1
|
Larisch R, Hamker FH. A systematic analysis of the joint effects of ganglion cells, lagged LGN cells, and intercortical inhibition on spatiotemporal processing and direction selectivity. Neural Netw 2025; 186:107273. [PMID: 40020308 DOI: 10.1016/j.neunet.2025.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/30/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Simple cells in the visual cortex process spatial as well as temporal information of the visual stream and enable the perception of motion information. Previous work suggests different mechanisms associated with direction selectivity, such as a temporal offset in thalamocortical input stream through lagged and non-lagged cells of the lateral geniculate nucleus (LGN), or solely from intercortical inhibition, or through a baseline selectivity provided by the thalamocortical connection tuned by intercortical inhibition. While there exists a large corpus of models for spatiotemporal receptive fields, the majority of them built-in the spatiotemporal dynamics by utilizing a combination of spatial and temporal functions and thus, do not explain the emergence of spatiotemporal dynamics on basis of network dynamics emerging in the retina and the LGN. In order to better comprehend the emergence of spatiotemporal processing and direction selectivity, we used a spiking neural network to implement the visual pathway from the retina to the primary visual cortex. By varying different functional parts in our network, we demonstrate how the direction selectivity of simple cells emerges through the interplay between two components: tuned intercortical inhibition and a temporal offset in the feedforward path through lagged LGN cells. In contrast to previous findings, our model simulations suggest an alternative dynamic between these two mechanisms: While intercortical inhibition alone leads to bidirectional selectivity, a temporal shift in the thalamocortical pathway breaks this symmetry in favor of one direction, leading to unidirectional selectivity.
Collapse
Affiliation(s)
- René Larisch
- Chemnitz University of Technology, Str. der Nationen, 62, 09111, Chemnitz, Germany.
| | - Fred H Hamker
- Chemnitz University of Technology, Str. der Nationen, 62, 09111, Chemnitz, Germany.
| |
Collapse
|
2
|
Warm D, Bassetti D, Gellèrt L, Yang JW, Luhmann HJ, Sinning A. Spontaneous mesoscale calcium dynamics reflect the development of the modular functional architecture of the mouse cerebral cortex. Neuroimage 2025; 309:121088. [PMID: 39954874 DOI: 10.1016/j.neuroimage.2025.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The mature cerebral cortex operates through the segregation and integration of specialized functions to generate complex cognitive states. In the mouse, the anatomical and functional correlates of this organization arise during the perinatal period and are critically shaped by neural activity. Understanding how early activity patterns distribute, interact, and generate large-scale cortical dynamics is essential to elucidate the proper development of the cortex. Here, we investigate spontaneous mesoscale cortical dynamics during the first two postnatal weeks by performing wide-field calcium imaging in GCaMP6s transgenic mice. Our results demonstrate a marked change in the spatiotemporal features of spontaneous cortical activity across fine stages of postnatal development. Already after birth, the cortical hemisphere presents a primordial macroscopic organization, which undergoes a steady refinement based on the parcellation of the cortex. As calcium activity transitions from large, widespread events to swift waves between the first and second postnatal week, significant topographic differences emerge across different cortical regions. Functional connectivity profiles of the cortex gradually segregate into main subnetworks and give rise to a highly modular network topology at the end of the second postnatal week. Overall, spontaneous mesoscale activity reflects the maturation of cortical networks, and reveals critical breakpoints in the development of the functional architecture of the cortex.
Collapse
Affiliation(s)
- Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Levente Gellèrt
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Goltstein PM, Laubender D, Bonhoeffer T, Hübener M. A column-like organization for ocular dominance in mouse visual cortex. Nat Commun 2025; 16:1926. [PMID: 40000624 PMCID: PMC11861588 DOI: 10.1038/s41467-025-56780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The columnar organization of response properties is a fundamental feature of the mammalian visual cortex. However, columns have not been observed universally across all mammalian species. Here, we report the discovery of clusters of ipsilateral eye preferring neurons in layer 4 of the mouse primary visual cortex. These clusters extend into layer 2/3 and upper layer 5, forming a column-like pattern for ocular dominance. Our observation of such structures in this minute cortical area sets a new boundary condition for models explaining the emergence of functional organizations in the neocortex.
Collapse
Affiliation(s)
| | - David Laubender
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
4
|
Di Santo S, Dipoppa M, Keller A, Roth M, Scanziani M, Miller KD. Contextual modulation emerges by integrating feedforward and feedback processing in mouse visual cortex. Cell Rep 2025; 44:115088. [PMID: 39709599 DOI: 10.1016/j.celrep.2024.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual effects across different stimulus conditions is still lacking. Here we present a unified circuit model of mouse visual cortex that accounts for the main standard forms of contextual modulation. This data-driven and biologically realistic circuit, including three primary inhibitory cell types, sheds light on how bottom-up, top-down, and recurrent inputs are integrated across retinotopic space to generate contextual effects in layer 2/3. We establish causal relationships between neural responses, geometrical features of the inputs, and the connectivity patterns. The model not only reveals how a single canonical cortical circuit differently modulates sensory response depending on context but also generates multiple testable predictions, offering insights that apply to broader neural circuitry.
Collapse
Affiliation(s)
- Serena Di Santo
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
| | - Mario Dipoppa
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andreas Keller
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Morgane Roth
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
5
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. Neuron 2024; 112:2938-2954.e6. [PMID: 38964330 PMCID: PMC11377168 DOI: 10.1016/j.neuron.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford MSTP, Stanford, CA 94305, USA
| | | | - Jun H Song
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Jiang X, Dimitriou E, Grabe V, Sun R, Chang H, Zhang Y, Gershenzon J, Rybak J, Hansson BS, Sachse S. Ring-shaped odor coding in the antennal lobe of migratory locusts. Cell 2024; 187:3973-3991.e24. [PMID: 38897195 DOI: 10.1016/j.cell.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.
Collapse
Affiliation(s)
- Xingcong Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Eleftherios Dimitriou
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Veit Grabe
- Microscopic Service Group, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ruo Sun
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Hetan Chang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yifu Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
8
|
Mulholland HN, Kaschube M, Smith GB. Self-organization of modular activity in immature cortical networks. Nat Commun 2024; 15:4145. [PMID: 38773083 PMCID: PMC11109213 DOI: 10.1038/s41467-024-48341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.
Collapse
Affiliation(s)
- Haleigh N Mulholland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Department of Computer Science and Mathematics, Goethe University, 60054, Frankfurt am Main, Germany
| | - Gordon B Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Optical Imaging and Brain Sciences Medical Discovery Team, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically Active Piriform Cortex Neurons Promote Intracortical Recurrent Connectivity during Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593265. [PMID: 38766173 PMCID: PMC11100831 DOI: 10.1101/2024.05.08.593265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used Targeted Recombination in Active Populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing of these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
|
10
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
11
|
Baek S, Park Y, Paik SB. Species-specific wiring of cortical circuits for small-world networks in the primary visual cortex. PLoS Comput Biol 2023; 19:e1011343. [PMID: 37540638 PMCID: PMC10403141 DOI: 10.1371/journal.pcbi.1011343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Long-range horizontal connections (LRCs) are conspicuous anatomical structures in the primary visual cortex (V1) of mammals, yet their detailed functions in relation to visual processing are not fully understood. Here, we show that LRCs are key components to organize a "small-world network" optimized for each size of the visual cortex, enabling the cost-efficient integration of visual information. Using computational simulations of a biologically inspired model neural network, we found that sparse LRCs added to networks, combined with dense local connections, compose a small-world network and significantly enhance image classification performance. We confirmed that the performance of the network appeared to be strongly correlated with the small-world coefficient of the model network under various conditions. Our theoretical model demonstrates that the amount of LRCs to build a small-world network depends on each size of cortex and that LRCs are beneficial only when the size of the network exceeds a certain threshold. Our model simulation of various sizes of cortices validates this prediction and provides an explanation of the species-specific existence of LRCs in animal data. Our results provide insight into a biological strategy of the brain to balance functional performance and resource cost.
Collapse
Affiliation(s)
- Seungdae Baek
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Youngjin Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Se-Bum Paik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Klaver LMF, Brinkhof LP, Sikkens T, Casado-Román L, Williams AG, van Mourik-Donga L, Mejías JF, Pennartz CMA, Bosman CA. Spontaneous variations in arousal modulate subsequent visual processing and local field potential dynamics in the ferret during quiet wakefulness. Cereb Cortex 2023; 33:7564-7581. [PMID: 36935096 PMCID: PMC10267643 DOI: 10.1093/cercor/bhad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Behavioral states affect neuronal responses throughout the cortex and influence visual processing. Quiet wakefulness (QW) is a behavioral state during which subjects are quiescent but awake and connected to the environment. Here, we examined the effects of pre-stimulus arousal variability on post-stimulus neural activity in the primary visual cortex and posterior parietal cortex in awake ferrets, using pupil diameter as an indicator of arousal. We observed that the power of stimuli-induced alpha (8-12 Hz) decreases when the arousal level increases. The peak of alpha power shifts depending on arousal. High arousal increases inter- and intra-areal coherence. Using a simplified model of laminar circuits, we show that this connectivity pattern is compatible with feedback signals targeting infragranular layers in area posterior parietal cortex and supragranular layers in V1. During high arousal, neurons in V1 displayed higher firing rates at their preferred orientations. Broad-spiking cells in V1 are entrained to high-frequency oscillations (>80 Hz), whereas narrow-spiking neurons are phase-locked to low- (12-18 Hz) and high-frequency (>80 Hz) rhythms. These results indicate that the variability and sensitivity of post-stimulus cortical responses and coherence depend on the pre-stimulus behavioral state and account for the neuronal response variability observed during repeated stimulation.
Collapse
Affiliation(s)
- Lianne M F Klaver
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lotte P Brinkhof
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tom Sikkens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lorena Casado-Román
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alex G Williams
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Laura van Mourik-Donga
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A Bosman
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Lin Y, Zhang XJ, Yang J, Li S, Li L, Lv X, Ma J, Shi SH. Developmental neuronal origin regulates neocortical map formation. Cell Rep 2023; 42:112170. [PMID: 36842085 DOI: 10.1016/j.celrep.2023.112170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 02/27/2023] Open
Abstract
Sensory neurons in the neocortex exhibit distinct functional selectivity to constitute the neural map. While neocortical map of the visual cortex in higher mammals is clustered, it displays a striking "salt-and-pepper" pattern in rodents. However, little is known about the origin and basis of the interspersed neocortical map. Here we report that the intricate excitatory neuronal kinship-dependent synaptic connectivity influences precise functional map organization in the mouse primary visual cortex. While sister neurons originating from the same neurogenic radial glial progenitors (RGPs) preferentially develop synapses, cousin neurons derived from amplifying RGPs selectively antagonize horizontal synapse formation. Accordantly, cousin neurons in similar layers exhibit clear functional selectivity differences, contributing to a salt-and-pepper architecture. Removal of clustered protocadherins (cPCDHs), the largest subgroup of the diverse cadherin superfamily, eliminates functional selectivity differences between cousin neurons and alters neocortical map organization. These results suggest that developmental neuronal origin regulates neocortical map formation via cPCDHs.
Collapse
Affiliation(s)
- Yang Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin-Jun Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jiajun Yang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuo Li
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Laura Li
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Lv
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Ma
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
14
|
Wallace MN, Zobay O, Hardman E, Thompson Z, Dobbs P, Chakrabarti L, Palmer AR. The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity. Front Neuroanat 2022; 16:1034264. [PMID: 36439196 PMCID: PMC9681811 DOI: 10.3389/fnana.2022.1034264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Minicolumns are thought to be a fundamental neural unit in the neocortex and their replication may have formed the basis of the rapid cortical expansion that occurred during primate evolution. We sought evidence of minicolumns in the primary visual cortex (V-1) of three great apes, three rodents and representatives from three other mammalian orders: Eulipotyphla (European hedgehog), Artiodactyla (domestic pig) and Carnivora (ferret). Minicolumns, identified by the presence of a long bundle of radial, myelinated fibers stretching from layer III to the white matter of silver-stained sections, were found in the human, chimpanzee, gorilla and guinea pig V-1. Shorter bundles confined to one or two layers were found in the other species but represent modules rather than minicolumns. The inter-bundle distance, and hence density of minicolumns, varied systematically both within a local area that might represent a hypercolumn but also across the whole visual field. The distance between all bundles had a similar range for human, chimpanzee, gorilla, ferret and guinea pig: most bundles were 20-45 μm apart. By contrast, the space between bundles was greater for the hedgehog and pig (20-140 μm). The mean density of minicolumns was greater in tangential sections of the gorilla and chimpanzee (1,243-1,287 bundles/mm2) than in human (314-422 bundles/mm2) or guinea pig (643 bundles/mm2). The minicolumnar bundles did not form a hexagonal lattice but were arranged in thin curving and branched bands separated by thicker bands of neuropil/somata. Estimates of the total number of modules/minicolumns within V-1 were strongly correlated with visual acuity.
Collapse
Affiliation(s)
- Mark N. Wallace
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Zobay
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Hearing Sciences—Scottish Section, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Eden Hardman
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Phillipa Dobbs
- Veterinary Department, Twycross Zoo, East Midland Zoological Society, Atherstone, United Kingdom
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex. Nat Commun 2022; 13:6611. [PMID: 36329010 PMCID: PMC9633707 DOI: 10.1038/s41467-022-34261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent sensory cortex contains salt-and-pepper maps of sensory features, whose structure is not fully known. Here we investigated the structure of the salt-and-pepper whisker somatotopic map among L2/3 pyramidal neurons in somatosensory cortex, in awake mice performing one-vs-all whisker discrimination. Neurons tuned for columnar (CW) and non-columnar (non-CW) whiskers were spatially intermixed, with co-tuned neurons forming local (20 µm) clusters. Whisker tuning was markedly unstable in expert mice, with 35-46% of pyramidal cells significantly shifting tuning over 5-18 days. Tuning instability was highly concentrated in non-CW tuned neurons, and thus was structured in the map. Instability of non-CW neurons was unchanged during chronic whisker paralysis and when mice discriminated individual whiskers, suggesting it is an inherent feature. Thus, L2/3 combines two distinct components: a stable columnar framework of CW-tuned cells that may promote spatial perceptual stability, plus an intermixed, non-columnar surround with highly unstable tuning.
Collapse
|
16
|
Jung YJ, Almasi A, Sun SH, Yunzab M, Cloherty SL, Bauquier SH, Renfree M, Meffin H, Ibbotson MR. Orientation pinwheels in primary visual cortex of a highly visual marsupial. SCIENCE ADVANCES 2022; 8:eabn0954. [PMID: 36179020 PMCID: PMC9524828 DOI: 10.1126/sciadv.abn0954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.
Collapse
Affiliation(s)
- Young Jun Jung
- National Vision Research Institute, Melbourne, VIC, Australia
| | - Ali Almasi
- Optalert Limited, Melbourne, VIC, Australia
| | - Shi H. Sun
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Molis Yunzab
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sebastien H. Bauquier
- Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Pooling strategies in V1 can account for the functional and structural diversity across species. PLoS Comput Biol 2022; 18:e1010270. [PMID: 35862423 PMCID: PMC9345491 DOI: 10.1371/journal.pcbi.1010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Neurons in the primary visual cortex are selective to orientation with various degrees of selectivity to the spatial phase, from high selectivity in simple cells to low selectivity in complex cells. Various computational models have suggested a possible link between the presence of phase invariant cells and the existence of orientation maps in higher mammals’ V1. These models, however, do not explain the emergence of complex cells in animals that do not show orientation maps. In this study, we build a theoretical model based on a convolutional network called Sparse Deep Predictive Coding (SDPC) and show that a single computational mechanism, pooling, allows the SDPC model to account for the emergence in V1 of complex cells with or without that of orientation maps, as observed in distinct species of mammals. In particular, we observed that pooling in the feature space is directly related to the orientation map formation while pooling in the retinotopic space is responsible for the emergence of a complex cells population. Introducing different forms of pooling in a predictive model of early visual processing as implemented in SDPC can therefore be viewed as a theoretical framework that explains the diversity of structural and functional phenomena observed in V1.
Collapse
|
18
|
Topographic map formation and the effects of NMDA receptor blockade in the developing visual system. Proc Natl Acad Sci U S A 2022; 119:2107899119. [PMID: 35193956 PMCID: PMC8872792 DOI: 10.1073/pnas.2107899119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Studying the emergence of topographic organization in sensory maps has been constrained by spatial limitations of traditional anatomical and physiological techniques early in development in many animal models. Here, we have applied a high-resolution, noninvasive, in vivo calcium imaging approach to study the nascent retinotopic map in the larval Xenopus laevis retinotectal system. We performed longitudinal functional imaging of the three-dimensional organization of emerging retinotopic maps and assessed the effects of N-methyl-D-aspartate (NMDA) receptor blockade on map formation. Our results provide insights into early retinotopic map emergence and the role of NMDA receptors in the refinement of topographic gradients. The development of functional topography in the developing brain follows a progression from initially coarse to more precisely organized maps. To examine the emergence of topographically organized maps in the retinotectal system, we performed longitudinal visual receptive field mapping by calcium imaging in the optic tectum of GCaMP6-expressing transgenic Xenopus laevis tadpoles. At stage 42, just 1 d after retinal axons arrived in the optic tectum, a clear retinotopic azimuth map was evident. Animals were imaged over the following week at stages 45 and 48, over which time the tectal neuropil nearly doubled in length and exhibited more precise retinotopic organization. By microinjecting GCaMP6s messenger ribonucleic acid (mRNA) into one blastomere of two-cell stage embryos, we acquired bilateral mosaic tadpoles with GCaMP6s expression in postsynaptic tectal neurons on one side of the animal and in retinal ganglion cell axons crossing to the tectum on the opposite side. Longitudinal observation of retinotopic map emergence revealed the presence of orderly representations of azimuth and elevation as early as stage 42, although presynaptic inputs exhibited relatively less topographic organization than the postsynaptic component for the azimuth axis. Retinotopic gradients in the tectum became smoother between stages 42 and 45. Blocking N-methyl-D-aspartate (NMDA) receptor conductance by rearing tadpoles in MK-801 did not prevent the emergence of retinotopic maps, but it produced more discontinuous topographic gradients and altered receptive field characteristics. These results provide evidence that current through NMDA receptors is dispensable for coarse topographic ordering of retinotectal inputs but does contribute to the fine-scale organization of the retinotectal projection.
Collapse
|
19
|
Schmidt KE, Wolf F. Punctuated evolution of visual cortical circuits? Evidence from the large rodent Dasyprocta leporina, and the tiny primate Microcebus murinus. Curr Opin Neurobiol 2021; 71:110-118. [PMID: 34823047 DOI: 10.1016/j.conb.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
Recent reports of the lack of periodic orientation columns in a very large rodent species, the red-rumped agouti, and the existence of incompressible hypercolumns in the lineage of primates, as demonstrated in one of the smallest primates, the mouse lemur, strengthen the interpretation that salt-and-pepper and columns-and-pinwheel mosaics are two distinct functional layouts. These layouts do neither depend on lifestyle nor scale with body size, brain size, absolute neuron numbers, binocular overlap, or visual acuity, but are primarily distinguishable by phylogenetic traits. The predictive value of other biological signatures such as V1 neuronal surface density and the central-peripheral density ratio of retinal ganglion cells are reconsidered, and experiments elucidating the intracortical connectivity in rodents are proposed.
Collapse
Affiliation(s)
- Kerstin E Schmidt
- Neurobiology of Vision Lab, Brain Institute, Federal University of Rio Grande do Norte, 59078 970, Av. Sen. Salgado Filho, 3000, Lagoa Nova, Natal, RN, Brazil.
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Herrmann-Rein-Strasse, 37075 Göttingen, Germany
| |
Collapse
|
20
|
Jang J, Song M, Paik SB. Retino-Cortical Mapping Ratio Predicts Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. Cell Rep 2021; 30:3270-3279.e3. [PMID: 32160536 DOI: 10.1016/j.celrep.2020.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
In the mammalian primary visual cortex, neural tuning to stimulus orientation is organized in either columnar or salt-and-pepper patterns across species. For decades, this sharp contrast has spawned fundamental questions about the origin of functional architectures in visual cortex. However, it is unknown whether these patterns reflect disparate developmental mechanisms across mammalian taxa or simply originate from variation of biological parameters under a universal development process. In this work, after the analysis of data from eight mammalian species, we show that cortical organization is predictable by a single factor, the retino-cortical mapping ratio. Groups of species with or without columnar clustering are distinguished by the feedforward sampling ratio, and model simulations with controlled mapping conditions reproduce both types of organization. Prediction from the Nyquist theorem explains this parametric division of the patterns with high accuracy. Our results imply that evolutionary variation of physical parameters may induce development of distinct functional circuitry.
Collapse
Affiliation(s)
- Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min Song
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
21
|
Ho CLA, Zimmermann R, Flórez Weidinger JD, Prsa M, Schottdorf M, Merlin S, Okamoto T, Ikezoe K, Pifferi F, Aujard F, Angelucci A, Wolf F, Huber D. Orientation Preference Maps in Microcebus murinus Reveal Size-Invariant Design Principles in Primate Visual Cortex. Curr Biol 2020; 31:733-741.e7. [PMID: 33275889 PMCID: PMC9026768 DOI: 10.1016/j.cub.2020.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023]
Abstract
Orientation preference maps (OPMs) are a prominent feature of primary visual cortex (V1) organization in many primates and carnivores. In rodents, neurons are not organized in OPMs but are instead interspersed in a “salt and pepper” fashion, although clusters of orientation-selective neurons have been reported. Does this fundamental difference reflect the existence of a lower size limit for orientation columns (OCs) below which they cannot be scaled down with decreasing V1 size? To address this question, we examined V1 of one of the smallest living primates, the 60-g prosimian mouse lemur (Microcebus murinus). Using chronic intrinsic signal imaging, we found that mouse lemur V1 contains robust OCs, which are arranged in a pinwheel-like fashion. OC size in mouse lemurs was found to be only marginally smaller compared to the macaque, suggesting that these circuit elements are nearly incompressible. The spatial arrangement of pinwheels is well described by a common mathematical design of primate V1 circuit organization. In order to accommodate OPMs, we found that the mouse lemur V1 covers one-fifth of the cortical surface, which is one of the largest V1-to-cortex ratios found in primates. These results indicate that the primate-type visual cortical circuit organization is constrained by a size limitation and raises the possibility that its emergence might have evolved by disruptive innovation rather than gradual change. Orientation preference maps are a hallmark of V1 organization in all primates studied thus far, yet they are absent in rodents. It is uncertain whether these structures scale with body or brain size. Using intrinsic signal imaging, Ho et al. reveal the presence of such maps in the V1 of the world’s smallest primate, the mouse lemur (Microcebus murinus).
Collapse
Affiliation(s)
- Chun Lum Andy Ho
- University of Geneva, Department of Basic Neurosciences, Rue Michel Servet 1, Geneva 1211, Switzerland
| | - Robert Zimmermann
- University of Geneva, Department of Basic Neurosciences, Rue Michel Servet 1, Geneva 1211, Switzerland
| | | | - Mario Prsa
- University of Geneva, Department of Basic Neurosciences, Rue Michel Servet 1, Geneva 1211, Switzerland
| | - Manuel Schottdorf
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany
| | - Sam Merlin
- Moran Eye Center, University of Utah, Department of Ophthalmology and Visual Science, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Tsuyoshi Okamoto
- Kyushu University, Faculty of Arts and Science, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Ikezoe
- Center for Information and Neural Networks, Osaka University and National Institute of Information and Communications Technology, Graduate School of Frontier Biosciences, 1-3 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Chateau, Brunoy 91800, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Chateau, Brunoy 91800, France
| | - Alessandra Angelucci
- Moran Eye Center, University of Utah, Department of Ophthalmology and Visual Science, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany; Campus Institute for Dynamics of Biological Networks, Hermann-Rein-Straße 3, Göttingen 37075, Germany; Bernstein Center for Computational Neuroscience, Hermann-Rein-Straße 3, Göttingen 37075, Germany; Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, Göttingen 37075, Germany; Institute for Dynamics of Complex Systems, Georg-August University, Friedrich-Hund-Platz 1, Göttingen 37073, Germany
| | - Daniel Huber
- University of Geneva, Department of Basic Neurosciences, Rue Michel Servet 1, Geneva 1211, Switzerland.
| |
Collapse
|
22
|
Capparelli F, Pawelzik K, Ernst U. Constrained inference in sparse coding reproduces contextual effects and predicts laminar neural dynamics. PLoS Comput Biol 2019; 15:e1007370. [PMID: 31581240 PMCID: PMC6793885 DOI: 10.1371/journal.pcbi.1007370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/15/2019] [Accepted: 09/02/2019] [Indexed: 01/16/2023] Open
Abstract
When probed with complex stimuli that extend beyond their classical receptive field, neurons in primary visual cortex display complex and non-linear response characteristics. Sparse coding models reproduce some of the observed contextual effects, but still fail to provide a satisfactory explanation in terms of realistic neural structures and cortical mechanisms, since the connection scheme they propose consists only of interactions among neurons with overlapping input fields. Here we propose an extended generative model for visual scenes that includes spatial dependencies among different features. We derive a neurophysiologically realistic inference scheme under the constraint that neurons have direct access only to local image information. The scheme can be interpreted as a network in primary visual cortex where two neural populations are organized in different layers within orientation hypercolumns that are connected by local, short-range and long-range recurrent interactions. When trained with natural images, the model predicts a connectivity structure linking neurons with similar orientation preferences matching the typical patterns found for long-ranging horizontal axons and feedback projections in visual cortex. Subjected to contextual stimuli typically used in empirical studies, our model replicates several hallmark effects of contextual processing and predicts characteristic differences for surround modulation between the two model populations. In summary, our model provides a novel framework for contextual processing in the visual system proposing a well-defined functional role for horizontal axons and feedback projections.
Collapse
Affiliation(s)
- Federica Capparelli
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
- * E-mail:
| | - Klaus Pawelzik
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| | - Udo Ernst
- Institute for Theoretical Physics, University of Bremen, Bremen, Germany
| |
Collapse
|
23
|
Crijns E, Kaliukhovich DA, Vankelecom L, Op de Beeck H. Unsupervised Temporal Contiguity Experience Does Not Break the Invariance of Orientation Selectivity Across Spatial Frequency. Front Syst Neurosci 2019; 13:22. [PMID: 31231196 PMCID: PMC6558410 DOI: 10.3389/fnsys.2019.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022] Open
Abstract
The images projected onto the retina can vary widely for a single object. Despite these transformations primates can quickly and reliably recognize objects. At the neural level, transformation tolerance in monkey inferotemporal cortex is affected by the temporal contiguity statistics of the visual input. Here we investigated whether temporal contiguity learning also influences the basic feature detectors in lower levels of the visual hierarchy, in particular the independent coding of orientation and spatial frequency (SF) in primary visual cortex. Eight male Long Evans rats were repeatedly exposed to a temporal transition between two gratings that changed in SF and had either the same (control SF) or a different (swap SF) orientation. Electrophysiological evidence showed that the responses of single neurons during this exposure were sensitive to the change in orientation. Nevertheless, the tolerance of orientation selectivity for changes in SF was unaffected by the temporal contiguity manipulation, as observed in 239 single neurons isolated pre-exposure and 234 post-exposure. Temporal contiguity learning did not affect orientation selectivity in V1. The basic filter mechanisms that characterize V1 processing seem unaffected by temporal contiguity manipulations.
Collapse
Affiliation(s)
- Els Crijns
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Dzmitry A Kaliukhovich
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Lara Vankelecom
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Hans Op de Beeck
- Laboratory of Biological Psychology, Department of Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
24
|
Bányai M, Lazar A, Klein L, Klon-Lipok J, Stippinger M, Singer W, Orbán G. Stimulus complexity shapes response correlations in primary visual cortex. Proc Natl Acad Sci U S A 2019; 116:2723-2732. [PMID: 30692266 PMCID: PMC6377442 DOI: 10.1073/pnas.1816766116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spike count correlations (SCCs) are ubiquitous in sensory cortices, are characterized by rich structure, and arise from structured internal dynamics. However, most theories of visual perception treat contributions of neurons to the representation of stimuli independently and focus on mean responses. Here, we argue that, in a functional model of visual perception, featuring probabilistic inference over a hierarchy of features, inferences about high-level features modulate inferences about low-level features ultimately introducing structured internal dynamics and patterns in SCCs. Specifically, high-level inferences for complex stimuli establish the local context in which neurons in the primary visual cortex (V1) interpret stimuli. Since the local context differentially affects multiple neurons, this conjecture predicts specific modulations in the fine structure of SCCs as stimulus identity and, more importantly, stimulus complexity varies. We designed experiments with natural and synthetic stimuli to measure the fine structure of SCCs in V1 of awake behaving macaques and assessed their dependence on stimulus identity and stimulus statistics. We show that the fine structure of SCCs is specific to the identity of natural stimuli and changes in SCCs are independent of changes in response mean. Critically, we demonstrate that stimulus specificity of SCCs in V1 can be directly manipulated by altering the amount of high-order structure in synthetic stimuli. Finally, we show that simple phenomenological models of V1 activity cannot account for the observed SCC patterns and conclude that the stimulus dependence of SCCs is a natural consequence of structured internal dynamics in a hierarchical probabilistic model of natural images.
Collapse
Affiliation(s)
- Mihály Bányai
- Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, 1121 Budapest, Hungary;
| | - Andreea Lazar
- Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Liane Klein
- Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
- International Max Planck Research School for Neural Circuits, 60438 Frankfurt am Main, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Marcell Stippinger
- Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Gergő Orbán
- Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, 1121 Budapest, Hungary
| |
Collapse
|
25
|
Holley ZL, Bland KM, Casey ZO, Handwerk CJ, Vidal GS. Cross-Regional Gradient of Dendritic Morphology in Isochronically-Sourced Mouse Supragranular Pyramidal Neurons. Front Neuroanat 2018; 12:103. [PMID: 30564104 PMCID: PMC6288488 DOI: 10.3389/fnana.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Architectonic heterogeneity in neurons is thought to be important for equipping the mammalian cerebral cortex with an adaptable network that can organize the manifold totality of information it receives. To this end, the dendritic arbors of supragranular pyramidal neurons, even those of the same class, are known to vary substantially. This diversity of dendritic morphology appears to have a rostrocaudal configuration in some brain regions of various species. For example, in humans and non-human primates, neurons in more rostral visual association areas (e.g., V4) tend to have more complex dendritic arbors than those in the caudal primary visual cortex. A rostrocaudal configuration is not so clear in any region of the mouse, which is increasingly being used as a model for neurodevelopmental disorders that arise from dysfunctional cerebral cortical circuits. Therefore, in this study we investigated the complexity of dendritic arbors of neurons distributed throughout a broad area of the mouse cerebral cortex. We reduced selection bias by labeling neurons restricted to become supragranular pyramidal neurons using in utero electroporation. While we observed that the simple rostrocaudal position, cortical depth, or even functional region of a neuron was not directly related to its dendritic morphology, a model that instead included a caudomedial-to-rostrolateral gradient accounted for a significant amount of the observed dendritic morphological variance. In other words, rostrolateral neurons from our data set were generally more complex when compared to caudomedial neurons. Furthermore, dividing the cortex into a visual area and a non-visual area maintained the power of the relationship between caudomedial-to-rostrolateral position and dendritic complexity. Our observations therefore support the idea that dendritic morphology of mouse supragranular excitatory pyramidal neurons across much of the tangential plane of the cerebral cortex is partly shaped by a developmental gradient spanning several functional regions.
Collapse
Affiliation(s)
- Zachary Logan Holley
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Katherine M Bland
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Zachary O Casey
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - George S Vidal
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
26
|
Takahata T, Patel NB, Balaram P, Chino YM, Kaas JH. Long-term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation. J Comp Neurol 2018; 526:2955-2972. [PMID: 30004587 DOI: 10.1002/cne.24494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/02/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022]
Abstract
Ocular dominance (OD) plasticity has been extensively studied in various mammalian species. While robust OD shifts are typically observed after monocular eyelid suture, relatively poor OD plasticity is observed for early eye removal or after tetrodotoxin (TTX) injections in mice. Hence, abnormal binocular signal interactions in the visual cortex may play a critical role in eliciting OD plasticity. Here, we examined the histochemical changes in the lateral geniculate nucleus (LGN) and the striate cortex (V1) in macaque monkeys that experienced two different monocular sensory deprivations in the same eye beginning at 3 weeks of age: restricted laser lesions in macular or peripheral retina and form deprivation induced by wearing a diffuser lens during the critical period. The monkeys were subsequently reared for 5 years under a normal visual environment. In the LGN, atrophy of neurons and a dramatic increase of GFAP expression were observed in the lesion projection zones (LPZs). In V1, although no obvious shift of the LPZ border was found, the ocular dominance columns (ODCs) for the lesioned eye shrunk and those for the intact eye expanded over the entirety of V1. This ODC size change was larger in the area outside the LPZ and in the region inside the LPZ near the border compared to that in the LPZ center. These developmental changes may reflect abnormal binocular interactions in V1 during early infancy. Our observations provide insights into the nature of degenerative and plastic changes in the LGN and V1 following early chronic monocular sensory deprivations.
Collapse
Affiliation(s)
- Toru Takahata
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Nimesh B Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Yuzo M Chino
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
27
|
Bockhorst T, Pieper F, Engler G, Stieglitz T, Galindo-Leon E, Engel AK. Synchrony surfacing: Epicortical recording of correlated action potentials. Eur J Neurosci 2018; 48:3583-3596. [DOI: 10.1111/ejn.14167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Tobias Bockhorst
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering -IMTEK; Laboratory for Biomedical Microsystems; Albert-Ludwig-University of Freiburg; Freiburg Germany
- BrainLinks-BrainTools; Albert-Ludwig-University of Freiburg; Freiburg Germany
- Bernstein Center Freiburg; Albert-Ludwig-University of Freiburg; Freiburg Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
28
|
Quiroga MDM, Morris AP, Krekelberg B. Adaptation without Plasticity. Cell Rep 2017; 17:58-68. [PMID: 27681421 DOI: 10.1016/j.celrep.2016.08.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/25/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
Abstract
Sensory adaptation is a phenomenon in which neurons are affected not only by their immediate input but also by the sequence of preceding inputs. In visual cortex, for example, neurons shift their preferred orientation after exposure to an oriented stimulus. This adaptation is traditionally attributed to plasticity. We show that a recurrent network generates tuning curve shifts observed in cat and macaque visual cortex, even when all synaptic weights and intrinsic properties in the model are fixed. This demonstrates that, in a recurrent network, adaptation on timescales of hundreds of milliseconds does not require plasticity. Given the ubiquity of recurrent connections, this phenomenon likely contributes to responses observed across cortex and shows that plasticity cannot be inferred solely from changes in tuning on these timescales. More broadly, our findings show that recurrent connections can endow a network with a powerful mechanism to store and integrate recent contextual information.
Collapse
Affiliation(s)
- Maria Del Mar Quiroga
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Adam P Morris
- Department of Physiology, Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA.
| |
Collapse
|
29
|
Philips RT, Sur M, Chakravarthy VS. The influence of astrocytes on the width of orientation hypercolumns in visual cortex: A computational perspective. PLoS Comput Biol 2017; 13:e1005785. [PMID: 29077710 PMCID: PMC5678733 DOI: 10.1371/journal.pcbi.1005785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/08/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022] Open
Abstract
Orientation preference maps (OPMs) are present in carnivores (such as cats and ferrets) and primates but are absent in rodents. In this study we investigate the possible link between astrocyte arbors and presence of OPMs. We simulate the development of orientation maps with varying hypercolumn widths using a variant of the Laterally Interconnected Synergetically Self-Organizing Map (LISSOM) model, the Gain Control Adaptive Laterally connected (GCAL) model, with an additional layer simulating astrocytic activation. The synaptic activity of V1 neurons is given as input to the astrocyte layer. The activity of this astrocyte layer is now used to modulate bidirectional plasticity of lateral excitatory connections in the V1 layer. By simply varying the radius of the astrocytes, the extent of lateral excitatory neuronal connections can be manipulated. An increase in the radius of lateral excitatory connections subsequently increases the size of a single hypercolumn in the OPM. When these lateral excitatory connections become small enough the OPM disappears and a salt-and-pepper organization emerges. Columns of neurons in the primary visual cortex (V1) are known to be tuned to visual stimuli containing edges of a particular orientation. The arrangement of these cortical columns varies across species. In many species such as in ferrets, cats, and monkeys a topology preserving map is observed, wherein similarly tuned columns are observed in close proximity to each other, resulting in the formation of Orientation Preference Maps (OPMs). The width of the hypercolumns, the fundamental unit of an OPM, also varies across species. However, such an arrangement is not observed in rodents, wherein a more random arrangement of these cortical columns is reported. We explore the role of astrocytes in the arrangement of these cortical columns using a self-organizing computational model. Invoking evidence that astrocytes could influence bidirectional plasticity among effective lateral excitatory connections in V1, we introduce a mechanism by which astrocytic inputs can influence map formation in the neuronal network. In the resulting model-generated OPMs the radius of the hypercolumns is found to be correlated with that of astrocytic arbors, a feature that finds support in experimental studies.
Collapse
Affiliation(s)
- Ryan T. Philips
- Computational Neuroscience Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - V. Srinivasa Chakravarthy
- Computational Neuroscience Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
30
|
Kurylo DD, Yeturo S, Lanza J, Bukhari F. Lateral masking effects on contrast sensitivity in rats. Behav Brain Res 2017; 335:1-7. [PMID: 28789950 DOI: 10.1016/j.bbr.2017.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/11/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
Changes in target visibility may be produced by additional stimulus elements at adjacent locations. Such contextual effects may reflect lateral interactions of stimulus representations in early cortical areas. It has been reported that the organization of orientation preference found in primates and cats visual cortex differs from that found in rodents, suggesting functional distinctions across species. In order to examine effects of lateral interactions at a perceptual level, contrast sensitivity in rats was measured for Gabor patches masked by two additional patches. Rats responded to target onset, and perceptual indices were based upon reaction time distributions across levels of luminance contrast. It was found that contrast sensitivity of targets without lateral masks corresponded to levels previously reported. For all measurements, the presence of sustained lateral masks systematically reduced sensitivity to targets, demonstrating interference by adjacent elements across levels of contrast. Effects of mask orientation or separation were not observed. These results may reflect reported non-systematic topography of orientation tuning across the cortex in rodents. Results suggest that intrinsic lateral connections in early processing areas play a minimal role in stimulus integration for rats.
Collapse
Affiliation(s)
- Daniel D Kurylo
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY, 11210, United States.
| | - Sowmya Yeturo
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY, 11210, United States
| | - Joseph Lanza
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY, 11210, United States
| | - Farhan Bukhari
- Department of Computer Science, The Graduate Center CUNY, New York, NY, 10016, United States
| |
Collapse
|
31
|
Abstract
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.
Collapse
|
32
|
Abstract
Neurons sharing similar features are often selectively connected with a higher probability and should be located in close vicinity to save wiring. Selective connectivity has, therefore, been proposed to be the cause for spatial organization in cortical maps. Interestingly, orientation preference (OP) maps in the visual cortex are found in carnivores, ungulates, and primates but are not found in rodents, indicating fundamental differences in selective connectivity that seem unexpected for closely related species. Here, we investigate this finding by using multidimensional scaling to predict the locations of neurons based on minimizing wiring costs for any given connectivity. Our model shows a transition from an unstructured salt-and-pepper organization to a pinwheel arrangement when increasing the number of neurons, even without changing the selectivity of the connections. Increasing neuronal numbers also leads to the emergence of layers, retinotopy, or ocular dominance columns for the selective connectivity corresponding to each arrangement. We further show that neuron numbers impact overall interconnectivity as the primary reason for the appearance of neural maps, which we link to a known phase transition in an Ising-like model from statistical mechanics. Finally, we curated biological data from the literature to show that neural maps appear as the number of neurons in visual cortex increases over a wide range of mammalian species. Our results provide a simple explanation for the existence of salt-and-pepper arrangements in rodents and pinwheel arrangements in the visual cortex of primates, carnivores, and ungulates without assuming differences in the general visual cortex architecture and connectivity.
Collapse
|
33
|
Koch E, Jin J, Alonso JM, Zaidi Q. Functional implications of orientation maps in primary visual cortex. Nat Commun 2016; 7:13529. [PMID: 27876796 PMCID: PMC5122974 DOI: 10.1038/ncomms13529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 02/02/2023] Open
Abstract
Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures. Stimulus orientation in the primary visual cortex of primates and carnivores is mapped into a geometrical mosaic but the functional implications of these maps remain debated. Here the authors reveal an association between the structure of cortical orientation maps in cats, and the functions of local cortical circuits in processing patterns and contours.
Collapse
Affiliation(s)
- Erin Koch
- Graduate Center for Vision Research, College of Optometry, State University of New York, 33 West 42nd Street, New York, New York 10036, USA
| | - Jianzhong Jin
- Graduate Center for Vision Research, College of Optometry, State University of New York, 33 West 42nd Street, New York, New York 10036, USA
| | - Jose M Alonso
- Graduate Center for Vision Research, College of Optometry, State University of New York, 33 West 42nd Street, New York, New York 10036, USA
| | - Qasim Zaidi
- Graduate Center for Vision Research, College of Optometry, State University of New York, 33 West 42nd Street, New York, New York 10036, USA
| |
Collapse
|
34
|
Abstract
In this article, we review functional organization in sensory cortical regions—how the cortex represents the world. We consider four interrelated aspects of cortical organization: (1) the set of receptive fields of individual cortical sensory neurons, (2) how lateral interaction between cortical neurons reflects the similarity of their receptive fields, (3) the spatial distribution of receptive-field properties across the horizontal extent of the cortical tissue, and (4) how the spatial distributions of different receptive-field properties interact with one another. We show how these data are generally well explained by the theory of input-driven self-organization, with a family of computational models of cortical maps offering a parsimonious account for a wide range of map-related phenomena. We then discuss important challenges to this explanation, with respect to the maps present at birth, maps present under activity blockade, the limits of adult plasticity, and the lack of some maps in rodents. Because there is not at present another credible general theory for cortical map development, we conclude by proposing key experiments to help uncover other mechanisms that might also be operating during map development.
Collapse
Affiliation(s)
- James A. Bednar
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Stuart P. Wilson
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
35
|
Sweeney Y, Clopath C. Emergent spatial synaptic structure from diffusive plasticity. Eur J Neurosci 2016; 45:1057-1067. [DOI: 10.1111/ejn.13279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Yann Sweeney
- Department of Bioengineering; Imperial College London, South Kensington Campus; London SW7 2AZ UK
| | - Claudia Clopath
- Department of Bioengineering; Imperial College London, South Kensington Campus; London SW7 2AZ UK
| |
Collapse
|
36
|
Miller KD. Canonical computations of cerebral cortex. Curr Opin Neurobiol 2016; 37:75-84. [PMID: 26868041 DOI: 10.1016/j.conb.2016.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/23/2022]
Abstract
The idea that there is a fundamental cortical circuit that performs canonical computations remains compelling though far from proven. Here we review evidence for two canonical operations within sensory cortical areas: a feedforward computation of selectivity; and a recurrent computation of gain in which, given sufficiently strong external input, perhaps from multiple sources, intracortical input largely, but not completely, cancels this external input. This operation leads to many characteristic cortical nonlinearities in integrating multiple stimuli. The cortical computation must combine such local processing with hierarchical processing across areas. We point to important changes in moving from sensory cortex to motor and frontal cortex and the possibility of substantial differences between cortex in rodents vs. species with columnar organization of selectivity.
Collapse
Affiliation(s)
- Kenneth D Miller
- Center for Theoretical Neuroscience, Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, New York, NY 10032-2695, United States.
| |
Collapse
|
37
|
Kamyshanska H, Bibichkov D, Kaschube M. Influence of recurrent interactions on texture processing in networks with different visual map organizations. BMC Neurosci 2015. [PMCID: PMC4697518 DOI: 10.1186/1471-2202-16-s1-p115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Afgoustidis A. Orientation Maps in V1 and Non-Euclidean Geometry. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:24. [PMID: 26082007 PMCID: PMC4469697 DOI: 10.1186/s13408-015-0024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
In the primary visual cortex, the processing of information uses the distribution of orientations in the visual input: neurons react to some orientations in the stimulus more than to others. In many species, orientation preference is mapped in a remarkable way on the cortical surface, and this organization of the neural population seems to be important for visual processing. Now, existing models for the geometry and development of orientation preference maps in higher mammals make a crucial use of symmetry considerations. In this paper, we consider probabilistic models for V1 maps from the point of view of group theory; we focus on Gaussian random fields with symmetry properties and review the probabilistic arguments that allow one to estimate pinwheel densities and predict the observed value of π. Then, in order to test the relevance of general symmetry arguments and to introduce methods which could be of use in modeling curved regions, we reconsider this model in the light of group representation theory, the canonical mathematics of symmetry. We show that through the Plancherel decomposition of the space of complex-valued maps on the Euclidean plane, each infinite-dimensional irreducible unitary representation of the special Euclidean group yields a unique V1-like map, and we use representation theory as a symmetry-based toolbox to build orientation maps adapted to the most famous non-Euclidean geometries, viz. spherical and hyperbolic geometry. We find that most of the dominant traits of V1 maps are preserved in these; we also study the link between symmetry and the statistics of singularities in orientation maps, and show what the striking quantitative characteristics observed in animals become in our curved models.
Collapse
Affiliation(s)
- Alexandre Afgoustidis
- Institut de Mathématiques de Jussieu-Paris Rive Gauche, Universite Paris 7 Denis Diderot, 75013, Paris, France,
| |
Collapse
|
39
|
Kössl M, Hechavarria J, Voss C, Schaefer M, Vater M. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception? Eur J Neurosci 2015; 41:518-32. [PMID: 25728173 DOI: 10.1111/ejn.12801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 01/28/2023]
Abstract
Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance.
Collapse
Affiliation(s)
- Manfred Kössl
- Institute for Cell Biology and Neuroscience, University of Frankfurt, Max-von-Laue-Str.13, 60438, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
40
|
Schottdorf M, Keil W, Coppola D, White LE, Wolf F. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex. PLoS Comput Biol 2015; 11:e1004602. [PMID: 26575467 PMCID: PMC4648540 DOI: 10.1371/journal.pcbi.1004602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Institute for Theoretical Physics, University of Würzburg, Würzburg, Germany
| | - Wolfgang Keil
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
| | - David Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Leonard E. White
- Department of Orthopaedic Surgery, Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Kavli Institute for Theoretical Physics, Santa Barbara, California, United States of America
| |
Collapse
|
41
|
Sadeh S, Clopath C, Rotter S. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 2015; 11:e1004307. [PMID: 26090844 PMCID: PMC4474917 DOI: 10.1371/journal.pcbi.1004307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity. In primary visual cortex of mammals, neurons are selective to the orientation of contrast edges. In some species, as cats and monkeys, neurons preferring similar orientations are adjacent on the cortical surface, leading to smooth orientation maps. In rodents, in contrast, such spatial orientation maps do not exist, and neurons of different specificities are mixed in a salt-and-pepper fashion. During development, however, a “functional” map of orientation selectivity emerges, where connections between neurons of similar preferred orientations are selectively enhanced. Here we show how such feature-specific connectivity can arise in realistic neocortical networks of excitatory and inhibitory neurons. Our results demonstrate how recurrent dynamics can work in cooperation with synaptic plasticity to form networks where neurons preferring similar stimulus features connect more strongly together. Such networks, in turn, are known to enhance the specificity of neuronal responses to a stimulus. Our study thus reveals how self-organizing connectivity in neuronal networks enable them to achieve new or enhanced functions, and it underlines the essential role of recurrent inhibition and plasticity in this process.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Bioengineering Department, Imperial College London, London, United Kingdom
- * E-mail:
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
42
|
Chandrapala TN, Shi BE. Learning Slowness in a Sparse Model of Invariant Feature Detection. Neural Comput 2015; 27:1496-529. [PMID: 25973550 DOI: 10.1162/neco_a_00743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Primary visual cortical complex cells are thought to serve as invariant feature detectors and to provide input to higher cortical areas. We propose a single model for learning the connectivity required by complex cells that integrates two factors that have been hypothesized to play a role in the development of invariant feature detectors: temporal slowness and sparsity. This model, the generative adaptive subspace self-organizing map (GASSOM), extends Kohonen's adaptive subspace self-organizing map (ASSOM) with a generative model of the input. Each observation is assumed to be generated by one among many nodes in the network, each being associated with a different subspace in the space of all observations. The generating nodes evolve according to a first-order Markov chain and generate inputs that lie close to the associated subspace. This model differs from prior approaches in that temporal slowness is not an externally imposed criterion to be maximized during learning but, rather, an emergent property of the model structure as it seeks a good model of the input statistics. Unlike the ASSOM, the GASSOM does not require an explicit segmentation of the input training vectors into separate episodes. This enables us to apply this model to an unlabeled naturalistic image sequence generated by a realistic eye movement model. We show that the emergence of temporal slowness within the model improves the invariance of feature detectors trained on this input.
Collapse
Affiliation(s)
- Thusitha N Chandrapala
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Bertram E Shi
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
43
|
Afgoustidis A. Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:10. [PMID: 25859421 PMCID: PMC4388110 DOI: 10.1186/s13408-015-0022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of π, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process.
Collapse
Affiliation(s)
- Alexandre Afgoustidis
- Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris 7 Denis Diderot, 75013 Paris, France
| |
Collapse
|
44
|
Rubin DB, Van Hooser SD, Miller KD. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 2015; 85:402-17. [PMID: 25611511 DOI: 10.1016/j.neuron.2014.12.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/09/2023]
Abstract
Neurons in sensory cortex integrate multiple influences to parse objects and support perception. Across multiple cortical areas, integration is characterized by two neuronal response properties: (1) surround suppression--modulatory contextual stimuli suppress responses to driving stimuli; and (2) "normalization"--responses to multiple driving stimuli add sublinearly. These depend on input strength: for weak driving stimuli, contextual influences facilitate or more weakly suppress and summation becomes linear or supralinear. Understanding the circuit operations underlying integration is critical to understanding cortical function and disease. We present a simple, general theory. A wealth of integrative properties, including the above, emerge robustly from four cortical circuit properties: (1) supralinear neuronal input/output functions; (2) sufficiently strong recurrent excitation; (3) feedback inhibition; and (4) simple spatial properties of intracortical connections. Integrative properties emerge dynamically as circuit properties, with excitatory and inhibitory neurons showing similar behaviors. In new recordings in visual cortex, we confirm key model predictions.
Collapse
Affiliation(s)
- Daniel B Rubin
- Center for Theoretical Neuroscience, Doctoral Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stephen D Van Hooser
- Department of Biology, Swartz Center for Theoretical Biology, Brandeis University, Waltham, MA 02454, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Doctoral Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Wilson SP, Bednar JA. What, if anything, are topological maps for? Dev Neurobiol 2015; 75:667-81. [PMID: 25683193 DOI: 10.1002/dneu.22281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/10/2022]
Abstract
What, if anything, is the functional significance of spatial patterning in cortical feature maps? We ask this question of four major theories of cortical map formation: self-organizing maps, wiring optimization, place coding, and reaction-diffusion. We argue that (i) self-organizing maps yield spatial patterning only as a by-product of efficient mechanisms for developing environmentally appropriate distributions of feature preferences, (ii) wiring optimization assumes rather than explains a map-like organization, (iii) place-coding mechanisms can at best explain only a subset of maps in functional terms, and (iv) reaction-diffusion models suggest two factors in the evolution of maps, the first based on efficient development of feature distributions, and the second based on generating feature-specific long-range recurrent cortical circuitry. None of these explanations for the existence of topological maps requires spatial patterning in maps to be useful. Thus despite these useful frameworks for understanding how maps form and how they are wired, the possibility that patterns are merely epiphenomena in the evolution of mammalian neocortex cannot be rejected. The article is intended as a nontechnical introduction to the assumptions and predictions of these four important classes of models, along with other possible functional explanations for maps.
Collapse
Affiliation(s)
- Stuart P Wilson
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | - James A Bednar
- Institute for Adaptive & Neural Computation, School of Informatics, The University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
46
|
Laramée ME, Boire D. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circuits 2015; 8:149. [PMID: 25620914 PMCID: PMC4286719 DOI: 10.3389/fncir.2014.00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/09/2014] [Indexed: 12/27/2022] Open
Abstract
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Collapse
Affiliation(s)
- Marie-Eve Laramée
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven-University of Leuven Leuven, Belgium
| | - Denis Boire
- Département d'anatomie, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| |
Collapse
|
47
|
Hughes NJ, Goodhill GJ. Optimizing the Representation of Orientation Preference Maps in Visual Cortex. Neural Comput 2015; 27:32-41. [DOI: 10.1162/neco_a_00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The colorful representation of orientation preference maps in primary visual cortex has become iconic. However, the standard representation is misleading because it uses a color mapping to indicate orientations based on the HSV (hue, saturation, value) color space, for which important perceptual features such as brightness, and not just hue, vary among orientations. This means that some orientations stand out more than others, conveying a distorted visual impression. This is particularly problematic for visualizing subtle biases caused by slight overrepresentation of some orientations due to, for example, stripe rearing. We show that displaying orientation maps with a color mapping based on a slightly modified version of the HCL (hue, chroma, lightness) color space, so that primarily only hue varies between orientations, leads to a more balanced visual impression. This makes it easier to perceive the true structure of this seminal example of functional brain architecture.
Collapse
Affiliation(s)
- Nicholas J. Hughes
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
48
|
Jain R, Millin R, Mel BW. Multimap formation in visual cortex. J Vis 2015; 15:3. [PMID: 26641946 PMCID: PMC4675321 DOI: 10.1167/15.16.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022] Open
Abstract
An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps--hereafter a "multimap"--is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated "learning eligibility regions" (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with "salt-and-pepper" structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space.
Collapse
|
49
|
Aschauer DF, Rumpel S. Measuring the functional organization of the neocortex at large and small scales. Neuron 2014; 83:756-8. [PMID: 25144871 DOI: 10.1016/j.neuron.2014.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sensory cortices are commonly structured topographically; however, the extent to which this organization principle is preserved at the microcircuit level is debated. In this issue of Neuron, Issa et al. (2014) revisit this question by combining calcium imaging in awake mice at large scales encompassing the whole auditory cortex and small scales providing single-cell resolution.
Collapse
Affiliation(s)
- Dominik F Aschauer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Simon Rumpel
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
50
|
Daza C YC, Tauro CB, Tamarit FA, Gleiser PM. Modeling spatial patterns in the visual cortex. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042818. [PMID: 25375560 DOI: 10.1103/physreve.90.042818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 06/04/2023]
Abstract
We propose a model for the formation of patterns in the visual cortex. The dynamical units of the model are Kuramoto phase oscillators that interact through a complex network structure embedded in two dimensions. In this way the strength of the interactions takes into account the geographical distance between units. We show that for different parameters, clustered or striped patterns emerge. Using the structure factor as an order parameter we are able to quantitatively characterize these patterns and present a phase diagram. Finally, we show that the model is able to reproduce patterns with cardinal preference, as observed in ferrets.
Collapse
Affiliation(s)
- Yudy Carolina Daza C
- FAMAF, Instituto de Física Enrique Gaviola, Universidad Nacional de Córdoba, Argentina
| | - Carolina B Tauro
- FAMAF, Instituto de Física Enrique Gaviola, Universidad Nacional de Córdoba, Argentina
| | - Francisco A Tamarit
- FAMAF, Instituto de Física Enrique Gaviola, Universidad Nacional de Córdoba, Argentina
| | - Pablo M Gleiser
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Argentina
| |
Collapse
|