1
|
Fan Y, Wei X, Lu M, Wang J, Yi G. Electric field effects on neuronal input-output relationship by regulating NMDA spikes. Cogn Neurodyn 2024; 18:199-215. [PMID: 38406200 PMCID: PMC10881955 DOI: 10.1007/s11571-022-09922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
Evidence shows that the dendritic polarization induced by weak electrical field (EF) can affect the neuronal input-output function via modulating dendritic integration of AMPA synapses, indicating that the supralinear dendritic integration of NMDA synapses can also be influenced by dendritic polarization. However, it remains unknown how dendritic polarization affects NMDA-type dendritic integration, and then contributes to neuronal input-output relationship. Here, we used a computational model of pyramidal neuron with inhomogeneous extracellular potentials to characterize the relationship among EF, dendritic integration, and somatic output. Basing on singular perturbation we analyzed the subthreshold dynamics of membrane potentials in response to NMDA synapses, and found that the equilibrium mapping of a fast subsystem can characterize the asymptotic subthreshold input-output (sI/O) relationship for EF-regulated supralinear dendritic integration, allowing us to predict the tendency of EF-regulated dendritic integration by showing the variation of equilibrium mapping under EF stimulation. EF-induced depolarization at distal dendrites receiving synapses plays a crucial role in shifting the steep change of sI/O left by facilitating dendritic NMDA spike generation and in decreasing the plateau of sI/O via reducing driving force. And more effective EF modulation appears at sparsely activated NMDA receptors compared with clustered synaptic inputs. During the action potential (AP) generation, the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization was identified to show their synergetic or antagonistic effect on AP generation, depending on neuronal excitability. These results provided insight in understanding the modulation effect of EF on neuronal computation, which is important for optimizing noninvasive brain stimulation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09922-y.
Collapse
Affiliation(s)
- Yaqin Fan
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Jiang Wang
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Matityahu L, Malgady JM, Schirelman M, Johansson Y, Wilking J, Silberberg G, Goldberg JA, Plotkin JL. A tonic nicotinic brake controls spike timing in striatal spiny projection neurons. eLife 2022; 11:75829. [PMID: 35579422 PMCID: PMC9142149 DOI: 10.7554/elife.75829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4β2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feedforward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4β2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by ‘priming’ feedforward inhibition, a process that may shape SPN spike timing, striatal processing, and synaptic plasticity.
Collapse
Affiliation(s)
- Lior Matityahu
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, United States
| | - Meital Schirelman
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yvonne Johansson
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| | - Jennifer Wilking
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, United States
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Goldberg
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, United States
| |
Collapse
|
3
|
Kalev-Zylinska ML, Morel-Kopp MC, Ward CM, Hearn JI, Hamilton JR, Bogdanova AY. Ionotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets 2020; 32:998-1008. [PMID: 33284715 DOI: 10.1080/09537104.2020.1852542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), kainate receptors (KAR), and N-methyl-D-aspartate receptors (NMDAR). All function as cation channels; AMPAR and KAR are more permeable to sodium and NMDAR to calcium ions. Compared to the brain, receptor assemblies in platelets are unusual, suggesting distinctive functionalities.There is convincing evidence that AMPAR and KAR amplify platelet function and thrombus formation in vitro and in vivo. Transgenic mice lacking GluA1 and GluK2 (AMPAR and KAR subunits, respectively) have longer bleeding times and prolonged time to thrombosis in an arterial model. In humans, rs465566 KAR gene polymorphism associates with altered in vitro platelet responses suggesting enhanced aspirin effect. The NMDAR contribution to platelet function is less well defined. NMDA at low concentrations (≤10 μM) inhibits platelet aggregation and high concentrations (≥100 μM) have no effect. However, open NMDAR channel blockers interfere with platelet activation and aggregation induced by other agonists in vitro; anti-GluN1 antibodies interfere with thrombus formation under high shear rates ex vivo; and rats vaccinated with GluN1 develop iron deficiency anemia suggestive of mild chronic bleeding. In this review, we summarize data on glutamate receptors in platelets and propose a unifying model that reconciles some of the opposing effects observed.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - James I Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Anna Y Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Augusto E, Gambino F. Can NMDA Spikes Dictate Computations of Local Networks and Behavior? Front Mol Neurosci 2019; 12:238. [PMID: 31611774 PMCID: PMC6777373 DOI: 10.3389/fnmol.2019.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Intelligence is the ability to learn appropriate responses to stimuli and the capacity to master new skills. Synaptic integration at the dendritic level is thought to be essential for this ability through linear and non-linear processing, by allowing neurons to be tuned to relevant information and to maximize adaptive behavior. Showing that dendrites are able to generate local computations that influence how animals perceive the world, form a new memory or learn a new skill was a break-through in neuroscience, since in the past they were seen as passive elements of the neurons, just funneling information to the soma. Here, we provide an overview of the role of dendritic integration in improving the neuronal network and behavioral performance. We focus on how NMDA spikes are generated and their role in neuronal computation for optimal behavioral output based on recent in vivo studies on rodents.
Collapse
Affiliation(s)
- Elisabete Augusto
- UMR5297 CNRS Centre Broca Nouvelle-Aquitaine, Interdisciplinary Institute for NeuroScience, University of Bordeaux, Bordeaux, France
| | - Frédéric Gambino
- UMR5297 CNRS Centre Broca Nouvelle-Aquitaine, Interdisciplinary Institute for NeuroScience, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Kazemipour A, Novak O, Flickinger D, Marvin JS, Abdelfattah AS, King J, Borden PM, Kim JJ, Al-Abdullatif SH, Deal PE, Miller EW, Schreiter ER, Druckmann S, Svoboda K, Looger LL, Podgorski K. Kilohertz frame-rate two-photon tomography. Nat Methods 2019; 16:778-786. [PMID: 31363222 PMCID: PMC6754705 DOI: 10.1038/s41592-019-0493-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.
Collapse
Affiliation(s)
- Abbas Kazemipour
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Ondrej Novak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Daniel Flickinger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | | | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeong Jun Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Parker E Deal
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
6
|
Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF. A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 2018; 596:4057-4089. [PMID: 29917241 PMCID: PMC6117563 DOI: 10.1113/jp276093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Key points The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Abstract NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine‐binding GluN1 and two glutamate‐binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di‐ and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist‐bound subunit undergoes some rate‐limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre‐M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit‐specific conformational changes may influence these pre‐gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non‐identical subunits. The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Collapse
Affiliation(s)
- Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin K Ogden
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Miranda J McDaniel
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katie M Vance
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Steven A Kell
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Chris Butch
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Pieter Burger
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
7
|
Lucas EK, Clem RL. GABAergic interneurons: The orchestra or the conductor in fear learning and memory? Brain Res Bull 2018; 141:13-19. [PMID: 29197563 PMCID: PMC6178932 DOI: 10.1016/j.brainresbull.2017.11.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Fear conditioning is a form of associative learning that is fundamental to survival and involves potentiation of activity in excitatory projection neurons (PNs). Current models stipulate that the mechanisms underlying this process involve plasticity of PN synapses, which exhibit strengthening in response to fear conditioning. However, excitatory PNs are extensively modulated by a diverse array of GABAergic interneurons whose contributions to acquisition, storage, and expression of fear memory remain poorly understood. Here we review emerging evidence that genetically-defined interneurons play important subtype-specific roles in processing of fear-related stimuli and that these dynamics shape PN firing through both inhibition and disinhibition. Furthermore, interneurons exhibit structural, molecular, and electrophysiological evidence of fear learning-induced synaptic plasticity. These studies warrant discarding the notion of interneurons as passive bystanders in long-term memory.
Collapse
Affiliation(s)
- Elizabeth K Lucas
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, United States
| | - Roger L Clem
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, United States.
| |
Collapse
|
8
|
Strobel C, Sullivan RKP, Stratton P, Sah P. Calcium signalling in medial intercalated cell dendrites and spines. J Physiol 2017; 595:5653-5669. [PMID: 28594440 DOI: 10.1113/jp274261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Dendritic and spine calcium imaging in combination with electrophysiology in acute slices revealed that in medial intercalated cells of the amygdala: Action potentials back-propagate into the dendritic tree, but due to the presence of voltage-dependent potassium channels, probably Kv4.2 channels, attenuate over distance. A mixed population of AMPA receptors with rectifying and linear I-V relations are present at individual spines of a single neuron. Decay kinetics and pharmacology suggest tri-heteromeric NMDA receptors at basolateral-intercalated cell synapses. NMDA receptors are the main contributors to spine calcium entry in response to synaptic stimulation. Calcium signals in response to low- and high-frequency stimulation, and in combination with spontaneous action potentials are locally restricted to the vicinity of active spines. Together, these data show that calcium signalling in these GABAergic neurons is tightly controlled and acts as a local signal. ABSTRACT The amygdala plays a central role in fear conditioning and extinction. The medial intercalated (mITC) neurons are GABAergic cell clusters interspaced between the basolateral (BLA) and central amygdala (CeA). These neurons are thought to play a key role in fear and extinction, controlling the output of the CeA by feed-forward inhibition. BLA to mITC cell inputs are thought to undergo synaptic plasticity, a mechanism underlying learning, which is mediated by NMDA receptor-dependent mechanisms that require changes in cytosolic calcium. Here, we studied the electrical and calcium signalling properties of mITC neurons in GAD67-eGFP mice using whole-cell patch clamp recordings and two-photon calcium imaging. We show that action potentials back-propagate (bAP) into dendrites, and evoke calcium transients in both the shaft and the dendritic spine. However, bAP-mediated calcium rises in the dendrites attenuate with distance due to shunting by voltage-gated potassium channels. Glutamatergic inputs make dual component synapses on spines. At these synapses, postsynaptic AMPA receptors can have linear or rectifying I-V relationships, indicating that some synapses express GluA2-lacking AMPA receptors. Synaptic NMDA receptors had intermediate decay kinetics, and were only partly blocked by GuN2B selective blockers, indicating these receptors are GluN1/GluN2A/GluN2B trimers. Low- or high-frequency synaptic stimulation raised spine calcium, mediated by calcium influx via NMDA receptors, was locally restricted and did not invade neighbouring spines. Our results show that in mITC neurons, postsynaptic calcium is tightly controlled, and acts as a local signal.
Collapse
Affiliation(s)
- Cornelia Strobel
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Peter Stratton
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Pankaj Sah
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Jayant K, Hirtz JJ, Plante IJL, Tsai DM, De Boer WDAM, Semonche A, Peterka DS, Owen JS, Sahin O, Shepard KL, Yuste R. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. NATURE NANOTECHNOLOGY 2017; 12:335-342. [PMID: 27941898 PMCID: PMC5901699 DOI: 10.1038/nnano.2016.268] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/02/2016] [Indexed: 05/21/2023]
Abstract
Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.
Collapse
Affiliation(s)
- Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
- Correspondence and requests for materials should be addressed to K.J.,
| | - Jan J. Hirtz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| | - Ilan Jen-La Plante
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - David M. Tsai
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| | - Wieteke D. A. M. De Boer
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Alexa Semonche
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Darcy S. Peterka
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| | - Jonathan S. Owen
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
- Department of Biomedical Engineering, New York, New York 10027, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| |
Collapse
|
10
|
Díez-García A, Barros-Zulaica N, Núñez Á, Buño W, Fernández de Sevilla D. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons. Front Cell Neurosci 2017; 11:8. [PMID: 28203145 PMCID: PMC5285403 DOI: 10.3389/fncel.2017.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/12/2017] [Indexed: 11/15/2022] Open
Abstract
According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.
Collapse
Affiliation(s)
- Andrea Díez-García
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Natali Barros-Zulaica
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Ángel Núñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Washington Buño
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| |
Collapse
|
11
|
Perszyk RE, DiRaddo JO, Strong KL, Low CM, Ogden KK, Khatri A, Vargish GA, Pelkey KA, Tricoire L, Liotta DC, Smith Y, McBain CJ, Traynelis SF. GluN2D-Containing N-methyl-d-Aspartate Receptors Mediate Synaptic Transmission in Hippocampal Interneurons and Regulate Interneuron Activity. Mol Pharmacol 2016; 90:689-702. [PMID: 27625038 PMCID: PMC5118640 DOI: 10.1124/mol.116.105130] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamatergic receptors that have been implicated in learning, development, and neuropathological conditions. They are typically composed of GluN1 and GluN2A-D subunits. Whereas a great deal is known about the role of GluN2A- and GluN2B-containing NMDARs, much less is known about GluN2D-containing NMDARs. Here we explore the subunit composition of synaptic NMDARs on hippocampal interneurons. GluN2D mRNA was detected by single-cell PCR and in situ hybridization in diverse interneuron subtypes in the CA1 region of the hippocampus. The GluN2D subunit was detectable by immunoblotting and immunohistochemistry in all subfields of the hippocampus in young and adult mice. In whole-cell patch-clamp recordings from acute hippocampal slices, (+)-CIQ, the active enantiomer of the positive allosteric modulator CIQ, significantly enhanced the amplitude of the NMDAR component of miniature excitatory postsynaptic currents (mEPSCs) in CA1 interneurons but not in pyramidal cells. (+)-CIQ had no effect in slices from Grin2d-/- mice, suggesting that GluN2D-containing NMDARs participate in excitatory synaptic transmission onto hippocampal interneurons. The time course of the NMDAR component of the mEPSC was unaffected by (+)-CIQ potentiation and was not accelerated in slices from Grin2d-/- mice compared with wild-type, suggesting that GluN2D does not detectably slow the NMDAR EPSC time course at this age. (+)-CIQ increased the activity of CA1 interneurons as detected by the rate and net charge transfer of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from CA1 pyramidal cells. These data provide evidence that interneurons contain synaptic NMDARs possessing a GluN2D subunit, which can influence interneuron function and signal processing.
Collapse
Affiliation(s)
- Riley E Perszyk
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - John O DiRaddo
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Katie L Strong
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Chian-Ming Low
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Kevin K Ogden
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Alpa Khatri
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Geoffrey A Vargish
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Kenneth A Pelkey
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Ludovic Tricoire
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Dennis C Liotta
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Yoland Smith
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Chris J McBain
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| | - Stephen F Traynelis
- Departments of Pharmacology (R.E.P., J.O.D., K.K.O., A.K., S.F.T.), Chemistry (J.O.D., K.L.S., D.C.L.), Neurology (Y.S.), Yerkes National Primate Research Center (Y.S.), and Morris K. Udall Center of Excellence for Parkinson's Disease Research (Y.S.), Emory University, Atlanta, Georgia; Departments of Pharmacology and Anaesthesiology (C.-M.L.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development (G.A.V., K.A.P., L.T., C.J.M.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Buhusi CV, Oprisan SA, Buhusi M. Clocks within Clocks: Timing by Coincidence Detection. Curr Opin Behav Sci 2016; 8:207-213. [PMID: 27004236 DOI: 10.1016/j.cobeha.2016.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The many existent models of timing rely on vastly different mechanisms to track temporal information. Here we examine these differences, and identify coincidence detection in its most general form as a common mechanism that many apparently different timing models share, as well as a common mechanism of biological circadian, millisecond and interval timing. This view predicts that timing by coincidence detection is a ubiquitous phenomenon at many biological levels, explains the reports of biological timing in many brain areas, explains the role of neural noise at different time scales at both biological and theoretical levels, and provides cohesion within the timing field.
Collapse
Affiliation(s)
- Catalin V Buhusi
- Interdisciplinary Neuroscience Program, Dept. Psychology, Utah State University, Logan UT, USA
| | - Sorinel A Oprisan
- Dept. Physics and Astronomy, College of Charleston, Charleston, SC, USA
| | - Mona Buhusi
- Interdisciplinary Neuroscience Program, Dept. Psychology, Utah State University, Logan UT, USA
| |
Collapse
|
14
|
Wu H, Wang C, Liu B, Li H, Zhang Y, Dong S, Gao G, Zhang H. Altered Expression Pattern of Acid-Sensing Ion Channel Isoforms in Piriform Cortex After Seizures. Mol Neurobiol 2015; 53:1782-1793. [PMID: 25744567 DOI: 10.1007/s12035-015-9130-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/22/2015] [Indexed: 12/24/2022]
Abstract
The piriform cortex (PC) is highly susceptible to chemical and electrical seizure induction. Epileptiform activity is associated with an acid shift in extracellular pH, suggesting that acid-sensing ion channels (ASICs) expressed by PC neurons may contribute to this enhanced epileptogenic potential. In epileptic rats and surgical samples from patients with medial temporal lobe epilepsy (TLE), PC layer II ASIC1a-immunopositive neurons appeared swollen with dendritic elongation, and there was loss of ASIC1a-positive neurons in layer III, consistent with enhanced vulnerability to TLE-induced plasticity and cell death. In rats, pilocarpine-induced seizures led to transient downregulation of ASIC1a and concomitant upregulation of ASIC2a in the first few days post-seizure. These changes in expression may be due to seizure-induced oxidative stress as a similar reciprocal change in ASIC1a, and ASIC2a expression was observed in PC12 cells following H2O2 application. The proportion of ASIC1a/ASIC2a heteromers was reduced in the acute phase following status epilepticus (SE) but increased during the latent phase when rats developed spontaneous seizures. Knockdown of ASIC2a by RNAi reduced dendritic length and spine density in primary neurons, suggesting that seizure-induced upregulation of ASIC2a contributes to dendritic lengthening in PC layer II in rats. Administration of the ASIC inhibitor amiloride before pilocarpine reduced the proportion of rats reaching Racine level IV seizures, protected layer II and III neurons, and prolonged survival in the acute phase following SE. Our findings suggest that ASICs may enhance susceptibility to epileptogenesis in the PC. Inhibition of ASICs, particularly ASIC2a, may suppress seizures originating in the PC.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Huanfa Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shan Dong
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| |
Collapse
|
15
|
De Giorgio A, Granato A. Reduced density of dendritic spines in pyramidal neurons of rats exposed to alcohol during early postnatal life. Int J Dev Neurosci 2015; 41:74-9. [PMID: 25644892 DOI: 10.1016/j.ijdevneu.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/07/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
Dendritic spines are the main postsynaptic sites of excitatory connections of neocortical pyramidal neurons. Alterations of spine shape, number, and density can be observed in different mental diseases, including those caused by developmental alcohol exposure. Pyramidal neurons of layer 2/3 are the most abundant cells of the neocortex and represent the main source of associative cortico-cortical connections. These neurons are essential for higher functions mediated by the cortex such as feature selection and perceptual grouping. Furthermore, their connections have been shown to be altered in experimental models of fetal alcohol spectrum disorders. Here, we used a Golgi-like tracing method to study the spine density of layer 2/3 associative pyramidal neurons in the somatosensory cortex of adult rats exposed to alcohol during the first postnatal week. The main result of the present study is represented by the decreased spine density in the apical dendrite of alcohol-treated rats, as compared to controls. As to the basal dendritic tree, there were no significant differences between the experimental and the control group. A decreased density of dendritic spines in the apical dendrite may impair the excitatory input onto pyramidal neurons, thus resulting in a widespread alteration of the cortical information flow.
Collapse
Affiliation(s)
- Andrea De Giorgio
- Department of Psychology, Catholic University, Largo A. Gemelli 1, 20123 Milan, Italy.
| | - Alberto Granato
- Department of Psychology, Catholic University, Largo A. Gemelli 1, 20123 Milan, Italy.
| |
Collapse
|
16
|
Echeveste R, Gros C. Two-trace model for spike-timing-dependent synaptic plasticity. Neural Comput 2015; 27:672-98. [PMID: 25602766 DOI: 10.1162/neco_a_00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We present an effective model for timing-dependent synaptic plasticity (STDP) in terms of two interacting traces, corresponding to the fraction of activated NMDA receptors and the [Formula: see text] concentration in the dendritic spine of the postsynaptic neuron. This model intends to bridge the worlds of existing simplistic phenomenological rules and highly detailed models, thus constituting a practical tool for the study of the interplay of neural activity and synaptic plasticity in extended spiking neural networks. For isolated pairs of pre- and postsynaptic spikes, the standard pairwise STDP rule is reproduced, with appropriate parameters determining the respective weights and timescales for the causal and the anticausal contributions. The model contains otherwise only three free parameters, which can be adjusted to reproduce triplet nonlinearities in hippocampal culture and cortical slices. We also investigate the transition from time-dependent to rate-dependent plasticity occurring for both correlated and uncorrelated spike patterns.
Collapse
Affiliation(s)
- Rodrigo Echeveste
- Institute for Theoretical Physics, Goethe University Frankfurt, Hessen 60438, Germany
| | | |
Collapse
|
17
|
Sabaliauskas N, Shen H, Molla J, Gong QH, Kuver A, Aoki C, Smith SS. Neurosteroid effects at α4βδ GABAA receptors alter spatial learning and synaptic plasticity in CA1 hippocampus across the estrous cycle of the mouse. Brain Res 2014; 1621:170-86. [PMID: 25542386 DOI: 10.1016/j.brainres.2014.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 11/26/2022]
Abstract
Fluctuations in circulating levels of ovarian hormones have been shown to regulate cognition (Sherwin and Grigorova, 2011. Fertil. Steril. 96, 399-403; Shumaker et al., 2004. JAMA. 291, 2947-2958), but increases in estradiol on the day of proestrus yield diverse outcomes: In vivo induction of long-term potentiation (LTP), a model of learning, is reduced in the morning, but optimal in the afternoon (Warren et al., 1995. Brain Res. 703, 26-30). The mechanism underlying this discrepancy is not known. Here, we show that impairments in both CA1 hippocampal LTP and spatial learning observed on the morning of proestrus are due to increased dendritic expression of α4βδ GABAA receptors (GABARs) on CA1 pyramidal cells, as assessed by electron microscopic (EM) techniques, compared with estrus and diestrus. LTP induction and spatial learning were robust, however, when assessed on the morning of proestrus in α4-/- mice, implicating these receptors in mediating impaired plasticity. Although α4βδ expression remained elevated on the afternoon of proestrus, increases in 3α-OH-THP (3α-OH-5α-pregnan-20-one) decreased inhibition by reducing outward current through α4βδ GABARs (Shen et al., 2007. Nat. Neurosci. 10, 469-477), in contrast to the usual effect of this steroid to enhance inhibition. Proestrous levels of 3α-OH-THP reversed the deficits in LTP and spatial learning, an effect prevented by the inactive metabolite 3β-OH-THP (10 mg/kg, i.p.), which antagonizes actions of 3α-OH-THP. In contrast, administration of 3α-OH-THP (10 mg/kg, i.p.) on the morning of proestrus improved spatial learning scores 150-300%. These findings suggest that cyclic fluctuations in ovarian steroids can induce changes in cognition via α4βδ GABARs that are dependent upon 3α-OH-THP. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Nicole Sabaliauskas
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jonela Molla
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Qi Hua Gong
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Aarti Kuver
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
18
|
Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC. Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 2014; 8:142. [PMID: 25538570 PMCID: PMC4255500 DOI: 10.3389/fnana.2014.00142] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022] Open
Abstract
Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development - both experimental and theoretical - that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.
Collapse
Affiliation(s)
- Max Adrian
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Remy Kusters
- Department of Applied Physics, Eindhoven University of TechnologyEindhoven, Netherlands
| | - Corette J. Wierenga
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of TechnologyEindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of TechnologyEindhoven, Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
19
|
Pohle J, Bischofberger J. Supralinear dendritic Ca(2+) signalling in young developing CA1 pyramidal cells. J Physiol 2014; 592:4931-49. [PMID: 25239458 DOI: 10.1113/jphysiol.2014.281931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although Ca(2+) is critically important in activity-dependent neuronal development, not much is known about the regulation of dendritic Ca(2+) signals in developing neurons. Here, we used ratiometric Ca(2+) imaging to investigate dendritic Ca(2+) signalling in rat hippocampal pyramidal cells during the first 1-4 weeks of postnatal development. We show that active dendritic backpropagation of Nav channel-dependent action potentials (APs) evoked already large dendritic Ca(2+) transients in animals aged 1 week with amplitudes of ∼150 nm, similar to the amplitudes of ∼160 nM seen in animals aged 4 weeks. Although the AP-evoked dendritic Ca(2+) load increased about four times during the first 4 weeks, the peak amplitude of free Ca(2+) concentration was balanced by a four-fold increase in Ca(2+) buffer capacity κs (∼70 vs. ∼280). Furthermore, Ca(2+) extrusion rates increased with postnatal development, leading to a slower decay time course (∼0.2 s vs. ∼0.1 s) and more effective temporal summation of Ca(2+) signals in young cells. Most importantly, during prolonged theta-burst stimulation dendritic Ca(2+) signals were up to three times larger in cells at 1 week than at 4 weeks of age and much larger than predicted by linear summation, which is attributable to an activity-dependent slow-down of Ca(2+) extrusion. As Ca(2+) influx is four-fold smaller in young cells, the larger Ca(2+) signals are generated using four times less ATP consumption. Taken together, the data suggest that active backpropagations regulate dendritic Ca(2+) signals during early postnatal development. Remarkably, during prolonged AP firing, Ca(2+) signals are several times larger in young than in mature cells as a result of activity-dependent regulation of Ca(2+) extrusion rates.
Collapse
Affiliation(s)
- Jörg Pohle
- Department of Biomedicine, Physiological Institute, University of Basel, Basel, Switzerland Physiology of Neural Networks, Central Institute of Mental Health Mannheim, Mannheim, Germany
| | - Josef Bischofberger
- Department of Biomedicine, Physiological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Lenz M, Platschek S, Priesemann V, Becker D, Willems LM, Ziemann U, Deller T, Müller-Dahlhaus F, Jedlicka P, Vlachos A. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3323-37. [DOI: 10.1007/s00429-014-0859-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|
21
|
Wavelet transform-based de-noising for two-photon imaging of synaptic Ca2+ transients. Biophys J 2013; 104:1006-17. [PMID: 23473483 DOI: 10.1016/j.bpj.2013.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 01/03/2013] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic Ca(2+) transients triggered by neurotransmission at excitatory synapses are a key signaling step for the induction of synaptic plasticity and are typically recorded in tissue slices using two-photon fluorescence imaging with Ca(2+)-sensitive dyes. The signals generated are small with very low peak signal/noise ratios (pSNRs) that make detailed analysis problematic. Here, we implement a wavelet-based de-noising algorithm (PURE-LET) to enhance signal/noise ratio for Ca(2+) fluorescence transients evoked by single synaptic events under physiological conditions. Using simulated Ca(2+) transients with defined noise levels, we analyzed the ability of the PURE-LET algorithm to retrieve the underlying signal. Fitting single Ca(2+) transients with an exponential rise and decay model revealed a distortion of τ(rise) but improved accuracy and reliability of τ(decay) and peak amplitude after PURE-LET de-noising compared to raw signals. The PURE-LET de-noising algorithm also provided a ∼30-dB gain in pSNR compared to ∼16-dB pSNR gain after an optimized binomial filter. The higher pSNR provided by PURE-LET de-noising increased discrimination accuracy between successes and failures of synaptic transmission as measured by the occurrence of synaptic Ca(2+) transients by ∼20% relative to an optimized binomial filter. Furthermore, in comparison to binomial filter, no optimization of PURE-LET de-noising was required for reducing arbitrary bias. In conclusion, the de-noising of fluorescent Ca(2+) transients using PURE-LET enhances detection and characterization of Ca(2+) responses at central excitatory synapses.
Collapse
|
22
|
Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 2012; 491:599-602. [PMID: 23103868 PMCID: PMC3504647 DOI: 10.1038/nature11554] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/07/2012] [Indexed: 11/29/2022]
Abstract
Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough (~500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.
Collapse
Affiliation(s)
| | - Judit K. Makara
- HHMI Janelia Farm Research Campus, Ashburn, VA 20147 USA
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary
| | | | - William L. Kath
- Departments of Applied Mathematics and Neurobiology, Northwestern University, Evanston, IL, 60208 USA
| | | |
Collapse
|
23
|
Popovic MA, Gao X, Carnevale NT, Zecevic D. Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. Cereb Cortex 2012; 24:385-95. [PMID: 23054810 DOI: 10.1093/cercor/bhs320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evidence for an important hypothesis that cortical spine morphology might participate in modifying synaptic efficacy that underlies plasticity and possibly learning and memory mechanisms is inconclusive. Both theory and experiments suggest that the transfer of excitatory postsynaptic potential signals from spines to parent dendrites depends on the spine neck morphology and resistance. Furthermore, modeling of signal transfer in the opposite direction predicts that synapses on spine heads are not electrically isolated from voltages in the parent dendrite. In sharp contrast to this theoretical prediction, one of a very few measurements of electrical signals from spines reported that slow hyperpolarizing membrane potential changes are attenuated considerably by the spine neck as they spread from dendrites to synapses on spine heads. This result challenges our understanding of the electrical behavior of spines at a fundamental level. To re-examine the specific question of the transfer of dendritic signals to synapses of spines, we took advantage of a high-sensitivity Vm-imaging technique and carried out optical measurements of electrical signals from 4 groups of spines with different neck length and simultaneously from parent dendrites. The results show that spine neck does not filter membrane potential signals as they spread from the dendrites into the spine heads.
Collapse
|
24
|
Raghuram V, Sharma Y, Kreutz MR. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+). Front Mol Neurosci 2012; 5:61. [PMID: 22586368 PMCID: PMC3347464 DOI: 10.3389/fnmol.2012.00061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines are believed to be micro-compartments of Ca2+ regulation. In a recent study, it was suggested that the ubiquitous and evolutionarily conserved Ca2+ sensor, calmodulin (CaM), is the first to intercept Ca2+ entering the spine and might be responsible for the fast decay of Ca2+ transients in spines. Neuronal calcium sensor (NCS) and neuronal calcium-binding protein (nCaBP) families consist of Ca2+ sensors with largely unknown synaptic functions despite an increasing number of interaction partners. Particularly how these sensors operate in spines in the presence of CaM has not been discussed in detail before. The limited Ca2+ resources and the existence of common targets create a highly competitive environment where Ca2+ sensors compete with each other for Ca2+ and target binding. In this review, we take a simple numerical approach to put forth possible scenarios and their impact on signaling via Ca2+ sensors of the NCS and nCaBP families. We also discuss the ways in which spine geometry and properties of ion channels, their kinetics and distribution, alter the spatio-temporal aspects of Ca2+ transients in dendritic spines, whose interplay with Ca2+ sensors in turn influences the race for Ca2+.
Collapse
Affiliation(s)
- Vijeta Raghuram
- Centre for Cellular and Molecular Biology, CSIR Hyderabad, India
| | | | | |
Collapse
|