1
|
Han Z, Xie L, Liu X, Yang J, Luo H, Ding R, Chen H, Cheng L, Fang Z, Jiang L. Characterization of the phenotype and functional alternations of three HCN1 variants in Chinese epilepsy patients. Epilepsy Res 2025; 211:107521. [PMID: 39952090 DOI: 10.1016/j.eplepsyres.2025.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE To evaluate the electrophysiological properties of three HCN1 variant sites found in Chinese epileptic patients and to explore the potential relationship between genotype and phenotype. METHODS We correlated clinical severity of three patients with HCN1 variants with whole-cell patch-clamp measurements of channel activity, channel expression detected by Western blot, and bioinformatics prediction of the damaging effects of each variant. RESULTS Three patients with the variants p.L400P, p.D534H and p.M243delinsTL, showed different phenotypes, ranging from mild epilepsy to severe epileptic encephalopathy. Variants L400P and D534H were classified as pathogenic by all bioinformatics tools, and variant M243delinsTL was classified as a polymorphism by MutationTaster. The L400P and D534H variants showed significantly reduced current compared with that of the wild-type (WT), while the current density of M243delinsTL was similar to WT. The half-activation voltage (V1/2) of M243delinsTL variant was shifted in the hyperpolarizing direction when compared to the WT, and the slope factor (k) of activation of the M243delinsTL variant was significantly lower than that of the WT. The L400P variant was associated with a significantly higher activation time constant compared with that of the WT. In addition, quantitative detection of the FLAG-tagged HCN1 channel revealed that the expression level of the L400P variant was significantly decreased compared to WT. CONCLUSIONS Elucidation of the type and location of variant sites combined with the use of bioinformatics tools and patch-clamp techniques can improve our understanding of the clinical phenotype of epilepsy associated with HCN1 variants.
Collapse
Affiliation(s)
- Ziyao Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Lingling Xie
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiaorui Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jiaxin Yang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhixu Fang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
2
|
Amakhin DV, Sinyak DS, Soboleva EB, Zaitsev AV. HCN channels promote Na/K-ATPase activity during slow afterhyperpolarization after seizure-like events in vitro. J Physiol 2025; 603:1197-1223. [PMID: 39918972 DOI: 10.1113/jp286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are strongly involved in the regulation of neuronal excitability, with their precise role being determined by their subcellular localization and interaction with other ion channels and transporters. Their role in causing epileptic seizures is not fully understood. Using whole-cell patch-clamp recordings of rat brain slices, we show that HCN channels constitute a substantial fraction of the membrane conductance of deep entorhinal principal neurons. Using the 4-aminopyridine model of epileptic seizures in vitro, we show that HCN channel blockade with ZD-7288 increases the frequency of seizure-like events (SLEs) and alters the time course of afterhyperpolarization after SLEs (post-SLE AHP), promoting its faster onset and making it more transient. Simultaneous whole-cell patch-clamp and K+ ion-selective electrode recordings revealed that the time course of changes in neuronal membrane potential and extracellular K+ concentration after SLEs in the presence of ZD-7288 differed from that in the control, which can be explained by altered Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium pump)] activity after SLEs. To confirm this hypothesis, we demonstrated the ouabain sensitivity of post-SLE AHP and showed that loading neurons with high intracellular Na+ concentration prevented the effect of HCN channel blockade on post-SLE AHP. Taken together, the results obtained suggest that during post-SLE AHP, the influx of Na+ through HCN channels helps to maintain Na/K-ATPase hyperactivity, resulting in the longer pauses between SLEs. Mathematical modelling confirmed the feasibility of the proposed mechanism. Such an interplay between Na/K-ATPase and HCN channels may be crucial for the regulation of seizure termination in epilepsy. KEY POINTS: HCN channels constitute a significant fraction of the resting membrane conductance of deep entorhinal principal neurons. HCN channels modulate the seizure-like events (SLEs) in the entorhinal cortex. The blockade of HCN channels increases the frequency of SLEs and reduces the duration of the afterhyperpolarization that follows them. The results suggest that HCN channels affect intracellular sodium ion concentration dynamics, prolonging the activity of the Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium) pump] after SLEs, which in turn results in longer pauses between them.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Denis S Sinyak
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| |
Collapse
|
3
|
Mishra P, Narayanan R. The enigmatic HCN channels: A cellular neurophysiology perspective. Proteins 2025; 93:72-92. [PMID: 37982354 PMCID: PMC7616572 DOI: 10.1002/prot.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
What physiological role does a slow hyperpolarization-activated ion channel with mixed cation selectivity play in the fast world of neuronal action potentials that are driven by depolarization? That puzzling question has piqued the curiosity of physiology enthusiasts about the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are widely expressed across the body and especially in neurons. In this review, we emphasize the need to assess HCN channels from the perspective of how they respond to time-varying signals, while also accounting for their interactions with other co-expressing channels and receptors. First, we illustrate how the unique structural and functional characteristics of HCN channels allow them to mediate a slow negative feedback loop in the neurons that they express in. We present the several physiological implications of this negative feedback loop to neuronal response characteristics including neuronal gain, voltage sag and rebound, temporal summation, membrane potential resonance, inductive phase lead, spike triggered average, and coincidence detection. Next, we argue that the overall impact of HCN channels on neuronal physiology critically relies on their interactions with other co-expressing channels and receptors. Interactions with other channels allow HCN channels to mediate intrinsic oscillations, earning them the "pacemaker channel" moniker, and to regulate spike frequency adaptation, plateau potentials, neurotransmitter release from presynaptic terminals, and spike initiation at the axonal initial segment. We also explore the impact of spatially non-homogeneous subcellular distributions of HCN channels in different neuronal subtypes and their interactions with other channels and receptors. Finally, we discuss how plasticity in HCN channels is widely prevalent and can mediate different encoding, homeostatic, and neuroprotective functions in a neuron. In summary, we argue that HCN channels form an important class of channels that mediate a diversity of neuronal functions owing to their unique gating kinetics that made them a puzzle in the first place.
Collapse
Affiliation(s)
- Poonam Mishra
- Department of Neuroscience, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
4
|
Houdayer C, Phillips AM, Chabbert M, Bourreau J, Maroofian R, Houlden H, Richards K, Saadi NW, Dad'ová E, Van Bogaert P, Rupin M, Keren B, Charles P, Smol T, Riquet A, Pais L, O'Donnell-Luria A, VanNoy GE, Bayat A, Møller RS, Olofsson K, Abou Jamra R, Syrbe S, Dasouki M, Seaver LH, Sullivan JA, Shashi V, Alkuraya FS, Poss AF, Spence JE, Schnur RE, Forster IC, Mckenzie CE, Simons C, Wang M, Snell P, Kothur K, Buckley M, Roscioli T, Elserafy N, Dauriat B, Procaccio V, Henrion D, Lenaers G, Colin E, Verbeek NE, Van Gassen KL, Legendre C, Bonneau D, Reid CA, Howell KB, Ziegler A, Legros C. Mono and biallelic variants in HCN2 cause severe neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24303984. [PMID: 38562733 PMCID: PMC10984036 DOI: 10.1101/2024.03.19.24303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.
Collapse
|
5
|
Kobayashi Y, Tohyama J, Akasaka N, Yamada K, Hojo M, Seki E, Miura M, Soma N, Ono T, Kato M, Nakashima M, Saitsu H, Matsumoto N. The HCN1 p.Ser399Pro variant causes epileptic encephalopathy with super-refractory status epilepticus. Hum Genome Var 2023; 10:20. [PMID: 37353494 PMCID: PMC10290089 DOI: 10.1038/s41439-023-00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
HCN1 is one of four genes encoding hyperpolarization-activated cyclic nucleotide-gated channels. The phenotypic spectrum associated with HCN1 variants ranges from neonatal developmental and epileptic encephalopathy to idiopathic generalized epilepsy. We report a Japanese patient with repetitive focal seizures and super-refractory status epilepticus since early infancy caused by a de novo HCN1 variant, NM_021072.4, c.1195T>C, p.(Ser399Pro). This variant might have a dominant-negative effect on channel function, leading to severe epileptic encephalopathy.
Collapse
Affiliation(s)
- Yu Kobayashi
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan.
| | - Noriyuki Akasaka
- Department of Pediatrics, Niigata Prefecture Hamagumi Medical Rehabilitation Center for Disabled Children, Niigata, Japan
| | - Kei Yamada
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Moemi Hojo
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Eijun Seki
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Masaki Miura
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Noriko Soma
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Takeshi Ono
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Wang Y, Liu M, Wang Q. Subicular circuit in epilepsy: deconstruct heterogeneity for precise therapeutics. Front Neurosci 2023; 17:1202372. [PMID: 37383101 PMCID: PMC10293612 DOI: 10.3389/fnins.2023.1202372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Mengru Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Hung TY, Wu SN, Huang CW. Concerted suppressive effects of carisbamate, an anti-epileptic alkyl-carbamate drug, on voltage-gated Na + and hyperpolarization-activated cation currents. Front Cell Neurosci 2023; 17:1159067. [PMID: 37293624 PMCID: PMC10244622 DOI: 10.3389/fncel.2023.1159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Carisbamate (CRS, RWJ-333369) is a new anti-seizure medication. It remains unclear whether and how CRS can perturb the magnitude and/or gating kinetics of membrane ionic currents, despite a few reports demonstrating its ability to suppress voltage-gated Na+ currents. In this study, we observed a set of whole-cell current recordings and found that CRS effectively suppressed the voltage-gated Na+ (INa) and hyperpolarization-activated cation currents (Ih) intrinsically in electrically excitable cells (GH3 cells). The effective IC50 values of CRS for the differential suppression of transient (INa(T)) and late INa (INa(L)) were 56.4 and 11.4 μM, respectively. However, CRS strongly decreased the strength (i.e., Δarea) of the nonlinear window component of INa (INa(W)), which was activated by a short ascending ramp voltage (Vramp); the subsequent addition of deltamethrin (DLT, 10 μM) counteracted the ability of CRS (100 μM, continuous exposure) to suppress INa(W). CRS strikingly decreased the decay time constant of INa(T) evoked during pulse train stimulation; however, the addition of telmisartan (10 μM) effectively attenuated the CRS (30 μM, continuous exposure)-mediated decrease in the decay time constant of the current. During continued exposure to deltamethrin (10 μM), known to be a pyrethroid insecticide, the addition of CRS resulted in differential suppression of the amplitudes of INa(T) and INa(L). The amplitude of Ih activated by a 2-s membrane hyperpolarization was diminished by CRS in a concentration-dependent manner, with an IC50 value of 38 μM. For Ih, CRS altered the steady-state I-V relationship and attenuated the strength of voltage-dependent hysteresis (Hys(V)) activated by an inverted isosceles-triangular Vramp. Moreover, the addition of oxaliplatin effectively reversed the CRS-mediated suppression of Hys(V). The predicted docking interaction between CRS and with a model of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel or between CRS and the hNaV1.7 channel reflects the ability of CRS to bind to amino acid residues in HCN or hNaV1.7 channel via hydrogen bonds and hydrophobic interactions. These findings reveal the propensity of CRS to modify INa(T) and INa(L) differentially and to effectively suppress the magnitude of Ih. INa and Ih are thus potential targets of the actions of CRS in terms of modulating cellular excitability.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Sun D, Wang Q. The application of SUDEP in forensic diagnosis: a mini review. Front Neurol 2023; 14:1169003. [PMID: 37181558 PMCID: PMC10169668 DOI: 10.3389/fneur.2023.1169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
In the epilepsy population, the risk of sudden death from epilepsy is rare but is ~24 times greater than the risk of sudden death from other causes. Sudden unexpected death in epilepsy (SUDEP) has been widely recognized in clinical studies. Despite its significance as a cause of death, SUDEP is rarely used in forensic practice. This review focuses on the forensic characteristics of SUDEP, analyzed the reasons for its underuse in forensic practice, and illustrated the prospect of establishing uniform diagnostic criteria for sudden unexpected death in epilepsy and molecular anatomy in aiding forensic diagnosis.
Collapse
Affiliation(s)
| | - Qiang Wang
- Forensic Science Center, East China University of Political Science and Law, Shanghai, China
| |
Collapse
|
10
|
Liu J, Kasuya G, Zempo B, Nakajo K. Two HCN4 Channels Play Functional Roles in the Zebrafish Heart. Front Physiol 2022; 13:901571. [PMID: 35846012 PMCID: PMC9281569 DOI: 10.3389/fphys.2022.901571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The HCN4 channel is essential for heart rate regulation in vertebrates by generating pacemaker potentials in the sinoatrial node. HCN4 channel abnormality may cause bradycardia and sick sinus syndrome, making it an important target for clinical research and drug discovery. The zebrafish is a popular animal model for cardiovascular research. They are potentially suitable for studying inherited heart diseases, including cardiac arrhythmia. However, it has not been determined how similar the ion channels that underlie cardiac automaticity are in zebrafish and humans. In the case of HCN4, humans have one gene, whereas zebrafish have two ortholog genes (DrHCN4 and DrHCN4L; ‘Dr’ referring to Danio rerio). However, it is not known whether the two HCN4 channels have different physiological functions and roles in heart rate regulation. In this study, we characterized the biophysical properties of the two zebrafish HCN4 channels in Xenopus oocytes and compared them to those of the human HCN4 channel. We found that they showed different gating properties: DrHCN4L currents showed faster activation kinetics and a more positively shifted G-V curve than did DrHCN4 and human HCN4 currents. We made chimeric channels of DrHCN4 and DrHCN4L and found that cytoplasmic domains were determinants for the faster activation and the positively shifted G-V relationship in DrHCN4L. The use of a dominant-negative HCN4 mutant confirmed that DrHCN4 and DrHCN4L can form a heteromultimeric channel in Xenopus oocytes. Next, we confirmed that both are sensitive to common HCN channel inhibitors/blockers including Cs+, ivabradine, and ZD7288. These HCN inhibitors successfully lowered zebrafish heart rate during early embryonic stages. Finally, we knocked down the HCN4 genes using antisense morpholino and found that knocking down either or both of the HCN4 channels caused a temporal decrease in heart rate and tended to cause pericardial edema. These findings suggest that both DrHCN4 and DrHCN4L play a significant role in zebrafish heart rate regulation.
Collapse
|
11
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
12
|
Kleis P, Paschen E, Häussler U, Bernal Sierra YA, Haas CA. Long-term in vivo application of a potassium channel-based optogenetic silencer in the healthy and epileptic mouse hippocampus. BMC Biol 2022; 20:18. [PMID: 35031048 PMCID: PMC8760681 DOI: 10.1186/s12915-021-01210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optogenetic tools allow precise manipulation of neuronal activity via genetically encoded light-sensitive proteins. Currently available optogenetic inhibitors are not suitable for prolonged use due to short-lasting photocurrents, tissue heating, and unintended changes in ion distributions, which may interfere with normal neuron physiology. To overcome these limitations, a novel potassium channel-based optogenetic silencer, named PACK, was recently developed. The PACK tool has two components: a photoactivated adenylyl cyclase from Beggiatoa (bPAC) and a cAMP-dependent potassium channel, SthK, which carries a large, long-lasting potassium current in mammalian cells. Previously, it has been shown that activating the PACK silencer with short light pulses led to a significant reduction of neuronal firing in various in vitro and acute in vivo settings. Here, we examined the viability of performing long-term studies in vivo by looking at the inhibitory action and side effects of PACK and its components in healthy and epileptic adult male mice. RESULTS We targeted hippocampal cornu ammonis (CA1) pyramidal cells using a viral vector and enabled illumination of these neurons via an implanted optic fiber. Local field potential (LFP) recordings from CA1 of freely moving mice revealed significantly reduced neuronal activity during 50-min intermittent (0.1 Hz) illumination, especially in the gamma frequency range. Adversely, PACK expression in healthy mice induced chronic astrogliosis, dispersion of pyramidal cells, and generalized seizures. These side effects were independent of the light application and were also present in mice expressing bPAC without the potassium channel. Light activation of bPAC alone increased neuronal activity, presumably via enhanced cAMP signaling. Furthermore, we applied bPAC and PACK in the contralateral hippocampus of chronically epileptic mice following a unilateral injection of intrahippocampal kainate. Unexpectedly, the expression of bPAC in the contralateral CA1 area was sufficient to prevent the spread of spontaneous epileptiform activity from the seizure focus to the contralateral hippocampus. CONCLUSION Our study highlights the PACK tool as a potent optogenetic inhibitor in vivo. However, further refinement of its light-sensitive domain is required to avoid unexpected physiological changes.
Collapse
Affiliation(s)
- P Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106, Freiburg, Germany
| | - E Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - U Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106, Freiburg, Germany.,BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany
| | - Y A Bernal Sierra
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, 10115, Berlin, Germany
| | - C A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106, Freiburg, Germany. .,BrainLinks-BrainTools, University of Freiburg, 79110, Freiburg, Germany. .,Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Kajiwara R, Nakamura S, Ikeda K, Onimaru H, Yoshida A, Tsutsumi Y, Nakayama K, Mochizuki A, Dantsuji M, Nishimura A, Tachikawa S, Iijima T, Inoue T. Intrinsic properties and synaptic connectivity of Phox2b-expressing neurons in rat rostral parvocellular reticular formation. Neurosci Res 2021; 178:41-51. [PMID: 34973291 DOI: 10.1016/j.neures.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The paired-like homeobox 2b gene (Phox2b) is critical for the development of the autonomic nervous system. We have previously demonstrated the distinct characteristics of Phox2b-expressing (Phox2b+) neurons in the reticular formation dorsal to the trigeminal motor nucleus (RdV), which are likely related to jaw movement regulation. In this study, we focused on Phox2b+ neurons in the rostral parvocellular reticular formation (rPCRt), a critical region for controlling orofacial functions, using 2-11-day-old Phox2b-EYFP rats. Most Phox2b+ rPCRt neurons were glutamatergic, but not GABAergic or glycinergic. Approximately 65 % of Phox2b+ rPCRt neurons fired at a low frequency, and approximately 24 % of Phox2b+ rPCRt neurons fired spontaneously, as opposed to Phox2b+ RdV neurons. Stimulation of the RdV evoked inward postsynaptic currents in more than 50 % of Phox2b+ rPCRt neurons, while only one Phox2b+ rPCRt neuron responded to stimulation of the nucleus of the solitary tract. Five of the 10 Phox2b+ neurons sent their axons that ramified within the trigeminal motor nucleus (MoV). Of these, the axons of the two neurons terminated within both the MoV and rPCRt. Our findings suggest that Phox2b+ rPCRt neurons have distinct electrophysiological and synaptic properties that may be involved in the motor control of feeding behavior.
Collapse
Affiliation(s)
- Risa Kajiwara
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Akiko Nishimura
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Satoshi Tachikawa
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
14
|
Mishra P, Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol Rep 2021; 9:e14963. [PMID: 34342171 PMCID: PMC8329439 DOI: 10.14814/phy2.14963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Degeneracy, the ability of multiple structural components to elicit the same characteristic functional properties, constitutes an elegant mechanism for achieving biological robustness. In this study, we sought electrophysiological signatures for the expression of ion-channel degeneracy in the emergence of intrinsic properties of rat hippocampal granule cells. We measured the impact of four different ion-channel subtypes-hyperpolarization-activated cyclic-nucleotide-gated (HCN), barium-sensitive inward rectifier potassium (Kir ), tertiapin-Q-sensitive inward rectifier potassium, and persistent sodium (NaP) channels-on 21 functional measurements employing pharmacological agents, and report electrophysiological data on two characteristic signatures for the expression of ion-channel degeneracy in granule cells. First, the blockade of a specific ion-channel subtype altered several, but not all, functional measurements. Furthermore, any given functional measurement was altered by the blockade of many, but not all, ion-channel subtypes. Second, the impact of blocking each ion-channel subtype manifested neuron-to-neuron variability in the quantum of changes in the electrophysiological measurements. Specifically, we found that blocking HCN or Ba-sensitive Kir channels enhanced action potential firing rate, but blockade of NaP channels reduced firing rate of granule cells. Subthreshold measures of granule cell intrinsic excitability (input resistance, temporal summation, and impedance amplitude) were enhanced by blockade of HCN or Ba-sensitive Kir channels, but were not significantly altered by NaP channel blockade. We confirmed that the HCN and Ba-sensitive Kir channels independently altered sub- and suprathreshold properties of granule cells through sequential application of pharmacological agents that blocked these channels. Finally, we found that none of the sub- or suprathreshold measurements of granule cells were significantly altered upon treatment with tertiapin-Q. Together, the heterogeneous many-to-many mapping between ion channels and single-neuron intrinsic properties emphasizes the need to account for ion-channel degeneracy in cellular- and network-scale physiology.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
15
|
Combe CL, Gasparini S. I h from synapses to networks: HCN channel functions and modulation in neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:119-132. [PMID: 34181891 DOI: 10.1016/j.pbiomolbio.2021.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels and the current they carry, Ih, are widely and diversely distributed in the central nervous system (CNS). The distribution of the four subunits of HCN channels is variable within the CNS, within brain regions, and often within subcellular compartments. The precise function of Ih can depend heavily on what other channels are co-expressed. In this review, we give an overview of HCN channel structure, distribution, and modulation by cyclic adenosine monophosphate (cAMP). We then discuss HCN channel and Ih functions, where we have parsed the roles into two main effects: a steady effect on maintaining the resting membrane potential at relatively depolarized values, and slow channel dynamics. Within this framework, we discuss Ih involvement in resonance, synaptic integration, transmitter release, plasticity, and point out a special case, where the effects of Ih on the membrane potential and its slow channel dynamics have dual roles in thalamic neurons.
Collapse
Affiliation(s)
- Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Losi G, Gomez-Gonzalo M, Zonta M, Chiavegato A, Carmignoto G. Cellular and molecular mechanisms of new onset seizure generation. Aging Clin Exp Res 2021; 33:1713-1716. [PMID: 31732960 DOI: 10.1007/s40520-019-01396-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022]
Abstract
New onset epilepsy and seizures are common neurological disorders in aged people, second only to stroke and dementia. They are frequently related to other pathological conditions including stroke, trauma, tumors and neurological diseases whereas in about one-third of cases the origin is unknown. Besides the origin, the cellular and molecular events that suddenly trigger seizures are poorly defined. Using an acute model of seizure generation that better resembles new onset seizures, we studied GABAergic interneurons and astrocytes during seizure generation. We found that seizures are preceded by a GABAergic rhythmic hyperactivity that synchronizes pyramidal neurons by inducing a rebound spiking that favors seizures' onset. Furthermore, the intense activity in GABAergic interneurons evokes Ca2+ elevations in astrocytes that, by releasing glutamate, further excite neuronal network. Elucidating the cellular and molecular events that generate seizures may reveal new targets for treatment of new onset seizures and epilepsy.
Collapse
Affiliation(s)
- Gabriele Losi
- Neuroscience Institute, National Research Council (CNR), Viale Giuseppe Colombo 3, Padua, Italy.
- Department of Biomedical Science, University of Padua, via Ugo Bassi 58/B, Padua, Italy.
| | - Marta Gomez-Gonzalo
- Neuroscience Institute, National Research Council (CNR), Viale Giuseppe Colombo 3, Padua, Italy
- Department of Biomedical Science, University of Padua, via Ugo Bassi 58/B, Padua, Italy
| | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), Viale Giuseppe Colombo 3, Padua, Italy
- Department of Biomedical Science, University of Padua, via Ugo Bassi 58/B, Padua, Italy
| | - Angela Chiavegato
- Department of Biomedical Science, University of Padua, via Ugo Bassi 58/B, Padua, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR), Viale Giuseppe Colombo 3, Padua, Italy.
- Department of Biomedical Science, University of Padua, via Ugo Bassi 58/B, Padua, Italy.
| |
Collapse
|
17
|
Changes in Excitability Properties of Ventromedial Motor Thalamic Neurons in 6-OHDA Lesioned Mice. eNeuro 2021; 8:ENEURO.0436-20.2021. [PMID: 33509950 PMCID: PMC7920540 DOI: 10.1523/eneuro.0436-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
The activity of basal ganglia input receiving motor thalamus (BGMT) makes a critical impact on motor cortical processing, but modification in BGMT processing with Parkinsonian conditions has not be investigated at the cellular level. Such changes may well be expected because of homeostatic regulation of neural excitability in the presence of altered synaptic drive with dopamine depletion. We addressed this question by comparing BGMT properties in brain slice recordings between control and unilaterally 6-hydroxydopamine hydrochloride (6-OHDA)-treated adult mice. At a minimum of one month after 6-OHDA treatment, BGMT neurons showed a highly significant increase in intrinsic excitability, which was primarily because of a decrease in M-type potassium current. BGMT neurons after 6-OHDA treatment also showed an increase in T-type calcium rebound spikes following hyperpolarizing current steps. Biophysical computer modeling of a thalamic neuron demonstrated that an increase in rebound spiking can also be accounted for by a decrease in the M-type potassium current. Modeling also showed that an increase in sag with hyperpolarizing steps found after 6-OHDA treatment could in part but not fully be accounted for by the decrease in M-type current. These findings support the hypothesis that homeostatic changes in BGMT neural properties following 6-OHDA treatment likely influence the signal processing taking place in the BG thalamocortical network in Parkinson’s disease.
Collapse
|
18
|
Pléau C, Peret A, Pearlstein E, Scalfati T, Vigier A, Marti G, Michel FJ, Marissal T, Crépel V. Dentate Granule Cells Recruited in the Home Environment Display Distinctive Properties. Front Cell Neurosci 2021; 14:609123. [PMID: 33519383 PMCID: PMC7843370 DOI: 10.3389/fncel.2020.609123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The dentate granule cells (DGCs) play a crucial role in learning and memory. Many studies have described the role and physiological properties of these sparsely active neurons using different behavioral contexts. However, the morpho-functional features of DGCs recruited in mice maintained in their home cage (without training), considered as a baseline condition, have not yet been established. Using fosGFP transgenic mice, we observed ex vivo that DGCs recruited in animals maintained in the home cage condition are mature neurons that display a longer dendritic tree and lower excitability compared with non-activated cells. The higher GABAA receptor-mediated shunting inhibition contributes to the lower excitability of DGCs activated in the home environment by shifting the input resistance towards lower values. Remarkably, that shunting inhibition is neither observed in non-activated DGCs nor in DGCs activated during training in virtual reality. In short, our results suggest that strong shunting inhibition and reduced excitability could constitute a distinctive neural signature of mature DGCs recruited in the context of the home environment.
Collapse
Affiliation(s)
- Claire Pléau
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Angélique Peret
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | - Thomas Scalfati
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Alexandre Vigier
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | | | - Thomas Marissal
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
19
|
Wang GH, Chou P, Hsueh SW, Yang YC, Kuo CC. Glutamate transmission rather than cellular pacemaking propels excitatory-inhibitory resonance for ictogenesis in amygdala. Neurobiol Dis 2020; 148:105188. [PMID: 33221531 DOI: 10.1016/j.nbd.2020.105188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.
Collapse
Affiliation(s)
- Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
20
|
Hsieh LS, Wen JH, Nguyen LH, Zhang L, Getz S, Torres-Reveron J, Wang Y, Spencer DD, Bordey A. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci Transl Med 2020; 12:12/570/eabc1492. [PMID: 33208499 PMCID: PMC9888000 DOI: 10.1126/scitranslmed.abc1492] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.
Collapse
Affiliation(s)
- Lawrence S. Hsieh
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - John H. Wen
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lena H. Nguyen
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Stephanie Getz
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Juan Torres-Reveron
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ying Wang
- Emergency Department, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, Hunan 410008, China
| | - Dennis D. Spencer
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,To whom correspondence should be addressed: Angélique Bordey, Ph.D., Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, FMB 422, New Haven, CT 06520-8082, Phone: 203-737-2515, Fax: 203-737-2159,
| |
Collapse
|
21
|
Trompoukis G, Rigas P, Leontiadis LJ, Papatheodoropoulos C. I h, GIRK, and KCNQ/Kv7 channels differently modulate sharp wave - ripples in the dorsal and ventral hippocampus. Mol Cell Neurosci 2020; 107:103531. [PMID: 32711112 DOI: 10.1016/j.mcn.2020.103531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Sharp waves and ripples (SPW-Rs) are endogenous transient patterns of hippocampus local network activity implicated in several functions including memory consolidation, and they are diversified between the dorsal and the ventral hippocampus. Ion channels in the neuronal membrane play important roles in cell and local network function. In this study, using transverse slices and field potential recordings from the CA1 field of rat hippocampus we show that GIRK and KCNQ2/3 potassium channels play a higher role in modulating SPW-Rs in the dorsal hippocampus, while Ih and other KCNQ (presumably KCNQ5) channels, contribute to shaping SPW-R activity more in the ventral than in dorsal hippocampus. Specifically, blockade of Ih channels by ZD 7288 reduced the rate of occurrence of SPW-Rs and increased the generation of SPW-Rs in the form of clusters in both hippocampal segments, while enhanced the amplitude of SPW-Rs only in the ventral hippocampus. Most effects of ZD 7288 appeared to be independent of NMDA receptors' activity. However, the effects of blockade of NMDA receptors depended on the functional state of Ih channels in both hippocampal segments. Blockade of GIRK channels by Tertiapin-Q increased the rate of occurrence of SPW-Rs only in the dorsal hippocampus and the probability of clusters in both segments of the hippocampus. Blockade of KCNQ2/3 channels by XE 991 increased the rate of occurrence of SPW-Rs and the probability of clusters in the dorsal hippocampus, and only reduced the clustered generation of SPW-Rs in the ventral hippocampus. The blocker of KCNQ1/2 channels, that also enhances KCNQ5 channels, UCL 2077, increased the probability of clusters and the power of the ripple oscillation in the ventral hippocampus only. These results suggest that GIRK, KCNQ and Ih channels represent a key mechanism for modulation of SPW-R activity which act differently in the dorsal and ventral hippocampus, fundamentally supporting functional diversification along the dorsal-ventral axis of the hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Pavlos Rigas
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Leonidas J Leontiadis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
22
|
Lee SY, Vuong TA, So HK, Kim HJ, Kim YB, Kang JS, Kwon I, Cho H. PRMT7 deficiency causes dysregulation of the HCN channels in the CA1 pyramidal cells and impairment of social behaviors. Exp Mol Med 2020; 52:604-614. [PMID: 32269286 PMCID: PMC7210990 DOI: 10.1038/s12276-020-0417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
HCN channels regulate excitability and rhythmicity in the hippocampal CA1 pyramidal cells. Perturbation in the HCN channel current (Ih) is associated with neuropsychiatric disorders, such as autism spectrum disorders. Recently, protein arginine methyltransferase 7 (PRMT7) was shown to be highly expressed in the hippocampus, including the CA1 region. However, the physiological function of PRMT7 in the CA1 neurons and the relationship to psychiatric disorders are unclear. Here we showed that PRMT7 knockout (KO) mice exhibit hyperactivity and deficits in social interaction. The firing frequency of the CA1 neurons in the PRMT7 KO mice was significantly higher than that in the wild-type (WT) mice. Compared with the WT CA1 neurons, the PRMT7 KO CA1 neurons showed a more hyperpolarized resting potential and a higher input resistance, which were occluded by the Ih-current inhibitor ZD7288; these findings were consistent with the decreased Ih and suggested the contribution of Ih-channel dysfunction to the PRMT7 KO phenotypes. The HCN1 protein level was decreased in the CA1 region of the PRMT7 KO mice in conjunction with a decrease in the expression of Shank3, which encodes a core scaffolding protein for HCN channel proteins. A brief application of the PRMT7 inhibitor DS437 did not reproduce the phenotype of the PRMT7 KO neurons, further indicating that PRMT7 regulates Ih by controlling the channel number rather than the open probability. Moreover, shRNA-mediated PRMT7 suppression reduced both the mRNA and protein levels of SHANK3, implying that PRMT7 deficiency might be responsible for the decrease in the HCN protein levels by altering Shank3 expression. These findings reveal a key role for PRMT7 in the regulation of HCN channel density in the CA1 pyramidal cells that may be amenable to pharmacological intervention for neuropsychiatric disorders. Disrupted expression of an ion channel that helps stabilize brain cell activity contributes to behavioral symptoms in mice resembling those seen in autism spectrum disorders (ASDs). Nerve cell firing depends on the right balance of ions inside and outside cells, and a channel protein called HCN helps establish ionic conditions that prevent excessive activity. Researchers led by Hana Cho and Ilmin Kwon of the Sungkyunkwan University School of Medicine, Suwon, South Korea have demonstrated that mice lacking another protein called PRMT7 exhibit reduced numbers of HCN channels in brain structures known to be affected in animal models of ASDs. These mice exhibit hyperactivity and social anxiety, presumably as a consequence of poor regulation of nerve cell firing. The authors propose that this PRMT7-HCN pathway may offer a fruitful target for the development of neuropsychiatric therapies.
Collapse
Affiliation(s)
- Seul-Yi Lee
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tuan Anh Vuong
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Kyung So
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yoo Bin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|
23
|
Villa C, Suphesiz H, Combi R, Akyuz E. Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying Alzheimer's disease: An update. Mech Ageing Dev 2019; 185:111197. [PMID: 31862274 DOI: 10.1016/j.mad.2019.111197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
With more than 80 subunits, potassium (K+) channels represent a group of ion channels showing high degree of diversity and ubiquity. They play important role in the control of membrane depolarization and cell excitability in several tissues, including the brain. Controlling the intracellular and extracellular K+ flow in cells, they also modulate the hormone and neurotransmitter release, apoptosis and cell proliferation. It is therefore not surprising that an improper functioning of K+ channels in neurons has been associated with pathophysiology of a wide range of neurological disorders, especially Alzheimer's disease (AD). This review aims to give a comprehensive overview of the basic properties and pathophysiological functions of the main classes of K+ channels in the context of disease processes, also discussing the progress, challenges and opportunities to develop drugs targeting these channels as potential pharmacological approach for AD treatment.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | | | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Enes Akyuz
- Yozgat Bozok University, Medical Faculty, Department of Biophysics, Yozgat, Turkey.
| |
Collapse
|
24
|
Kaur S, Singh N, Jaggi AS. Opening of T-type Ca2+ channels and activation of HCN channels contribute in stress adaptation in cold water immersion stress-subjected mice. Life Sci 2019; 232:116605. [DOI: 10.1016/j.lfs.2019.116605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
|
25
|
Marini C, Porro A, Rastetter A, Dalle C, Rivolta I, Bauer D, Oegema R, Nava C, Parrini E, Mei D, Mercer C, Dhamija R, Chambers C, Coubes C, Thévenon J, Kuentz P, Julia S, Pasquier L, Dubourg C, Carré W, Rosati A, Melani F, Pisano T, Giardino M, Innes AM, Alembik Y, Scheidecker S, Santos M, Figueiroa S, Garrido C, Fusco C, Frattini D, Spagnoli C, Binda A, Granata T, Ragona F, Freri E, Franceschetti S, Canafoglia L, Castellotti B, Gellera C, Milanesi R, Mancardi MM, Clark DR, Kok F, Helbig KL, Ichikawa S, Sadler L, Neupauerová J, Laššuthova P, Šterbová K, Laridon A, Brilstra E, Koeleman B, Lemke JR, Zara F, Striano P, Soblet J, Smits G, Deconinck N, Barbuti A, DiFrancesco D, LeGuern E, Guerrini R, Santoro B, Hamacher K, Thiel G, Moroni A, DiFrancesco JC, Depienne C. HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain 2019; 141:3160-3178. [PMID: 30351409 DOI: 10.1093/brain/awy263] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.
Collapse
Affiliation(s)
- Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy.,EuroEPINOMICS RES Consortium
| | | | - Agnès Rastetter
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Carine Dalle
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Ilaria Rivolta
- School of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Daniel Bauer
- Computational Biology and Simulation Group, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Nava
- EuroEPINOMICS RES Consortium.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy
| | - Catherine Mercer
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Chelsea Chambers
- Department of Neurosciences, University of Virginia, Charlottesville, VA, USA
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Julien Thévenon
- FHU-TRANSLAD, Université de Bourgogne/CHU Dijon and INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France
| | - Paul Kuentz
- FHU-TRANSLAD, Université de Bourgogne/CHU Dijon and INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France.,Génétique Biologique Histologie, CHRU de Besançon, Besançon, France
| | - Sophie Julia
- Service de génétique médicale, Pôle de biologie, CHU de Toulouse - Hôpital Purpan, Toulouse, France
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre Référence Déficiences Intellectuelles de causes rares (CRDI), CHU Rennes, Rennes, France
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes, France
| | - Wilfrid Carré
- Laboratoire de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes, France
| | - Anna Rosati
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy
| | - Federico Melani
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy
| | - Maria Giardino
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yves Alembik
- Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Manuela Santos
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Sonia Figueiroa
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Cristina Garrido
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Carlo Fusco
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Binda
- School of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Tiziana Granata
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Elena Freri
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Cinzia Gellera
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milan, Italy
| | - Maria Margherita Mancardi
- Child Neuropsychiatry Unit, Department of Medical and Surgical Neurosciences and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Fernando Kok
- Mendelics Genomic Analysis, Sao Paulo, SP, Brazil
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shoji Ichikawa
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Laurie Sadler
- Division of Genetics, Department of Pediatrics, Oishei Children's Hospital, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Jana Neupauerová
- Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Petra Laššuthova
- Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katalin Šterbová
- EuroEPINOMICS RES Consortium.,Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Annick Laridon
- Department of Neurology, Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
| | - Eva Brilstra
- EuroEPINOMICS RES Consortium.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobby Koeleman
- EuroEPINOMICS RES Consortium.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes R Lemke
- EuroEPINOMICS RES Consortium.,Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Institute G Gaslini, Genova, Italy
| | - Pasquale Striano
- EuroEPINOMICS RES Consortium.,Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 'G Gaslini' Institute, Genova, Italy
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, ULB, Brussels, Belgium
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milan, Italy
| | - Eric LeGuern
- EuroEPINOMICS RES Consortium.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, Florence, Italy.,EuroEPINOMICS RES Consortium
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Kay Hamacher
- Computational Biology and Simulation Group, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Membrane Biophysics, Deparment of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Jacopo C DiFrancesco
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Neurology, San Gerardo Hospital, University Milano-Bicocca, Monza, Italy
| | - Christel Depienne
- EuroEPINOMICS RES Consortium.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France.,Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Carrasco M, Stafstrom CE. How Early Can a Seizure Happen? Pathophysiological Considerations of Extremely Premature Infant Brain Development. Dev Neurosci 2019; 40:417-436. [PMID: 30947192 DOI: 10.1159/000497471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
Seizures in neonates represent a neurologic emergency requiring prompt recognition, determination of etiology, and treatment. Yet, the definition and identification of neonatal seizures remain challenging and controversial, in part due to the unique physiology of brain development at this life stage. These issues are compounded when considering seizures in premature infants, in whom the complexities of brain development may engender different clinical and electrographic seizure features at different points in neuronal maturation. In extremely premature infants (< 28 weeks gestational age), seizure pathophysiology has not been explored in detail. This review discusses the physiological and structural development of the brain in this developmental window, focusing on factors that may lead to seizures and their consequences at this early time point. We hypothesize that the clinical and electrographic phenomenology of seizures in extremely preterm infants reflects the specific pathophysiology of brain development in that age window.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
27
|
Ghotbeddin Z, Heysieattalab S, Borjkhani M, Mirnajafi-Zadeh J, Semnanian S, Hosseinmardi N, Janahmadi M. Ca 2+ Channels Involvement in Low-Frequency Stimulation-Mediated Suppression of Intrinsic Excitability of Hippocampal CA1 Pyramidal Cells in a Rat Amygdala Kindling Model. Neuroscience 2019; 406:234-248. [PMID: 30885638 DOI: 10.1016/j.neuroscience.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Low-frequency stimulation has demonstrated promising seizure suppression in animal models of epilepsy, while the mechanism of the effect is still debated. Changes in intrinsic properties have been recognized as a prominent pathophysiologically relevant feature of numerous neurological disorders including epilepsy. Here, it was evaluated whether LFS can preserve the intrinsic neuronal electrophysiological properties in a rat model of epilepsy, focusing on the possible involvement of voltage-gated Ca2+ channels. The amygdala kindling model was induced by 3 s monophasic square wave pulses (50 Hz, 1 ms duration, 12times/day at 5 min intervals). Both LFS alone and kindled plus LFS (KLFS) groups received four packages of LFS (each consisting of 200 monophasic square pulses, 0.1 ms pulse duration at 1 Hz with the after discharge threshold intensity), which in KLFS rats was applied immediately after kindling induction. Whole-cell patch-clamp recordings were made in the presence of fast synaptic blockers 24 h after the last kindling stimulations or following kindling stimulations plus LFS application. In the KLFS group, both the rebound excitation and kindling-induced intrinsic hyperexcitability were decreased, associated with a regular intrinsic firing as indicated by a lower coefficient of variation. The amplitude of afterdepolarization (ADP) and its area under the curve were both decreased in the KLFS group compared to the kindled group. LFS prevented the increasing effect of kindling on Ca2+ currents in the KLFS group. Findings provided evidence for a novel form of epileptiform activity suppression by LFS in the presence of synaptic blockade possibly by decreasing Ca2+ currents.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Arnold EC, McMurray C, Gray R, Johnston D. Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons. eNeuro 2019; 6:ENEURO.0036-19.2019. [PMID: 30957013 PMCID: PMC6449163 DOI: 10.1523/eneuro.0036-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
CA1 neurons in epileptic animals are vulnerable to selective changes in ion channel expression, called acquired channelopathies, which can increase the excitability of a neuron. Under normal conditions there is a gradient of ion channel expression and intrinsic excitability along the longitudinal, dorsoventral axis of hippocampal area CA1 of the rodent. Many of these channels, including M-channels, GIRK channels and HCN channels, all have dorsoventral expression gradients that might be altered in rodent models of epilepsy. Here, we show that the excitability of dorsal, but not ventral CA1 neurons, had an increased firing rate, reduced interspike interval (ISI) and increased input resistance in a status epilepticus (SE) model of temporal lobe epilepsy (TLE). As a result, the excitability of CA1 neurons became uniform across the dorsoventral axis of the rat hippocampus post-SE. Using current clamp recordings with pharmacology and immunohistochemistry, we demonstrate that the expression of HCN channels was downregulated in the dorsal CA1 region post-SE, while the expression of M and GIRK channels were unchanged. We did not find this acquired channelopathy in ventral CA1 neurons post-SE. Our results suggest that the excitability of dorsal CA1 neurons post-SE increase to resemble the intrinsic properties of ventral CA1 neurons, which likely makes the hippocampal circuit more permissible to seizures, and contributes to the cognitive impairments associated with chronic epilepsy.
Collapse
Affiliation(s)
- Elizabeth C. Arnold
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | - Calli McMurray
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | - Richard Gray
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | - Daniel Johnston
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
29
|
Santos-Vera B, Vaquer-Alicea ADC, Maria-Rios CE, Montiel-Ramos A, Ramos-Cardona A, Vázquez-Torres R, Sanabria P, Jiménez-Rivera CA. Protein and surface expression of HCN2 and HCN4 subunits in mesocorticolimbic areas after cocaine sensitization. Neurochem Int 2019; 125:91-98. [PMID: 30794847 DOI: 10.1016/j.neuint.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/20/2023]
Abstract
The Ih is a mixed depolarizing current present in neurons which, upon activation by hyperpolarization, modulates neuronal excitability in the mesocorticolimbic (MCL) system, an area which regulates emotions such as pleasure, reward, and motivation. Its biophysical properties are determined by HCN protein expression profiles, specifically HCN subunits 1-4. Previously, we reported that cocaine-induced behavioral sensitization increases HCN2 protein expression in all MCL areas with the Ventral Tegmental Area (VTA) showing the most significant increase. Recent evidence suggests that HCN4 also has an important expression in the MCL system. Although there is a significant expression of HCN channels in the MCL system their role in addictive processes is largely unknown. Thus, in this study we aim to compare HCN2 and HCN4 expression profiles and their cellular compartmental distribution in the MCL system, before and after cocaine sensitization. Surface/intracellular (S/I) ratio analysis indicates that VTA HCN2 subunits are mostly expressed in the cell surface in contrast to other areas tested. Our findings demonstrate that after cocaine sensitization, the HCN2 S/I ratio in the VTA was decreased whereas in the Prefrontal Cortex it was increased. In addition, HCN4 total expression in the VTA was decreased after cocaine sensitization, although the S/I ratio was not altered. Together, these results demonstrate differential cocaine effects on HCN2 and HCN4 protein expression profiles and therefore suggest a diverse Ih modulation of cellular activity during cocaine addictive processes.
Collapse
Affiliation(s)
- Bermary Santos-Vera
- Physiology Department, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Ana Del C Vaquer-Alicea
- Physiology Department, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Cristina E Maria-Rios
- Biology Department, University of Puerto Rico, Rio Piedras Campus, San Juan, 00936-5067, Puerto Rico
| | - Alan Montiel-Ramos
- Biology Department, University of Puerto Rico, Rio Piedras Campus, San Juan, 00936-5067, Puerto Rico
| | - Aynette Ramos-Cardona
- Psychology Department, University of Puerto Rico, Rio Piedras Campus, San Juan, 00936-5067, Puerto Rico
| | - Rafael Vázquez-Torres
- Physiology Department, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Priscila Sanabria
- Physiology Department, Universidad Central del Caribe, Bayamon, 00960, Puerto Rico
| | - Carlos A Jiménez-Rivera
- Physiology Department, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
30
|
Balakrishnan S, Mironov SL. Regenerative glutamate release in the hippocampus of Rett syndrome model mice. PLoS One 2018; 13:e0202802. [PMID: 30256804 PMCID: PMC6157837 DOI: 10.1371/journal.pone.0202802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Excess glutamate during intense neuronal activity is not instantly cleared and may accumulate in the extracellular space. This has various long-term consequences such as ectopic signaling, modulation of synaptic efficacy and excitotoxicity; the latter implicated in various neurodevelopmental and neurodegenerative diseases. In this study, the quantitative imaging of glutamate homeostasis of hippocampal slices from methyl-CpG binding protein 2 knock-out (Mecp2-/y) mice, a model of Rett syndrome (RTT), revealed unusual repetitive glutamate transients. They appeared in phase with bursts of action potentials in the CA1 neurons. Both glutamate transients and bursting activity were suppressed by the blockade of sodium, AMPA and voltage-gated calcium channels (T- and R-type), and enhanced after the inhibition of HCN channels. HCN and calcium channels in RTT and wild-type (WT) CA1 neurons displayed different voltage-dependencies and kinetics. Both channels modulated postsynaptic integration and modified the pattern of glutamate spikes in the RTT hippocampus. Spontaneous glutamate transients were much less abundant in the WT preparations, and, when observed, had smaller amplitude and frequency. The basal ambient glutamate levels in RTT were higher and transient glutamate increases (spontaneous and evoked by stimulation of Schaffer collaterals) decayed slower. Both features indicate less efficient glutamate uptake in RTT. To explain the generation of repetitive glutamate spikes, we designed a novel model of glutamate-induced glutamate release. The simulations correctly predicted the patterns of spontaneous glutamate spikes observed under different experimental conditions. We propose that pervasive spontaneous glutamate release is a hallmark of Mecp2-/y hippocampus, stemming from and modulating the hyperexcitability of neurons.
Collapse
Affiliation(s)
- Saju Balakrishnan
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| | - Sergej L. Mironov
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| |
Collapse
|
31
|
Frigerio F, Flynn C, Han Y, Lyman K, Lugo JN, Ravizza T, Ghestem A, Pitsch J, Becker A, Anderson AE, Vezzani A, Chetkovich D, Bernard C. Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells. Mol Neurobiol 2018; 55:7500-7511. [PMID: 29427087 PMCID: PMC6070409 DOI: 10.1007/s12035-018-0915-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is consistently found in many neurological disorders, but whether or not the inflammatory response independently affects neuronal network properties is poorly understood. Here, we report that intracerebroventricular injection of the prototypical inflammatory molecule lipopolysaccharide (LPS) in rats triggered a strong and long-lasting inflammatory response in hippocampal microglia associated with a concomitant upregulation of Toll-like receptor (TLR4) in pyramidal and hilar neurons. This, in turn, was associated with a significant reduction of the dendritic hyperpolarization-activated cyclic AMP-gated channel type 1 (HCN1) protein level while Kv4.2 channels were unaltered as assessed by western blot. Immunohistochemistry confirmed the HCN1 decrease in CA1 pyramidal neurons and showed that these changes were associated with a reduction of TRIP8b, an auxiliary subunit for HCN channels implicated in channel subcellular localization and trafficking. At the physiological level, this effect translated into a 50% decrease in HCN1-mediated currents (Ih) measured in the distal dendrites of hippocampal CA1 pyramidal cells. At the functional level, the band-pass-filtering properties of dendrites in the theta frequency range (4-12 Hz) and their temporal summation properties were compromised. We conclude that neuroinflammation can independently trigger an acquired channelopathy in CA1 pyramidal cell dendrites that alters their integrative properties. By directly changing cellular function, this phenomenon may participate in the phenotypic expression of various brain diseases.
Collapse
Affiliation(s)
- Federica Frigerio
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Corey Flynn
- INSERM U1106, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kyle Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Antoine Ghestem
- INSERM U1106, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Albert Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Anne E Anderson
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | - Dane Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christophe Bernard
- INSERM U1106, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
32
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
33
|
David F, Çarçak N, Furdan S, Onat F, Gould T, Mészáros Á, Di Giovanni G, Hernández VM, Chan CS, Lőrincz ML, Crunelli V. Suppression of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Determined and Pharmacologically Induced Absence Seizures. J Neurosci 2018; 38:6615-6627. [PMID: 29925625 PMCID: PMC6067077 DOI: 10.1523/jneurosci.0896-17.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/13/2018] [Accepted: 05/05/2018] [Indexed: 12/31/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and the Ih current they generate contribute to the pathophysiological mechanisms of absence seizures (ASs), but their precise role in neocortical and thalamic neuronal populations, the main components of the network underlying AS generation, remains controversial. In diverse genetic AS models, Ih amplitude is smaller in neocortical neurons and either larger or unchanged in thalamocortical (TC) neurons compared with nonepileptic strains. A lower expression of neocortical HCN subtype 1 channels is present in genetic AS-prone rats, and HCN subtype 2 knock-out mice exhibit ASs. Furthermore, whereas many studies have characterized Ih contribution to "absence-like" paroxysmal activity in vitro, no data are available on the specific role of cortical and thalamic HCN channels in behavioral seizures. Here, we show that the pharmacological block of HCN channels with the antagonist ZD7288 applied via reverse microdialysis in the ventrobasal thalamus (VB) of freely moving male Genetic Absence Epilepsy Rats from Strasbourg decreases TC neuron firing and abolishes spontaneous ASs. A similar effect is observed on γ-hydroxybutyric acid-elicited ASs in normal male Wistar rats. Moreover, thalamic knockdown of HCN channels via virally delivered shRNA into the VB of male Stargazer mice, another genetic AS model, decreases spontaneous ASs and Ih-dependent electrophysiological properties of VB TC neurons. These findings provide the first evidence that block of TC neuron HCN channels prevents ASs and suggest that any potential anti-absence therapy that targets HCN channels should carefully consider the opposite role for cortical and thalamic Ih in the modulation of absence seizures.SIGNIFICANCE STATEMENT Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in the fine-tuning of cellular and network excitability and have been suggested to be a key element of the pathophysiological mechanism underlying absence seizures. However, the precise contribution of HCN channels in neocortical and thalamic neuronal populations to these nonconvulsive seizures is still controversial. In the present study, pharmacological block and genetic suppression of HCN channels in thalamocortical neurons in the ventrobasal thalamic nucleus leads to a marked reduction in absence seizures in one pharmacological and two genetic rodent models of absence seizures. These results provide the first evidence that block of TC neuron HCN channels prevents absence seizures.
Collapse
Affiliation(s)
- François David
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom,
- Lyon Neuroscience Research Center, CNRS UMR 5292-INSERM U1028-Université Claude Bernard, 69008 Lyon, France
| | - Nihan Çarçak
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Szabina Furdan
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Filiz Onat
- Department of Pharmacology and Clinical 34452 Pharmacology, Marmara University School of Medicine, Istanbul 81326, Turkey
| | - Timothy Gould
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Ádám Mészáros
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida MSD 2080, Malta, and
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Robert H Lurie Medical Research Center, Chicago, Illinois 60611
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Robert H Lurie Medical Research Center, Chicago, Illinois 60611
| | - Magor L Lőrincz
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged 6726, Hungary
| | - Vincenzo Crunelli
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom,
- Department of Physiology and Biochemistry, University of Malta, Msida MSD 2080, Malta, and
| |
Collapse
|
34
|
Balakrishnan S, Mironov SL. Rescue of hyperexcitability in hippocampal CA1 neurons from Mecp2 (-/y) mouse through surface potential neutralization. PLoS One 2018; 13:e0195094. [PMID: 29621262 PMCID: PMC5886422 DOI: 10.1371/journal.pone.0195094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/18/2018] [Indexed: 11/19/2022] Open
Abstract
Hyperventilation is a known feature of Rett syndrome (RTT). However, how hyperventilation is related to other RTT symptoms such as hyperexcitability is unknown. Intense breathing during hyperventilation induces hypocapnia and culminates in respiratory alkalosis. Alkalinization of extracellular milieu can trigger epilepsy in patients who already have neuronal hyperexcitability. By combining patch-clamp electrophysiology and quantitative glutamate imaging, we compared excitability of CA1 neurons of WT and Mecp2 (-/y) mice, and analyzed the biophysical properties of subthreshold membrane channels. The results show that Mecp2 (-/y) CA1 neurons are hyperexcitable in normal pH (7.4) and are increasingly vulnerable to alkaline extracellular pH (8.4), during which their excitability increased further. Under normal pH conditions, an abnormal negative shift in the voltage-dependencies of HCN (hyperpolarization-activated cyclic nucleotide-gated) and calcium channels in the CA1 neurons of Mecp2 (-/y) mice was observed. Alkaline pH also enhanced excitability in wild-type (WT) CA1 neurons through modulation of the voltage dependencies of HCN- and calcium channels. Additionally alkaline pH augmented spontaneous glutamate release and burst firing in WT CA1 neurons. Conversely, acidic pH (6.4) and 8 mM Mg2+ exerted the opposite effect, and diminished hyperexcitability in Mecp2 (-/y) CA1 neurons. We propose that the observed effects of pH and Mg2+ are mediated by changes in the neuronal membrane surface potential, which consecutively modulates the gating of HCN and calcium channels. The results provide insight to pivotal cellular mechanisms that can regulate neuronal excitability and help to devise treatment strategies for hyperexcitability induced symptoms of Rett syndrome.
Collapse
Affiliation(s)
- Saju Balakrishnan
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| | - Sergej L. Mironov
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, DFG Research Center 103), Institute of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany
| |
Collapse
|
35
|
Becker AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 2018; 44:112-129. [DOI: 10.1111/nan.12451] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- A. J. Becker
- Section for Translational Epilepsy Research; Department of Neuropathology; University of Bonn Medical Center; Bonn Germany
| |
Collapse
|
36
|
Hou G, Zhang ZW. NMDA Receptors Regulate the Development of Neuronal Intrinsic Excitability through Cell-Autonomous Mechanisms. Front Cell Neurosci 2017; 11:353. [PMID: 29163060 PMCID: PMC5674002 DOI: 10.3389/fncel.2017.00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/24/2017] [Indexed: 01/30/2023] Open
Abstract
Maturation of neuronal and synaptic functions during early life is essential for the development of neuronal circuits and behaviors. In newborns synaptic transmission at excitatory synapses is primarily mediated by N-methyl-D-aspartate receptors (NMDARs), and NMDAR-mediated signaling plays an important role in synaptic maturation. Concomitant with synapse development, the intrinsic properties of neurons undergo dramatic changes during early life. However, little is known about the role of NMDARs in the development of intrinsic excitability. By using mosaic deletion of the obligatory GluN1 subunit of NMDARs in the thalamus of newborn mice, we showed that NMDARs regulate neuronal excitability during postnatal development. Compared with neighboring control neurons, neurons lacking NMDARs exhibit hyperexcitability and this effect is present throughout early life. Morphological analyses show that thalamic neurons without NMDARs have smaller soma size and fewer dendritic branches. Deletion of NMDARs causes a reduction of hyperpolarization-activated cation (HCN) channel function in thalamic neurons, and pharmacologically blocking HCN channels in wild type neurons mimics the effects of GluN1 deletion on intrinsic excitability. Deletion of GluN1 down-regulated mechanistic target of rapamycin (mTOR) signaling in thalamic neurons, and mosaic deletion of mTOR recapitulated the effects of GluN1 deletion. Our results demonstrate that NMDARs regulate intrinsic excitability and morphology of thalamic neurons through cell autonomous mechanisms that implicate mTOR signaling.
Collapse
Affiliation(s)
| | - Zhong-Wei Zhang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States
| |
Collapse
|
37
|
Irl H, Kratzer S, Schwerin S, Kochs E, Blobner M, Schneider G, Rammes G, Haseneder R. Tranexamic acid impairs hippocampal synaptic transmission mediated by gamma aminobutyric acid receptor type A. Eur J Pharmacol 2017; 815:49-55. [DOI: 10.1016/j.ejphar.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023]
|
38
|
Abstract
Major depressive disorder (MDD) is a chronic and potentially life threatening illness that carries a staggering global burden. Characterized by depressed mood, MDD is often difficult to diagnose and treat owing to heterogeneity of syndrome and complex etiology. Contemporary antidepressant treatments are based on improved monoamine-based formulations from serendipitous discoveries made > 60 years ago. Novel antidepressant treatments are necessary, as roughly half of patients using available antidepressants do not see long-term remission of depressive symptoms. Current development of treatment options focuses on generating efficacious antidepressants, identifying depression-related neural substrates, and better understanding the pathophysiological mechanisms of depression. Recent insight into the brain's mesocorticolimbic circuitry from animal models of depression underscores the importance of ionic mechanisms in neuronal homeostasis and dysregulation, and substantial evidence highlights a potential role for ion channels in mediating depression-related excitability changes. In particular, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential regulators of neuronal excitability. In this review, we describe seminal research on HCN channels in the prefrontal cortex and hippocampus in stress and depression-related behaviors, and highlight substantial evidence within the ventral tegmental area supporting the development of novel therapeutics targeting HCN channels in MDD. We argue that methods targeting the activity of reward-related brain areas have significant potential as superior treatments for depression.
Collapse
Affiliation(s)
- Stacy M Ku
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
39
|
Patterson KP, Barry JM, Curran MM, Singh-Taylor A, Brennan G, Rismanchi N, Page M, Noam Y, Holmes GL, Baram TZ. Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor. J Neurosci 2017; 37:3799-3812. [PMID: 28275159 PMCID: PMC5394897 DOI: 10.1523/jneurosci.3748-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022] Open
Abstract
In a subset of children experiencing prolonged febrile seizures (FSs), the most common type of childhood seizures, cognitive outcomes are compromised. However, the underlying mechanisms are unknown. Here we identified significant, enduring spatial memory problems in male rats following experimental prolonged FS (febrile status epilepticus; eFSE). Remarkably, these deficits were abolished by transient, post hoc interference with the chromatin binding of the transcriptional repressor neuron restrictive silencing factor (NRSF or REST). This transcriptional regulator is known to contribute to neuronal differentiation during development and to programmed gene expression in mature neurons. The mechanisms of the eFSE-provoked memory problems involved complex disruption of memory-related hippocampal oscillations recorded from CA1, likely resulting in part from impairments of dendritic filtering of cortical inputs as well as abnormal synaptic function. Accordingly, eFSE provoked region-specific dendritic loss in the hippocampus, and aberrant generation of excitatory synapses in dentate gyrus granule cells. Blocking NRSF transiently after eFSE prevented granule cell dysmaturation, restored a functional balance of γ-band network oscillations, and allowed treated eFSE rats to encode and retrieve spatial memories. Together, these studies provide novel insights into developing networks that underlie memory, the mechanisms by which early-life seizures influence them, and the means to abrogate the ensuing cognitive problems.SIGNIFICANCE STATEMENT Whereas seizures have been the central focus of epilepsy research, they are commonly accompanied by cognitive problems, including memory impairments that contribute to poor quality of life. These deficits often arise before the onset of spontaneous seizures, or independent from them, yet the mechanisms involved are unclear. Here, using a rodent model of common developmental seizures that provoke epilepsy in a subset of individuals, we identify serious consequent memory problems. We uncover molecular, cellular, and circuit-level mechanisms that underlie these deficits and successfully abolish them by targeted therapeutic interventions. These findings may be important for understanding and preventing cognitive problems in individuals suffering long febrile seizures.
Collapse
Affiliation(s)
| | - Jeremy M Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | | | | | - Gary Brennan
- Departments of Anatomy/Neurobiology
- Pediatrics, and
| | | | - Matias Page
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | | | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology,
- Pediatrics, and
- Neurology, University of California-Irvine, Irvine, California 92697-4475, and
| |
Collapse
|
40
|
Han JE, Cho JH, Choi IS, Kim DY, Jang IS. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:215-223. [PMID: 28280415 PMCID: PMC5343055 DOI: 10.4196/kjpp.2017.21.2.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 11/15/2022]
Abstract
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K+ and Ca2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K+ currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K+ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs+ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
Collapse
Affiliation(s)
- Jin-Eon Han
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea.; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
41
|
Hu T, Liu N, Lv M, Ma L, Peng H, Peng S, Liu T. Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons. Anesth Analg 2016; 122:1048-59. [PMID: 26756913 PMCID: PMC4791316 DOI: 10.1213/ane.0000000000001140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary afferents, comprises heterogeneous interneurons that can be electrophysiologically categorized by firing pattern. Our previous study demonstrated that a substantial proportion of substantia gelatinosa neurons reveal the presence of HCN current (Ih); however, the roles of lidocaine and HCN channel expression in different types of substantia gelatinosa neurons remain unclear. METHODS By using the whole-cell patch-clamp technique, we investigated the effect of lidocaine on Ih in rat substantia gelatinosa neurons of acute dissociated spinal cord slices. RESULTS We found that lidocaine rapidly decreased the peak Ih amplitude with an IC50 of 80 μM. The inhibition rate on Ih was not significantly different with a second application of lidocaine in the same neuron. Tetrodotoxin, a sodium channel blocker, did not affect lidocaine's effect on Ih. In addition, lidocaine shifted the half-activation potential of Ih from -109.7 to -114.9 mV and slowed activation. Moreover, the reversal potential of Ih was shifted by -7.5 mV by lidocaine. In the current clamp, lidocaine decreased the resting membrane potential, increased membrane resistance, delayed rebound depolarization latency, and reduced the rebound spike frequency. We further found that approximately 58% of substantia gelatinosa neurons examined expressed Ih, in which most of them were tonically firing. CONCLUSIONS Our studies demonstrate that lidocaine strongly inhibits Ih in a reversible and concentration-dependent manner in substantia gelatinosa neurons, independent of tetrodotoxin-sensitive sodium channels. Thus, our study provides new insight into the mechanism underlying the central analgesic effect of the systemic administration of lidocaine.
Collapse
Affiliation(s)
- Tao Hu
- From the Departments of *Pediatrics and †Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; and ‡Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang L, Dufour S, Valiante TA, Carlen PL. Extracellular Potassium and Seizures: Excitation, Inhibition and the Role of Ih. Int J Neural Syst 2016; 26:1650044. [PMID: 27464853 DOI: 10.1142/s0129065716500441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Seizure activity leads to increases in extracellular potassium concentration ([K[Formula: see text]]o), which can result in changes in neuronal passive and active membrane properties as well as in population activities. In this study, we examined how extracellular potassium modulates seizure activities using an acute 4-AP induced seizure model in the neocortex, both in vivo and in vitro. Moderately elevated [K[Formula: see text]]o up to 9[Formula: see text]mM prolonged seizure durations and shortened interictal intervals as well as depolarized the neuronal resting membrane potential (RMP). However, when [K[Formula: see text]]o reached higher than 9[Formula: see text]mM, seizure like events (SLEs) were blocked and neurons went into a depolarization-blocked state. Spreading depression was never observed as the blockade of ictal events could be reversed within 1-2[Formula: see text]min after the raised [K[Formula: see text]]o was changed back to control levels. This concentration-dependent dual effect of [K[Formula: see text]]o was observed using in vivo and in vitro mouse brain preparations as well as in human neocortical tissue resected during epilepsy surgery. Blocking the Ih current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, modulated the elevated [K[Formula: see text]]o influence on SLEs by promoting the high [K[Formula: see text]]o inhibitory actions. These results demonstrate biphasic actions of raised [K[Formula: see text]]o on neuronal excitability and seizure activity.
Collapse
Affiliation(s)
- Lihua Wang
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Suzie Dufour
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Taufik A Valiante
- 2 Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Peter L Carlen
- 3 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| |
Collapse
|
43
|
Goldman AM, Behr ER, Semsarian C, Bagnall RD, Sisodiya S, Cooper PN. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention. Epilepsia 2016; 57 Suppl 1:17-25. [PMID: 26749013 DOI: 10.1111/epi.13232] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death.
Collapse
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Elijah R Behr
- Cardiac Research Centre, ICCS, St George's University of London, London, United Kingdom
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Sisodiya
- Institute of Neurology, University College London, London, United Kingdom
| | - Paul N Cooper
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford, United Kingdom.,University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Fan J, Stemkowski PL, Gandini MA, Black SA, Zhang Z, Souza IA, Chen L, Zamponi GW. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP(-/-) Mice. Front Cell Neurosci 2016; 10:74. [PMID: 27047338 PMCID: PMC4805597 DOI: 10.3389/fncel.2016.00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/10/2016] [Indexed: 01/03/2023] Open
Abstract
Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.
Collapse
Affiliation(s)
- Jing Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Patrick L Stemkowski
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Stefanie A Black
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
45
|
Brennan GP, Baram TZ, Poolos NP. Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harb Perspect Med 2016; 6:a022384. [PMID: 26931806 DOI: 10.1101/cshperspect.a022384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epilepsy is a common brain disorder characterized by the occurrence of spontaneous seizures. These bursts of synchronous firing arise from abnormalities of neuronal networks. Excitability of individual neurons and neuronal networks is largely governed by ion channels and, indeed, abnormalities of a number of ion channels resulting from mutations or aberrant expression and trafficking underlie several types of epilepsy. Here, we focus on the hyperpolarization-activated cyclic nucleotide-gated ion (HCN) channels that conduct Ih current. This conductance plays complex and diverse roles in the regulation of neuronal and network excitability. We describe the normal function of HCN channels and discuss how aberrant expression, assembly, trafficking, and posttranslational modifications contribute to experimental and human epilepsy.
Collapse
Affiliation(s)
- Gary P Brennan
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475 Departments of Anatomy/Neurobiology and Neurology, University of California-Irvine, Irvine, California 92697-4475
| | - Nicholas P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, Washington 98104
| |
Collapse
|
46
|
Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning. Proc Natl Acad Sci U S A 2015; 112:16030-5. [PMID: 26668355 DOI: 10.1073/pnas.1501731113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.
Collapse
|
47
|
Iori V, Frigerio F, Vezzani A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol 2015; 26:118-23. [PMID: 26629681 DOI: 10.1016/j.coph.2015.11.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 01/02/2023]
Abstract
A complex set of inflammatory molecules and their receptors has been described in epileptogenic foci in different forms of pharmacoresistant epilepsies. By activating receptor-mediated pathways in neurons, these molecules have profound neuromodulatory effects that are distinct from their canonical activation of immune functions. Importantly, the neuromodulatory actions of some inflammatory molecules contribute to hyperexcitability in neural networks that underlie seizures. This review summarizes recent findings related to the role of cytokines (IL-1beta and TNF-alpha) and danger signals (HMGB1) in decreasing seizure threshold, thereby contributing to seizure generation and the associated neuropathology. We will discuss preclinical studies suggesting that pharmacological inhibition of specific inflammatory signals may be useful to treat drug-resistant seizures in human epilepsy, and possibly arrest epileptogenesis in individuals at risk of developing the disease.
Collapse
Affiliation(s)
- Valentina Iori
- IRCCS-Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy
| | - Federica Frigerio
- IRCCS-Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy
| | - Annamaria Vezzani
- IRCCS-Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy.
| |
Collapse
|
48
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
49
|
Zanelli SA, Rajasekaran K, Grosenbaugh DK, Kapur J. Increased excitability and excitatory synaptic transmission during in vitro ischemia in the neonatal mouse hippocampus. Neuroscience 2015; 310:279-89. [PMID: 26404876 DOI: 10.1016/j.neuroscience.2015.09.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The present study tested the hypothesis that exposure to in vitro hypoxia-ischemia alters membrane properties and excitability as well as excitatory synaptic transmission of CA1 pyramidal neurons in the neonatal mouse. METHODS Experiments were conducted in hippocampal slices in P7-P9 C57Bl/6 mice using whole-cell patch clamp in current- and voltage-clamp mode. Passive membrane potential (Vm), input resistance (Rin) and active (action potential (AP) threshold and amplitude) membrane properties of CA1 pyramidal neurons were assessed at baseline, during 10 min in vitro ischemia (oxygen-glucose deprivation (OGD)) and during reoxygenation. Spontaneous and miniature excitatory post-synaptic currents (s and mEPSCs) were studied under similar conditions. RESULTS OGD caused significant depolarization of CA1 pyramidal neurons as well as decrease in AP threshold and increase in AP amplitude. These changes were blocked by the application of tetrodotoxin (TTX), indicating Na(+) channels' involvement. Following 10 min of reoxygenation, significant membrane hyperpolarization was noted and it was associated with a decrease in Rin. AP threshold and amplitude returned to baseline during that stage. sEPSC and mEPSC frequency increased during both OGD and reoxygenation but their amplitude remained unchanged. Additionally, we found that OGD decreases Ih (hyperpolarization activated current) in CA1 neurons from neonatal mice and this effect persists during reoxygenation. SIGNIFICANCE These results indicate that in vitro ischemia leads to changes in membrane excitability mediated by sodium and potassium channels. Further, it results in enhanced neurotransmitter release from presynaptic terminals. These changes are likely to represent one of the mechanisms of hypoxia/ischemia-mediated seizures in the neonatal period.
Collapse
Affiliation(s)
- S A Zanelli
- Department of Pediatrics, University of Virginia, Charlottesville, VA, United States.
| | - K Rajasekaran
- Department of Neurology, University of Virginia, Charlottesville, VA, United States.
| | - D K Grosenbaugh
- Department of Neurology, University of Virginia, Charlottesville, VA, United States.
| | - J Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
50
|
Magee KEA, Madden Z, Young EC. HCN Channel C-Terminal Region Speeds Activation Rates Independently of Autoinhibition. J Membr Biol 2015; 248:1043-60. [PMID: 26123597 DOI: 10.1007/s00232-015-9816-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Hyperpolarization- and cyclic nucleotide-activated (HCN) channels contribute to rhythmic oscillations in excitable cells. They possess an intrinsic autoinhibition with a hyperpolarized V 1/2, which can be relieved by cAMP binding to the cyclic nucleotide binding (CNB) fold in the C-terminal region or by deletion of the CNB fold. We questioned whether V 1/2 shifts caused by altering the autoinhibitory CNB fold would be accompanied by parallel changes in activation rates. We used two-electrode voltage clamp on Xenopus oocytes to compare wildtype (WT) HCN2, a constitutively autoinhibited point mutant incapable of cAMP binding (HCN2 R591E), and derivatives with various C-terminal truncations. Activation V 1/2 and deactivation t 1/2 measurements confirmed that a truncated channel lacking the helix αC of the CNB fold (ΔαC) had autoinhibition comparable to HCN2 R591E; however, ΔαC activated approximately two-fold slower than HCN2 R591E over a 60-mV range of hyperpolarizations. A channel with a more drastic truncation deleting the entire CNB fold (ΔCNB) had similar V 1/2 values to HCN2 WT with endogenous cAMP bound, confirming autoinhibition relief, yet it surprisingly activated slower than the autoinhibited HCN2 R591E. Whereas CNB fold truncation slowed down voltage-dependent reaction steps, the voltage-independent closed-open equilibrium subject to autoinhibition in HCN2 was not rate-limiting. Chemically inhibiting formation of the endogenous lipid PIP2 hyperpolarized the V 1/2 of HCN2 WT but did not slow down activation to match ΔCNB rates. Our findings suggest a "quickening conformation" mechanism, requiring a full-length CNB that ensures fast rates for voltage-dependent steps during activation regardless of potentiation by cAMP or PIP2.
Collapse
Affiliation(s)
- Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Zarina Madden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|