may concur to regulate in vivo the cellular changes underlying the onset of the opioid withdrawal syndrome.
Collapse
Affiliation(s)
- Alessandro Ciccarelli
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 2012; 109:17657-62. [PMID: 23043114 DOI: 10.1073/pnas.1215810109] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hippocampus is a highly plastic brain region particularly susceptible to the effects of environmental stress; it also shows dynamic changes in epigenetic marks in response to stress and learning. We have previously shown that, in the rat, acute (30 min) restraint stress induces a substantial, regionally specific, increase in hippocampal levels of the repressive histone H3 lysine 9 trimethylation (H3K9me3). Because of the large magnitude of this effect and the fact that stress can induce the expression of endogenous retroviruses and transposable elements in many systems, we hypothesized that the H3K9me3 response was targeted to these elements as a means of containing potential genomic instability. We used ChIP coupled with next generation sequencing (ChIP-Seq) to determine the genomic localization of the H3K9me3 response. Although there was a general increase in this response across the genome, our results validated this hypothesis by demonstrating that stress increases H3K9me3 enrichment at transposable element loci and, using RT-PCR, we demonstrate that this effect represses expression of intracisternal-A particle endogenous retrovirus elements and B2 short interspersed elements, but it does not appear to have a repressive effect on long interspersed element RNA. In addition, we present data showing that the histone H3K9-specific methyltransferases Suv39h2 is up-regulated by acute stress in the hippocampus, and that this may explain the hippocampal specificity we observe. These results are a unique demonstration of the regulatory effect of environmental stress, via an epigenetic mark, on the vast genomic terra incognita represented by transposable elements.
Collapse
|
29
|
Zocchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012; 7:695-700. [PMID: 22677942 PMCID: PMC3414390 DOI: 10.4161/epi.20733] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) binds methylated cytosines at CpG sites on DNA and it is thought to function as a critical epigenetic regulator. Mutations in the MeCP2 gene have been associated to Rett syndrome, a human neurodevelopmental disorder. Here we show that MeCP2 is acetylated by p300 and that SIRT1 mediates its deacetylation. SIRT1, the mammalian homologue of Sir2 in yeast, is a nicotinamide-adenine dinucleotide (NAD(+))-dependent histone deacetylase that belongs to the family of HDAC class III sirtuins. Importantly, SIRT1 has been shown to play a critical role in synaptic plasticity and memory formation. This study reveals a functional interplay between two critical epigenetic regulators, MeCP2 and SIRT1, which controls MeCP2 binding activity to the brain-derived neurotrophic factor (BDNF) promoter in a specific region of the brain.
Collapse
Affiliation(s)
- Loredana Zocchi
- Center for Epigenetics and Metabolism, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | |
Collapse
|
30
|
Abstract
Although the term 'epigenetics' was coined nearly seventy years ago, its critical function in memory processing by the adult CNS has only recently been appreciated. The hypothesis that epigenetic mechanisms regulate memory and behavior was motivated by the need for stable molecular processes that evade turnover of the neuronal proteome. In this article, we discuss evidence that supports a role for neural epigenetic modifications in the formation, consolidation and storage of memory. In addition, we will review the evidence that epigenetic mechanisms regulate synaptic plasticity, a cellular correlate of memory. We will also examine how the concerted action of multiple epigenetic mechanisms with varying spatiotemporal profiles influence selective gene expression in response to behavioral experience. Finally, we will suggest key areas for future research that will help elucidate the complex, vital and still mysterious, role of epigenetic mechanisms in neural function and behavior.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F McKnight Brain Institute, 1007 Shelby Building, 1825 University Boulevard Birmingham, AL 35294-2182, USA
| | | |
Collapse
|
31
|
Sahar S, Sassone-Corsi P. Circadian rhythms and memory formation: regulation by chromatin remodeling. Front Mol Neurosci 2012; 5:37. [PMID: 22470318 PMCID: PMC3312286 DOI: 10.3389/fnmol.2012.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 03/12/2012] [Indexed: 12/02/2022] Open
Abstract
Epigenetic changes, such as DNA methylation or histone modification, can remodel the chromatin and regulate gene expression. Remodeling of chromatin provides an efficient mechanism of transducing signals, such as light or nutrient availability, to regulate gene expression. CLOCK:BMAL1 mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Recent research has demonstrated that chromatin remodeling is at the cross-roads of circadian rhythms and regulation of metabolism and aging. It would be of interest to identify if similar pathways exist in the epigenetic regulation of memory formation.
Collapse
Affiliation(s)
- Saurabh Sahar
- Center for Epigenetics and Metabolism, School of Medicine, University of California at Irvine, coIrvine, CA, USA
| | | |
Collapse
|
32
|
Castellano JF, Fletcher BR, Kelley-Bell B, Kim DH, Gallagher M, Rapp PR. Age-related memory impairment is associated with disrupted multivariate epigenetic coordination in the hippocampus. PLoS One 2012; 7:e33249. [PMID: 22438904 PMCID: PMC3305324 DOI: 10.1371/journal.pone.0033249] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/12/2012] [Indexed: 11/24/2022] Open
Abstract
Mounting evidence linking epigenetic regulation to memory-related synaptic plasticity raises the possibility that altered chromatin modification dynamics might contribute to age-dependent cognitive decline. Here we show that the coordinated orchestration of both baseline and experience-dependent epigenetic regulation seen in the young adult hippocampus is lost in association with cognitive aging. Using a well-characterized rat model that reliably distinguishes aged individuals with significant memory impairment from others with normal memory, no single epigenetic mark or experience-dependent modification in the hippocampus uniquely predicted differences in the cognitive outcome of aging. The results instead point to a multivariate pattern in which modification-specific, bidirectional chromatin regulation is dependent on recent behavioral experience, chronological age, cognitive status, and hippocampal region. Whereas many epigenetic signatures were coupled with memory capacity among young adults and aged rats with preserved cognitive function, such associations were absent among aged rats with deficits in hippocampal memory. By comparison with the emphasis in current preclinical translational research on promoting chromatin modifications permissive for gene expression, our findings suggest that optimally successful hippocampal aging may hinge instead on enabling coordinated control across the epigenetic landscape.
Collapse
Affiliation(s)
- James F. Castellano
- Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, Maryland, United States of America
- Graduate Program in Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Bonnie R. Fletcher
- Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Bennett Kelley-Bell
- Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - David H. Kim
- Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peter R. Rapp
- Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Catts VS, Catts SV, Jablensky A, Chandler D, Weickert CS, Lavin MF. Evidence of aberrant DNA damage response signalling but normal rates of DNA repair in dividing lymphoblasts from patients with schizophrenia. World J Biol Psychiatry 2012; 13:114-25. [PMID: 21830993 DOI: 10.3109/15622975.2011.565073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer incidence in schizophrenia is not increased commensurate with higher rates of risk exposures. Here we report an investigation of the DNA damage response, an anti-tumorigenic defence, in immortalised lymphoblasts from patients with schizophrenia. METHODS Unirradiated and irradiated (5Gy) lymphoblasts from schizophrenia patients (n = 28) and healthy controls (n = 28) were immunostained for the phosphorylated histone variant H2AX (γH2AX), an index of DNA double-strand breaks. Flow cytometry was used to assess cell cycle distribution and γH2AX immunofluorescence. Rate of DNA repair was quantified by determining the temporal change in γH2AX values following irradiation. RESULTS In unirradiated lymphoblasts, γH2AX levels were significantly increased in the schizophrenia group compared with controls (effect size = 0.86). This increase was most evident in patients with cognitive deficits. In irradiated lymphoblasts, peak radiation-induced γH2AX levels were significantly reduced in patients. No differences between patients and controls were found in the rate of DNA repair or in cell cycle distribution. CONCLUSIONS The significant differences in DNA damage response signalling observed involve modification of histone variant H2AX and thereby implicate regulatory processes determining chromatin structure in dividing lymphoblasts from patients with schizophrenia. The role that aberrant DNA damage response signalling plays in protecting patients from cancer is unclear.
Collapse
|
34
|
Abstract
A wide variety of endocrine, physiological, and metabolic functions follow daily oscillations. Most of these regulations are controlled at the level of gene expression by the circadian clock and, a remarkably coordinated transcription-translation machinery that exerts its function in virtually all mammalian cells. A large fraction of the genome is under control of the circadian clock, a regulation that is achieved through dynamic changes in chromatin states. Recent findings have demonstrated intimate connections between the circadian clock and epigenetic control. The case of nicotinamide adenine dinucleotide, which modulates the circadian activity of the deacetylase sirtuin 1, constitutes a paradigmatic example of the link between cyclic cellular metabolism and chromatin remodeling. Indeed, the clock transcriptional feedback loop is interlocked with the enzymatic loop of the nicotinamide adenine dinucleotide salvage pathway.
Collapse
Affiliation(s)
- Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, University of California, Irvine, School of Medicine, Irvine, California 92697, USA.
| |
Collapse
|
35
|
Géranton SM. Targeting epigenetic mechanisms for pain relief. Curr Opin Pharmacol 2011; 12:35-41. [PMID: 22056026 DOI: 10.1016/j.coph.2011.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/09/2011] [Indexed: 01/06/2023]
Abstract
Epigenetic changes are chemical modifications to chromatin that modulate gene activity without altering the DNA sequence. While research on epigenetics has grown exponentially over the past few years, very few studies have investigated epigenetic mechanisms in relation to pain states. However, epigenetic mechanisms are crucial to memory formation that requires similar synaptic plasticity to pain processing, indicating that they may play a key role in the control of pain states. This article reviews the early evidence suggesting that epigenetic mechanisms are engaged after injury and in chronic pain states, and that drugs used clinically to target the epigenetic machinery for the treatment of cancer might be useful for the management of chronic pain.
Collapse
Affiliation(s)
- Sandrine M Géranton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
36
|
CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J 2011; 30:4287-98. [PMID: 21847097 DOI: 10.1038/emboj.2011.299] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/25/2011] [Indexed: 12/18/2022] Open
Abstract
The epigenetic changes of the chromatin represent an attractive molecular substrate for adaptation to the environment. We examined here the role of CREB-binding protein (CBP), a histone acetyltransferase involved in mental retardation, in the genesis and maintenance of long-lasting systemic and behavioural adaptations to environmental enrichment (EE). Morphological and behavioural analyses demonstrated that EE ameliorates deficits associated to CBP deficiency. However, CBP-deficient mice also showed a strong defect in environment-induced neurogenesis and impaired EE-mediated enhancement of spatial navigation and pattern separation ability. These defects correlated with an attenuation of the transcriptional programme induced in response to EE and with deficits in histone acetylation at the promoters of EE-regulated, neurogenesis-related genes. Additional experiments in CBP restricted and inducible knockout mice indicated that environment-induced adult neurogenesis is extrinsically regulated by CBP function in mature granule cells. Overall, our experiments demonstrate that the environment alters gene expression by impinging on activities involved in modifying the epigenome and identify CBP-dependent transcriptional neuroadaptation as an important mediator of EE-induced benefits, a finding with important implications for mental retardation therapeutics.
Collapse
|
37
|
Leslie JH. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223-37. [PMID: 21601615 PMCID: PMC3134580 DOI: 10.1016/j.pneurobio.2011.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.
Collapse
Affiliation(s)
- Jennifer H. Leslie
- Department of Biology Picower Institute for Learning and Memory Massachusetts Institute of Technology Phone: 617-258-5241 Fax: 617-452-2249
| |
Collapse
|
38
|
Abstract
Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ to mimic the host genome and undergo latency to evade the host's recognition of the pathogen, they have also developed epigenetic mechanisms by which they can render the host's immune responses inactive to their antigens. The epigenetic regulation of gene expression is intrinsically active inside the host and is involved in regulating gene expression and cellular differentiation. Viral immune evasion strategies are an area of major concern in modern biomedical research. Immune evasion strategies may involve interference with the host antigen presentation machinery or host immune gene expression capabilities, and viruses, in these manners, introduce and propagate infection. The aim of this review is to elucidate the various epigenetic changes that viruses are capable of bringing about in their host in order to enhance their own survivability and pathogenesis.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- National Brain Research Centre, Manesar, Haryana 122 050, India
| | | |
Collapse
|
39
|
Ablation of CBP in forebrain principal neurons causes modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability. J Neurosci 2011; 31:1652-63. [PMID: 21289174 DOI: 10.1523/jneurosci.4737-10.2011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is an inheritable disease associated with mutations in the gene encoding the CREB (cAMP response element-binding protein)-binding protein (CBP) and characterized by growth impairment, learning disabilities, and distinctive facial and skeletal features. Studies in mouse models for RSTS first suggested a direct role for CBP and histone acetylation in cognition and memory. Here, we took advantage of the genetic tools for generating mice in which the CBP gene is specifically deleted in postmitotic principal neurons of the forebrain to investigate the consequences of the loss of CBP in the adult brain. In contrast to the conventional CBP knock-out mice, which exhibit very early embryonic lethality, postnatal forebrain-restricted CBP mutants were viable and displayed no overt abnormalities. We identified the dimer of histones H2A and H2B as the preferred substrate of the histone acetyltransferase domain of CBP. Surprisingly, the loss of CBP and subsequent histone hypoacetylation had a very modest impact in the expression of a number of immediate early genes and did not affect neuronal viability. In addition, the behavioral characterization of these mice dissociated embryonic and postnatal deficits caused by impaired CBP function, narrowed down the anatomical substrate of specific behavioral defects, and confirmed the special sensitivity of object recognition memory to CBP deficiency. Overall, our study provides novel insights into RSTS etiology and clarifies some of the standing questions concerning the role of CBP and histone acetylation in activity-driven gene expression, memory formation, and neurodegeneration.
Collapse
|
40
|
Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010; 13:1338-44. [PMID: 20975758 PMCID: PMC3324277 DOI: 10.1038/nn.2672] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders.
Collapse
Affiliation(s)
- Dengke K Ma
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|