1
|
Mizielinska S, Hautbergue GM, Gendron TF, van Blitterswijk M, Hardiman O, Ravits J, Isaacs AM, Rademakers R. Amyotrophic lateral sclerosis caused by hexanucleotide repeat expansions in C9orf72: from genetics to therapeutics. Lancet Neurol 2025; 24:261-274. [PMID: 39986312 PMCID: PMC12010636 DOI: 10.1016/s1474-4422(25)00026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025]
Abstract
GGGGCC repeat expansions in C9orf72 are a common genetic cause of amyotrophic lateral sclerosis in people of European ancestry; however, substantial variability in the penetrance of the mutation, age at disease onset, and clinical presentation can complicate diagnosis and prognosis. The repeat expansion is bidirectionally transcribed in the sense and antisense directions into repetitive RNAs and translated into dipeptide repeat proteins, and both accumulate in the cortex, cerebellum, and the spinal cord. Furthermore, neuropathological aggregates of phosphorylated TDP-43 are observed in motor cortex and other cortical regions, and in the spinal cord of patients at autopsy. C9orf72 repeat expansions can also cause frontotemporal dementia. The GGGGCC repeat induces a complex interplay of loss-of-function and gain-of-function pathological mechanisms. Clinical trials using antisense oligonucleotides to target the GGGGCC repeat RNA have not been successful, potentially because they only target a single gain-of-function mechanism. Novel therapeutic approaches targeting the DNA repeat expansion, multiple repeat-derived RNA species, or downstream targets of TDP-43 dysfunction are, however, on the horizon, together with the development of diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Neuroscience Institute, and Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California San Diego, La Jolla, CA, USA
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
| |
Collapse
|
2
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
3
|
Shojaei M, Zhou Q, Palumbo G, Schaefer R, Kaskinoro J, Vehmaan-Kreula P, Bartenstein P, Brendel M, Edbauer D, Lindner S. Development and Preclinical Evaluation of a Copper-64-Labeled Antibody Targeting Glycine-Alanine Dipeptides for PET Imaging of C9orf72-Associated Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. ACS Pharmacol Transl Sci 2024; 7:1404-1414. [PMID: 38751620 PMCID: PMC11091963 DOI: 10.1021/acsptsci.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Aggregating poly(glycine-alanine) (poly-GA) is derived from the unconventional translation of the pathogenic intronic hexanucleotide repeat expansion in the C9orf72 gene, which is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly-GA accumulates predominantly in neuronal cytoplasmic inclusions unique to C9orf72 ALS/FTD patients. Poly-GA is, therefore, a promising target for PET/CT imaging of FTD/ALS to monitor disease progression and therapeutic interventions. A novel 64Cu-labeled anti-GA antibody (mAb1A12) targeting the poly-GA protein was developed and evaluated in a transgenic mouse model. It was obtained with high radiochemical purity (RCP), radiochemical yield (RCY), and specific activity, and showed high stability in vitro and ex vivo and specifically bound to poly-GA. The affinity of NODAGA-mAb1A12 for poly-GA was not affected by this modification. [64Cu]Cu-NODAGA-mAb1A12 was injected into transgenic mice expressing GFP-(GA)175 in excitatory neurons driven by Camk2a-Cre and in control littermates. PET/CT imaging was performed at 2, 20, and 40 h post-injection (p.i.) and revealed a higher accumulation in the cortex in transgenic mice than in wild-type mice, as reflected by higher standardized uptake value ratios (SUVR) using the cerebellum as the reference region. The organs were isolated for biodistribution and ex vivo autoradiography. Autoradiography revealed a higher cortex-to-cerebellum ratio in the transgenic mice than in the controls. Results from autoradiography were validated by immunohistochemistry and poly-GA immunoassays. Moreover, we confirmed antibody uptake in the CNS in a pharmacokinetic study of the perfused tissues. In summary, [64Cu]Cu-NODAGA-mAb1A12 demonstrated favorable in vitro characteristics and an increased relative binding in poly-GA transgenic mice compared to wild-type mice in vivo. Our results with this first-in-class radiotracer suggested that targeting poly-GA is a promising approach for PET/CT imaging in FTD/ALS.
Collapse
Affiliation(s)
- Monireh Shojaei
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| | - Qihui Zhou
- German
Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Giovanna Palumbo
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| | - Rebecca Schaefer
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| | | | | | - Peter Bartenstein
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
- Munich
Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Matthias Brendel
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
- German
Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich
Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Dieter Edbauer
- German
Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich
Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Simon Lindner
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| |
Collapse
|
4
|
Bhatt N, Puangmalai N, Sengupta U, Jerez C, Kidd M, Gandhi S, Kayed R. C9orf72-associated dipeptide protein repeats form A11-positive oligomers in amyotrophic lateral sclerosis and frontotemporal dementia. J Biol Chem 2024; 300:105628. [PMID: 38295729 PMCID: PMC10844744 DOI: 10.1016/j.jbc.2024.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
Hexanucleotide repeat expansion in C9orf72 is one of the most common causes of amyotrophic lateral sclerosis and frontotemporal dementia. The hexanucleotide expansion, formed by GGGGCC (G4C2) repeats, leads to the production of five dipeptide protein repeats (DPRs) via repeat-associated non-AUG translation. Among the five dipeptide repeats, Gly-Arg, Pro-Arg, and Gly-Ala form neuronal inclusions that contain aggregates of the peptides. Several studies have attempted to model DPR-associated toxicity using various repeat lengths, which suggests a unique conformation that is cytotoxic and is independent of the repeat length. However, the structural characteristics of DPR aggregates have yet to be determined. Increasing evidence suggests that soluble species, such as oligomers, are the main cause of toxicity in proteinopathies, such as Alzheimer's and Parkinson's disease. To investigate the ability of DPRs to aggregate and form toxic oligomers, we adopted a reductionist approach using small dipeptide repeats of 3, 6, and 12. This study shows that DPRs, particularly glycine-arginine and proline-arginine, form oligomers that exhibit distinct dye-binding properties and morphologies. Importantly, we also identified toxic DPR oligomers in amyotrophic lateral sclerosis and frontotemporal dementia postmortem brains that are morphologically similar to those generated recombinantly. This study demonstrates that, similar to soluble oligomers formed by various amyloid proteins, DPR oligomers are toxic, independent of their repeat length.
Collapse
Affiliation(s)
- Nemil Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison Kidd
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shailee Gandhi
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
5
|
Geng Y, Cai Q. Role of C9orf72 hexanucleotide repeat expansions in ALS/FTD pathogenesis. Front Mol Neurosci 2024; 17:1322720. [PMID: 38318532 PMCID: PMC10838790 DOI: 10.3389/fnmol.2024.1322720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurological disorders that share neurodegenerative pathways and features. The most prevalent genetic causes of ALS/FTD is the GGGGCC hexanucleotide repeat expansions in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene. In this review, we comprehensively summarize the accumulating evidences elucidating the pathogenic mechanism associated with hexanucleotide repeat expansions in ALS/FTD. These mechanisms encompass the structural polymorphism of DNA and transcribed RNA, the formation of RNA foci via phase separation, and the cytoplasmic accumulation and toxicities of dipeptide-repeat proteins. Additionally, the formation of G-quadruplex structures significantly impairs the expression and normal function of the C9orf72 protein. We also discuss the sequestration of specific RNA binding proteins by GGGGCC RNA, which further contributes to the toxicity of C9orf72 hexanucleotide repeat expansions. The deeper understanding of the pathogenic mechanism of hexanucleotide repeat expansions in ALS/FTD provides multiple potential drug targets for these devastating diseases.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Seidel M, Rajkumar S, Steffke C, Noeth V, Agarwal S, Roger K, Lipecka J, Ludolph A, Guerrera CI, Boeckers T, Catanese A. Propranolol reduces the accumulation of cytotoxic aggregates in C9orf72-ALS/FTD in vitro models. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100105. [PMID: 37576491 PMCID: PMC10412779 DOI: 10.1016/j.crneur.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Mutations in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathogenetic mechanisms linked to this gene are a direct consequence of an aberrant intronic expansion of a GGGGCC hexanucleotide located between the 1a and 1b non-coding exons, which can be transcribed to form cytotoxic RNA foci or even translated into aggregation-prone dipeptide repeat proteins. Importantly, the abnormal length of these repeats affects also the expression levels of C9orf72 itself, which suggests haploinsufficiency as additional pathomechanism. Thus, it appears that both toxic gain of function and loss of function are distinct but still coexistent features contributing to the insurgence of the disease in case of C9orf72 mutations. In this study, we aimed at identifying a strategy to address both aspects of the C9orf72-related pathobiochemistry and provide proof-of-principle information for a better understanding of the mechanisms leading to neuronal loss. By using primary neurons overexpressing toxic poly(GA), the most abundant protein product of the GGGGCC repeats, we found that the antiarrhythmic drug propranolol could efficiently reduce the accumulation of aberrant aggregates and increase the survival of C9orf72-related cultures. Interestingly, the improved catabolism appeared to not depend on major degradative pathways such as autophagy and the proteasome. By analyzing the proteome of poly(GA)-expressing neurons after exposure to propranolol, we found that the drug increased lysosomal degradation through a mechanism directly involving C9orf72 protein, whose levels were increased after treatment. Further confirmation of the beneficial effect of the beta blocker on aggregates' accumulation and survival of hiPSC-derived C9orf72-mutant motoneurons strengthened the finding that addressing both facets of C9orf72 pathology might represent a valid strategy for the treatment of these ALS/FTD cases.
Collapse
Affiliation(s)
- Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christina Steffke
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Vivien Noeth
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Shreya Agarwal
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Kevin Roger
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Joanna Lipecka
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Chiara Ida Guerrera
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| |
Collapse
|
7
|
Mori K, Ikeda M. Biological basis and psychiatric symptoms in frontotemporal dementia. Psychiatry Clin Neurosci 2022; 76:351-360. [PMID: 35557018 DOI: 10.1111/pcn.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Frontotemporal dementia is a neurodegenerative disease characterized by focal degeneration of the frontal and temporal lobes, clinically presenting with disinhibited behavior, personality changes, progressive non-fluent aphasia and/or impaired semantic memory. Research progress has been made in re-organizing the clinical concept of frontotemporal dementia and neuropathological classification based on multiple accumulating proteins. Alongside this progress a list of genetic mutations or variants that are causative or increase the risk of frontotemporal dementia have been identified and some of these gene products are extensively studied. However, there are still a lot of points that need to be overcome, including lack of specific diagnostic biomarker which enable antemortem diagnosis of underlying neurodegenerative process, and lack of disease modifying therapy which could prevent disease progression. Early and precise diagnosis of frontotemporal dementia is urgently required. In this context, how to define prodromal frontotemporal dementia and early differential diagnosis from primary psychiatric disorders are also important issues. In this review we will summarize and discuss current understanding of biological basis and psychiatric symptoms in frontotemporal dementia.
Collapse
Affiliation(s)
- Kohji Mori
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
8
|
C9orf72 Hexanucleotide Repeat Expansion-Related Neuropathology Is Attenuated by Nasal Rifampicin in Mice. Biomedicines 2022; 10:biomedicines10051080. [PMID: 35625816 PMCID: PMC9138602 DOI: 10.3390/biomedicines10051080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
The non-coding GGGGCC hexanucleotide repeat expansion (HRE) in C9orf72 gene is a dominant cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This intronic mutation elicits the formation of nuclear and cytoplasmic inclusions containing RNA, RNA-binding proteins, and HRE-derived dipeptide repeat proteins (DPRs), leading to neurodegeneration via the gain-of-toxic function or loss-of-function of relevant proteins. Using C9-500 mice harboring ~500 repeats of the GGGGCC sequence in human C9orf72 gene, we investigated the effects of rifampicin against HRE-related pathological phenotypes. Rifampicin was administered intranasally to 4.5- to 5-month-old mice for 1 month, and their cognitive function and neuropathology were assessed by the Morris water maze test and immunohistochemical staining. Rifampicin treatment reduced the formation of RNA foci and cytoplasmic inclusions containing DPRs or phosphorylated TDP-43, and furthermore, the levels of phosphorylated double-strand RNA-dependent protein kinase (PKR) that regulates repeat-associated non-ATG (RAN) translation. Synapse loss in the hippocampus and neuronal loss and microglial activation in the prefrontal and motor cortices were also attenuated, and mouse memory was significantly improved. Our findings suggest a therapeutic potential of nasal rifampicin in the prevention of C9orf72-linked neurodegenerative disorders.
Collapse
|
9
|
C9orf72 dipeptides disrupt the nucleocytoplasmic transport machinery and cause TDP-43 mislocalisation to the cytoplasm. Sci Rep 2022; 12:4799. [PMID: 35314728 PMCID: PMC8938440 DOI: 10.1038/s41598-022-08724-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
A repeat expansion in C9orf72 is the major cause of both frontotemporal dementia and amyotrophic lateral sclerosis, accounting for approximately 1 in 12 cases of either disease. The expansion is translated to produce five dipeptide repeat proteins (DPRs) which aggregate in patient brain and are toxic in numerous models, though the mechanisms underlying this toxicity are poorly understood. Recent studies highlight nucleocytoplasmic transport impairments as a potential mechanism underlying neurodegeneration in C9orf72-linked disease, although the contribution of DPRs to this remains unclear. We expressed DPRs in HeLa cells, in the absence of repeat RNA. Crucially, we expressed DPRs at repeat-lengths found in patients (> 1000 units), ensuring our findings were relevant to disease. Immunofluorescence imaging was used to investigate the impact of each DPR on the nucleus, nucleocytoplasmic transport machinery and TDP-43 localisation. DPRs impaired the structural integrity of the nucleus, causing nuclear membrane disruption and misshapen nuclei. Ran and RanGAP, two proteins required for nucleocytoplasmic transport, were also mislocalised in DPR-expressing cells. Furthermore, DPRs triggered mislocalisation of TDP-43 to the cytoplasm, and this occurred in the same cells as Ran and RanGAP mislocalisation, suggesting a potential link between DPRs, nucleocytoplasmic transport impairments and TDP-43 pathology.
Collapse
|
10
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
11
|
Sharpe JL, Harper NS, Garner DR, West RJH. Modeling C9orf72-Related Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Drosophila. Front Cell Neurosci 2021; 15:770937. [PMID: 34744635 PMCID: PMC8566814 DOI: 10.3389/fncel.2021.770937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Nikki S. Harper
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Duncan R. Garner
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Ryan J. H. West
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Nanoscopic investigation of C9orf72 poly-GA oligomers on nuclear membrane disruption by a photoinducible platform. Commun Chem 2021; 4:111. [PMID: 36697556 PMCID: PMC9814621 DOI: 10.1038/s42004-021-00547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Glycine-alanine dipeptide repeats (GA DPRs) translated from the mutated C9orf72 gene have recently been correlated with amyotrophic lateral sclerosis (ALS). While GA DPRs aggregates have been suggested as amyloid, the biophysical features and cytotoxicity of GA DPRs oligomers has not been explored due to its unstable nature. In this study, we develop a photoinducible platform based on methoxynitrobenzene chemistry to enrich GA DPRs that allows monitoring the oligomerization process of GA DPRs in cells. By applying advanced microscopies, we examined the GA DPRs oligomerization process nanoscopically in a time-dependent manner. We provided direct evidences to demonstrate GA DPRs oligomers rather than nanofibrils disrupt nuclear membrane. Moreover, we found GA DPRs hamper nucleocytoplasmic transport in cells and cause cytosolic retention of TAR DNA-binding protein 43 in cortical neurons. Our results highlight the toxicity of GA DPRs oligomers, which is a key step toward elucidating the pathological roles of C9orf72 DPRs.
Collapse
|
13
|
Geng Y, Liu C, Cai Q, Luo Z, Miao H, Shi X, Xu N, Fung CP, Choy TT, Yan B, Li N, Qian P, Zhou B, Zhu G. Crystal structure of parallel G-quadruplex formed by the two-repeat ALS- and FTD-related GGGGCC sequence. Nucleic Acids Res 2021; 49:5881-5890. [PMID: 34048588 PMCID: PMC8191786 DOI: 10.1093/nar/gkab302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
The hexanucleotide repeat expansion, GGGGCC (G4C2), within the first intron of the C9orf72 gene is known to be the most common genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 repeat expansions, either DNA or RNA, are able to form G-quadruplexes which induce toxicity leading to ALS/FTD. Herein, we report a novel crystal structure of d(G4C2)2 that self-associates to form an eight-layer parallel tetrameric G-quadruplex. Two d(G4C2)2 associate together as a parallel dimeric G-quadruplex which folds into a tetramer via 5'-to-5' arrangements. Each dimer consists of four G-tetrads connected by two CC propeller loops. Especially, the 3'-end cytosines protrude out and form C·C+•C·C+/ C·C•C·C+ quadruple base pair or C•C·C+ triple base pair stacking on the dimeric block. Our work sheds light on the G-quadruplexes adopted by d(G4C2) and yields the invaluable structural details for the development of small molecules to tackle neurodegenerative diseases, ALS and FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - To To Choy
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bing Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Peiyuan Qian
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| |
Collapse
|
14
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
15
|
Connecting the "dots": RNP granule network in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119058. [PMID: 33989700 DOI: 10.1016/j.bbamcr.2021.119058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.
Collapse
|
16
|
Solomon DA, Smikle R, Reid MJ, Mizielinska S. Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Front Cell Neurosci 2021; 15:664151. [PMID: 33967699 PMCID: PMC8096919 DOI: 10.3389/fncel.2021.664151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the C9orf72 repeat expansion mutation as causative for chromosome 9-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in 2011, a multitude of cellular pathways have been implicated. However, evidence has also been accumulating for a key mechanism of cellular compartmentalization—phase separation. Liquid-liquid phase separation (LLPS) is fundamental for the formation of membraneless organelles including stress granules, the nucleolus, Cajal bodies, nuclear speckles and the central channel of the nuclear pore. Evidence has now accumulated showing that the formation and function of these membraneless organelles is impaired by both the toxic arginine rich dipeptide repeat proteins (DPRs), translated from the C9orf72 repeat RNA transcript, and the repeat RNA itself. Both the arginine rich DPRs and repeat RNA themselves undergo phase separation and disrupt the physiological phase separation of proteins involved in the formation of these liquid-like organelles. Hence abnormal phase separation may explain a number of pathological cellular phenomena associated with C9orf72-ALS/FTD. In this review article, we will discuss the principles of phase separation, phase separation of the DPRs and repeat RNA themselves and how they perturb LLPS associated with membraneless organelles and the functional consequences of this. We will then discuss how phase separation may impact the major pathological feature of C9orf72-ALS/FTD, TDP-43 proteinopathy, and how LLPS may be targeted therapeutically in disease.
Collapse
Affiliation(s)
- Daniel A Solomon
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Rebekah Smikle
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
17
|
Schmitz A, Pinheiro Marques J, Oertig I, Maharjan N, Saxena S. Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Front Cell Neurosci 2021; 15:637548. [PMID: 33679328 PMCID: PMC7930069 DOI: 10.3389/fncel.2021.637548] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9 open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated non-AUG (RAN) translation. Five different DPRs are currently known to be formed: glycine-alanine (GA) and glycine-arginine (GR) from the sense strand, proline-alanine (PA), and proline-arginine (PR) from the antisense strand, and glycine-proline (GP) from both strands. The exact contribution of each DPR to disease pathology is currently under intense scrutiny and is still poorly understood. However, recent advances in both neuropathological and cellular studies have provided us with clues enabling us to better understand the effect of individual DPRs on disease pathogenesis. In this review, we compile the current knowledge of specific DPR involvement on disease development and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar protein quality control, the correlation of poly-GR with neurodegeneration, and the possible involvement of chimeric DPR species. Further, we discuss recent findings regarding the mechanisms of RAN translation, its modulators, and other promising therapeutic options.
Collapse
Affiliation(s)
- Alexander Schmitz
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - João Pinheiro Marques
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Irina Oertig
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Zheng S, Sahimi A, Shing KS, Sahimi M. Molecular Dynamics Study of Structure, Folding, and Aggregation of Poly-PR and Poly-GR Proteins. Biophys J 2021; 120:64-72. [PMID: 33253636 PMCID: PMC7820734 DOI: 10.1016/j.bpj.2020.11.2258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
Poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) proteins are believed to be the most toxic dipeptide repeat (DPR) proteins that are expressed by the hexanucleotide repeat expansion mutation in C9ORF72, which are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) diseases. Their structural information and mechanisms of toxicity remain incomplete, however. Using molecular dynamics simulation and all-atom model of proteins, we study folding and aggregation of both poly-PR and poly-GR. The results indicate formation of double-helix structure during the aggregation of poly-PR into dimers, whereas no stable aggregate is formed during the aggregation of poly-GR; the latter only folds into α-helix and double-helix structures that are similar to those formed in the folding of poly-glycine-alanine (poly-GA) protein. Our findings are consistent with the experimental data indicating that poly-PR and poly-GR are less likely to aggregate because of the hydrophilic arginine residues within their structures. Such characteristics could, however, in some respect facilitate migration of the DPR proteins between and within cells and, at the same time, give proline residues the benefits of activating the receptors that regulate ionotropic effect in neurons, resulting in death or malfunction of neurons because of the abnormal increase or decrease of the ion transmission. This may explain the neurotoxicities of poly-PR and poly-GR associated with many neurodegenerative diseases. To our knowledge, this is the first molecular dynamics simulation of the phenomena involving poly-PR and poly-GR proteins.
Collapse
Affiliation(s)
- Size Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, People's Republic of China.
| | - Ali Sahimi
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Katherine S Shing
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Braems E, Swinnen B, Van Den Bosch L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 2020; 140:625-643. [PMID: 32876811 PMCID: PMC7547039 DOI: 10.1007/s00401-020-02214-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Srinivasan E, Rajasekaran R. A Systematic and Comprehensive Review on Disease-Causing Genes in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2020; 70:1742-1770. [PMID: 32415434 DOI: 10.1007/s12031-020-01569-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and is characterized by degeneration and axon loss from the upper motor neuron, that descends from the lower motor neuron in the brain. Over the period, assorted outcomes from medical findings, molecular pathogenesis, and structural and biophysical studies have abetted in providing thoughtful insights underlying the importance of disease-causing genes in ALS. Consequently, numerous mechanisms were proposed for the pathogenesis of ALS, considering protein mutations, aggregation, and misfolding. Besides, the answers to the majority of ALS cases that happen to be sporadic still remain obscure. The application in discovering susceptibility factors in ALS contemplating the genetic factors is to be further dissevered in the future years with innovation in research studies. Hence, this review targets in revisiting the breakthroughs on the disease-causing genes related with ALS.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (deemed to be university), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (deemed to be university), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
22
|
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci 2020; 21:E3055. [PMID: 32357532 PMCID: PMC7246467 DOI: 10.3390/ijms21093055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Harris Bolus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Kassi Crocker
- Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | | |
Collapse
|
23
|
Khosravi B, LaClair KD, Riemenschneider H, Zhou Q, Frottin F, Mareljic N, Czuppa M, Farny D, Hartmann H, Michaelsen M, Arzberger T, Hartl FU, Hipp MS, Edbauer D. Cell-to-cell transmission of C9orf72 poly-(Gly-Ala) triggers key features of ALS/FTD. EMBO J 2020; 39:e102811. [PMID: 32175624 PMCID: PMC7156967 DOI: 10.15252/embj.2019102811] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72‐specific pathology and TDP‐43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly‐GA promoted cytoplasmic mislocalization and aggregation of TDP‐43 non‐cell‐autonomously, and anti‐GA antibodies ameliorated TDP‐43 mislocalization in both donor and receiver cells. Cell‐to‐cell transmission of poly‐GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP‐43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly‐GA‐dependent mislocalization of TDP‐43. Boosting proteasome function with rolipram reduced both poly‐GA and TDP‐43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly‐GA promotes TDP‐43 aggregation by inhibiting the proteasome cell‐autonomously and non‐cell‐autonomously, which can be prevented by inhibiting poly‐GA transmission with antibodies or boosting proteasome activity with rolipram.
Collapse
Affiliation(s)
- Bahram Khosravi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frédéric Frottin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nikola Mareljic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biomedical Sciences of Cells and Systems, University of Groningen, Groningen, The Netherlands.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
24
|
Zhou Q, Mareljic N, Michaelsen M, Parhizkar S, Heindl S, Nuscher B, Farny D, Czuppa M, Schludi C, Graf A, Krebs S, Blum H, Feederle R, Roth S, Haass C, Arzberger T, Liesz A, Edbauer D. Active poly-GA vaccination prevents microglia activation and motor deficits in a C9orf72 mouse model. EMBO Mol Med 2020; 12:e10919. [PMID: 31858749 PMCID: PMC7005532 DOI: 10.15252/emmm.201910919] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
The C9orf72 repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). Non-canonical translation of the expanded repeat results in abundant poly-GA inclusion pathology throughout the CNS. (GA)149 -CFP expression in mice triggers motor deficits and neuroinflammation. Since poly-GA is transmitted between cells, we investigated the therapeutic potential of anti-GA antibodies by vaccinating (GA)149 -CFP mice. To overcome poor immunogenicity, we compared the antibody response of multivalent ovalbumin-(GA)10 conjugates and pre-aggregated carrier-free (GA)15 . Only ovalbumin-(GA)10 immunization induced a strong anti-GA response. The resulting antisera detected poly-GA aggregates in cell culture and patient tissue. Ovalbumin-(GA)10 immunization largely rescued the motor function in (GA)149 -CFP transgenic mice and reduced poly-GA inclusions. Transcriptome analysis showed less neuroinflammation in ovalbumin-(GA)10 -immunized poly-GA mice, which was corroborated by semiquantitative and morphological analysis of microglia/macrophages. Moreover, cytoplasmic TDP-43 mislocalization and levels of the neurofilament light chain in the CSF were reduced, suggesting neuroaxonal damage is reduced. Our data suggest that immunotherapy may be a viable primary prevention strategy for ALS/FTD in C9orf72 mutation carriers.
Collapse
Affiliation(s)
- Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Nikola Mareljic
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Samira Parhizkar
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Steffanie Heindl
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Brigitte Nuscher
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Carina Schludi
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Alexander Graf
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Stefan Krebs
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Helmut Blum
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Monoclonal Antibody Core Facility and Research GroupInstitute for Diabetes and ObesityHelmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)MunichGermany
| | - Stefan Roth
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Center for Neuropathology and Prion ResearchLudwig‐Maximilians‐University MunichMunichGermany
- Department of Psychiatry and PsychotherapyUniversity HospitalLudwig‐Maximilians‐University MunichMunichGermany
| | - Arthur Liesz
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
25
|
Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathol 2020; 140:121-142. [PMID: 32562018 PMCID: PMC7360660 DOI: 10.1007/s00401-020-02176-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Expansion of a (G4C2)n repeat in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the link of the five repeat-encoded dipeptide repeat (DPR) proteins to neuroinflammation, TDP-43 pathology, and neurodegeneration is unclear. Poly-PR is most toxic in vitro, but poly-GA is far more abundant in patients. To directly compare these in vivo, we created congenic poly-GA and poly-PR mice. 40% of poly-PR mice were affected with ataxia and seizures, requiring euthanasia by 6 weeks of age. The remaining poly-PR mice were asymptomatic at 14 months of age, likely due to an 80% reduction of the transgene mRNA in this subgroup. In contrast, all poly-GA mice showed selective neuron loss, inflammation, as well as muscle denervation and wasting requiring euthanasia before 7 weeks of age. In-depth analysis of peripheral organs and blood samples suggests that peripheral organ failure does not drive these phenotypes. Although transgene mRNA levels were similar between poly-GA and affected poly-PR mice, poly-GA aggregated far more abundantly than poly-PR in the CNS and was also found in skeletal muscle. In addition, TDP-43 and other disease-linked RNA-binding proteins co-aggregated in rare nuclear inclusions in the hippocampus and frontal cortex only in poly-GA mice. Transcriptome analysis revealed activation of an interferon-responsive pro-inflammatory microglial signature in end-stage poly-GA but not poly-PR mice. This signature was also found in all ALS patients and enriched in C9orf72 cases. In summary, our rigorous comparison of poly-GA and poly-PR toxicity in vivo indicates that poly-GA, but not poly-PR at the same mRNA expression level, promotes interferon responses in C9orf72 disease and contributes to TDP-43 abnormalities and neuron loss selectively in disease-relevant regions.
Collapse
|
26
|
Goodman LD, Bonini NM. Repeat-associated non-AUG (RAN) translation mechanisms are running into focus for GGGGCC-repeat associated ALS/FTD. Prog Neurobiol 2019; 183:101697. [PMID: 31550516 DOI: 10.1016/j.pneurobio.2019.101697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Many human diseases are associated with the expansion of repeat sequences within the genes. It has become clear that expressed disease transcripts bearing such long repeats can undergo translation, even in the absence of a canonical AUG start codon. Termed "RAN translation" for repeat associated non-AUG translation, this process is becoming increasingly prominent as a contributor to these disorders. Here we discuss mechanisms and variables that impact translation of the repeat sequences associated with the C9orf72 gene. Expansions of a G4C2 repeat within intron 1 of this gene are associated with the motor neuron disease ALS and dementia FTD, which comprise a clinical and pathological spectrum. RAN translation of G4C2 repeat expansions has been studied in cells in culture (ex vivo) and in the fly in vivo. Cellular states that lead to RAN translation, like stress, may be critical contributors to disease progression. Greater elucidation of the mechanisms that impact this process and the factors contributing will lead to greater understanding of the repeat expansion diseases, to the potential development of novel approaches to therapeutics, and to a greater understanding of how these players impact biological processes in the absence of disease.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Berson A, Goodman LD, Sartoris AN, Otte CG, Aykit JA, Lee VMY, Trojanowski JQ, Bonini NM. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol Commun 2019; 7:65. [PMID: 31036086 PMCID: PMC6487524 DOI: 10.1186/s40478-019-0710-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the underlying disease mechanisms remain unclear. In an unbiased screen in Drosophila for RBPs that genetically interact with TDP-43, we found that downregulation of the mRNA export factor Ref1 (fly orthologue to human ALYREF) mitigated TDP-43 induced toxicity. Further, Ref1 depletion also reduced toxicity caused by expression of the C9orf72 GGGGCC repeat expansion. Ref1 knockdown lowered the mRNA levels for these related disease genes and reduced the encoded proteins with no effect on a wild-type Tau disease transgene or a control transgene. Interestingly, expression of TDP-43 or the GGGGCC repeat expansion increased endogenous Ref1 mRNA levels in the fly brain. Further, the human orthologue ALYREF was upregulated by immunohistochemistry in ALS motor neurons, with the strongest upregulation occurring in ALS cases harboring the GGGGCC expansion in C9orf72. These data support ALYREF as a contributor to ALS/FTD and highlight its downregulation as a potential therapeutic target that may affect co-existing disease etiologies.
Collapse
Affiliation(s)
- Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashley N Sartoris
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charlton G Otte
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A Aykit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Zheng S, Sahimi A, Shing KS, Sahimi M. Molecular dynamics study of structure, folding, and aggregation of poly-glycine-alanine (Poly-GA). J Chem Phys 2019; 150:144307. [PMID: 30981220 DOI: 10.1063/1.5081867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Poly-glycine-alanine (poly-GA) proteins are widely believed to be one of the main toxic dipeptide repeat molecules associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia diseases. Using discontinuous molecular dynamics simulation and an all-atom model of the proteins, we study folding, stability, and aggregation of poly-GA. The results demonstrate that poly-GA is an aggregation-prone protein that, after a long enough time, forms β-sheet-rich aggregates that match recent experiment data and that two unique helical structures are formed very frequently, namely, β-helix and double-helix. The details of the two structures are analyzed. The analysis indicates that such helical structures are stable and share the characteristics of both α-helices and β-sheets. Molecular simulations indicate that identical phenomena also occur in the aggregation of poly-glycine-arginine (poly-GR). Therefore, we hypothesize that proteins of type (GX)n in which X may be any non-glycine amino acid and n is the repeat length may share the same folding structures of β-helix and double-helix and that it is the glycine in the repeat that contributes the most to this characteristic. Molecular dynamics simulation with continuous interaction potentials and explicit water molecules as the solvent supports the hypothesis. To our knowledge, this is the first molecular dynamics simulation of the phenomena involving poly-GA and poly-GR proteins.
Collapse
Affiliation(s)
- Size Zheng
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China
| | - Ali Sahimi
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90033-1425, USA
| | - Katherine S Shing
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
29
|
Diehl-Schmid J, Licata A, Goldhardt O, Förstl H, Yakushew I, Otto M, Anderl-Straub S, Beer A, Ludolph AC, Landwehrmeyer GB, Levin J, Danek A, Fliessbach K, Spottke A, Fassbender K, Lyros E, Prudlo J, Krause BJ, Volk A, Edbauer D, Schroeter ML, Drzezga A, Kornhuber J, Lauer M, Grimmer T. FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations. Transl Psychiatry 2019; 9:54. [PMID: 30705258 PMCID: PMC6355852 DOI: 10.1038/s41398-019-0381-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/05/2018] [Accepted: 01/01/2019] [Indexed: 12/12/2022] Open
Abstract
C9ORF72 mutations are the most common cause of familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). MRI studies have investigated structural changes in C9ORF72-associated FTLD (C9FTLD) and provided first insights about a prominent involvement of the thalamus and the cerebellum. Our multicenter, 18F-fluorodeoxyglucose positron-emission tomography study of 22 mutation carriers with FTLD, 22 matched non-carriers with FTLD, and 23 cognitively healthy controls provided valuable insights into functional changes in C9FTLD: compared to non-carriers, mutation carriers showed a significant reduction of glucose metabolism in both thalami, underscoring the key role of the thalamus in C9FTLD. Thalamic metabolism did not correlate with disease severity, duration of disease, or the presence of psychotic symptoms. Against our expectations we could not demonstrate a cerebellar hypometabolism in carriers or non-carriers. Future imaging and neuropathological studies in large patient cohorts are required to further elucidate the central role of the thalamus in C9FTLD.
Collapse
Affiliation(s)
- Janine Diehl-Schmid
- Department of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Abigail Licata
- 0000000123222966grid.6936.aDepartment of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Goldhardt
- 0000000123222966grid.6936.aDepartment of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Förstl
- 0000000123222966grid.6936.aDepartment of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushew
- 0000000123222966grid.6936.aDepartment of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Otto
- grid.410712.1Department of Neurology, Ulm University Hospital, Ulm, Germany
| | | | - Ambros Beer
- grid.410712.1Department of Neurology, Ulm University Hospital, Ulm, Germany
| | | | | | - Johannes Levin
- 0000 0004 1936 973Xgrid.5252.0Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany
| | - Adrian Danek
- 0000 0004 1936 973Xgrid.5252.0Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus Fliessbach
- 0000 0001 2240 3300grid.10388.32Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Site Bonn, Bonn, Germany
| | - Annika Spottke
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Site Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Neurology, University of Bonn, Bonn, Germany
| | - Klaus Fassbender
- 0000 0001 2167 7588grid.11749.3aDepartment of Neurology, Saarland University, Homburg/Saar, Germany
| | - Epameinondas Lyros
- 0000 0001 2167 7588grid.11749.3aDepartment of Neurology, Saarland University, Homburg/Saar, Germany
| | - Johannes Prudlo
- 0000 0000 9737 0454grid.413108.fDepartment of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- 0000 0000 9737 0454grid.413108.fDepartment of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Alexander Volk
- 0000 0001 2180 3484grid.13648.38Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Edbauer
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany ,Munich Cluster for System Neurology (SyNergy), Munich, Germany
| | - Matthias Leopold Schroeter
- 0000 0000 8517 9062grid.411339.dClinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany ,0000 0001 0041 5028grid.419524.fMax Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alexander Drzezga
- 0000 0000 8580 3777grid.6190.eDepartment of Nuclear Medicine, University of Cologne, Cologne, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Site Cologne, Cologne, Germany
| | - Johannes Kornhuber
- 0000 0001 2107 3311grid.5330.5Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin Lauer
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Timo Grimmer
- 0000000123222966grid.6936.aDepartment of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
30
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
31
|
Zubiri I, Lombardi V, Bremang M, Mitra V, Nardo G, Adiutori R, Lu CH, Leoni E, Yip P, Yildiz O, Ward M, Greensmith L, Bendotti C, Pike I, Malaspina A. Tissue-enhanced plasma proteomic analysis for disease stratification in amyotrophic lateral sclerosis. Mol Neurodegener 2018; 13:60. [PMID: 30404656 PMCID: PMC6223075 DOI: 10.1186/s13024-018-0292-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery. Methods We have applied TMTcalibrator™, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates. Results The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients. Conclusions These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model. Electronic supplementary material The online version of this article (10.1186/s13024-018-0292-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Zubiri
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK. .,Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK.
| | - Vittoria Lombardi
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Michael Bremang
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Vikram Mitra
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Rocco Adiutori
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Ching-Hua Lu
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.,Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Emanuela Leoni
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.,Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Ping Yip
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Ozlem Yildiz
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Malcolm Ward
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Andrea Malaspina
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.
| |
Collapse
|
32
|
Abstract
The recent discovery of a pathogenic expansion of a (GGGGCC)n repeat in the C9orf72 gene in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) led to a burst of mechanistic discoveries. In this issue, Simone et al (2018) describe novel compounds targeting the G‐quadruplex (G‐Q) structure of the (GGGGCC)n repeat RNA that alleviate the hallmarks of C9orf72 disease in patient‐derived neurons and increase survival in a Drosophila model. Lack of overt off‐target effects and toxicity suggest that these small molecules are promising lead compounds to the development of a therapy.
Collapse
Affiliation(s)
- Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
33
|
Khalil B, Morderer D, Price PL, Liu F, Rossoll W. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res 2018; 1693:75-91. [PMID: 29462608 PMCID: PMC5997521 DOI: 10.1016/j.brainres.2018.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Phillip L Price
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Department of Cell Biology, Emory University, Atlanta, GA 30322 USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA.
| |
Collapse
|
34
|
Hartmann H, Hornburg D, Czuppa M, Bader J, Michaelsen M, Farny D, Arzberger T, Mann M, Meissner F, Edbauer D. Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Sci Alliance 2018; 1:e201800070. [PMID: 30456350 PMCID: PMC6238541 DOI: 10.26508/lsa.201800070] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/25/2022] Open
Abstract
Proteomics and neuropathological validation show that aberrant poly-GR/PR proteins in C9orf72 ALS/FTD bind STAU2 and ribosomes and inhibit translation. Frontotemporal dementia and amyotrophic lateral sclerosis patients with C9orf72 mutation show cytoplasmic poly-GR and poly-PR aggregates. Short poly-(Gly-Arg) and poly-(Pro-Arg) (poly-GR/PR) repeats localizing to the nucleolus are toxic in various model systems, but no interactors have been validated in patients. Here, the neuronal interactomes of cytoplasmic GFP-(GR)149 and nucleolar (PR)175-GFP revealed overlapping RNA-binding proteins, including components of stress granules, nucleoli, and ribosomes. Overexpressing the poly-GR/PR interactors STAU1/2 and YBX1 caused cytoplasmic aggregation of poly-GR/PR in large stress granule–like structures, whereas NPM1 recruited poly-GR into the nucleolus. Poly-PR expression reduced ribosome levels and translation consistent with reduction of synaptic proteins detected by proteomics. Surprisingly, truncated GFP-(GR)53, but not GFP-(GR)149, localized to the nucleolus and reduced ribosome levels and translation similar to poly-PR, suggesting that impaired ribosome biogenesis may be driving the acute toxicity observed in vitro. In patients, only ribosomes and STAU2 co-aggregated with poly-GR/PR. Partial sequestration of ribosomes may chronically impair protein synthesis even in the absence of nucleolar localization and contribute to pathogenesis.
Collapse
Affiliation(s)
| | | | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jakob Bader
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Mann
- Max Planck Institute for Biochemistry, Martinsried, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Felix Meissner
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
35
|
Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, Ruepp MD, Simons M, Niessing D, Madl T, Dormann D. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018; 173:706-719.e13. [DOI: 10.1016/j.cell.2018.03.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
|
36
|
Lehmer C, Oeckl P, Weishaupt JH, Volk AE, Diehl-Schmid J, Schroeter ML, Lauer M, Kornhuber J, Levin J, Fassbender K, Landwehrmeyer B, Schludi MH, Arzberger T, Kremmer E, Flatley A, Feederle R, Steinacker P, Weydt P, Ludolph AC, Edbauer D, Otto M. Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol Med 2018; 9:859-868. [PMID: 28408402 PMCID: PMC5494528 DOI: 10.15252/emmm.201607486] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The C9orf72 GGGGCC repeat expansion is a major cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). Non‐conventional repeat translation results in five dipeptide repeat proteins (DPRs), but their clinical utility, overall significance, and temporal course in the pathogenesis of c9ALS/FTD are unclear, although animal models support a gain‐of‐function mechanism. Here, we established a poly‐GP immunoassay from cerebrospinal fluid (CSF) to identify and characterize C9orf72 patients. Significant poly‐GP levels were already detectable in asymptomatic C9orf72 mutation carriers compared to healthy controls and patients with other neurodegenerative diseases. The poly‐GP levels in asymptomatic carriers were similar to symptomatic c9ALS/FTD cases. Poly‐GP levels were not correlated with disease onset, clinical scores, and CSF levels of neurofilaments as a marker for axonal damage. Poly‐GP determination in CSF revealed a C9orf72 mutation carrier in our cohort and may thus be used as a diagnostic marker in addition to genetic testing to screen patients. Presymptomatic expression of poly‐GP and likely other DPR species may contribute to disease onset and thus represents an alluring therapeutic target.
Collapse
Affiliation(s)
- Carina Lehmer
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), Munich, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | | | - Alexander E Volk
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, München, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martin Lauer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University Universität München, Munich, Germany
| | | | | | | | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), Munich, Germany.,Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | - Patrick Weydt
- Department of Neurology, Ulm University Hospital, Ulm, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, Bonn University Hospital, Bonn, Germany
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
37
|
RNA versus protein toxicity in C9orf72 ALS/FTLD. Acta Neuropathol 2018; 135:475-479. [PMID: 29450647 DOI: 10.1007/s00401-018-1823-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022]
|
38
|
Guo Q, Lehmer C, Martínez-Sánchez A, Rudack T, Beck F, Hartmann H, Pérez-Berlanga M, Frottin F, Hipp MS, Hartl FU, Edbauer D, Baumeister W, Fernández-Busnadiego R. In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell 2018; 172:696-705.e12. [PMID: 29398115 PMCID: PMC6035389 DOI: 10.1016/j.cell.2017.12.030] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Carina Lehmer
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Antonio Martínez-Sánchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Till Rudack
- Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany; NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Hannelore Hartmann
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Manuela Pérez-Berlanga
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Frédéric Frottin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mark S Hipp
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; Ludwig-Maximilians University Munich, 81377 Munich, Germany.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
39
|
Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc'h P. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration. Mol Neurobiol 2018; 55:6480-6499. [PMID: 29322304 DOI: 10.1007/s12035-017-0856-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.
Collapse
Affiliation(s)
- C Maurel
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Dangoumau
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - S Marouillat
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - C Brulard
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Chami
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - R Hergesheimer
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - P Corcia
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - H Blasco
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - C R Andres
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - P Vourc'h
- UMR INSERM U1253, Université de Tours, 37032, Tours, France.
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France.
| |
Collapse
|
40
|
Cristofani R, Crippa V, Vezzoli G, Rusmini P, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Tedesco B, Piccolella M, Messi E, Carra S, Poletti A. The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress Chaperones 2018; 23:1-12. [PMID: 28608264 PMCID: PMC5741577 DOI: 10.1007/s12192-017-0806-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative diseases in which similar pathogenic mechanisms are involved. Both diseases associate to the high propensity of specific misfolded proteins, like TDP-43 or FUS, to mislocalize and aggregate. This is partly due to their intrinsic biophysical properties and partly as a consequence of failure of the neuronal protein quality control (PQC) system. Several familial ALS/FTD cases are linked to an expansion of a repeated G4C2 hexanucleotide sequence present in the C9ORF72 gene. The G4C2, which localizes in an untranslated region of the C9ORF72 transcript, drives an unconventional repeat-associated ATG-independent translation. This leads to the synthesis of five different dipeptide repeat proteins (DPRs), which are not "classical" misfolded proteins, but generate aberrant aggregation-prone unfolded conformations poorly removed by the PQC system. The DPRs accumulate into p62/SQSTM1 and ubiquitin positive inclusions. Here, we analyzed the biochemical behavior of the five DPRs in immortalized motoneurons. Our data suggest that while the DPRs are mainly processed via autophagy, this system is unable to fully clear their aggregated forms, and thus they tend to accumulate in basal conditions. Overexpression of the small heat shock protein B8 (HSPB8), which facilitates the autophagy-mediated disposal of a large variety of classical misfolded aggregation-prone proteins, significantly decreased the accumulation of most DPR insoluble species. Thus, the induction of HSPB8 might represent a valid approach to decrease DPR-mediated toxicity and maintain motoneuron viability.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valeria Crippa
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
- C. Mondino National Neurological Institute, Pavia, Italy
| | - Giulia Vezzoli
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Paola Rusmini
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariarita Galbiati
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria Elena Cicardi
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marco Meroni
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Veronica Ferrari
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Barbara Tedesco
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Margherita Piccolella
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Elio Messi
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Angelo Poletti
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
- Centro Interuniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze Roma Tor Vergata, Genova e Milano, Italy.
| |
Collapse
|
41
|
Zhou Q, Lehmer C, Michaelsen M, Mori K, Alterauge D, Baumjohann D, Schludi MH, Greiling J, Farny D, Flatley A, Feederle R, May S, Schreiber F, Arzberger T, Kuhm C, Klopstock T, Hermann A, Haass C, Edbauer D. Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol Med 2017; 9:687-702. [PMID: 28351931 PMCID: PMC5412769 DOI: 10.15252/emmm.201607054] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell transmission of protein aggregates is an emerging theme in neurodegenerative disease. Here, we analyze the dipeptide repeat (DPR) proteins that form neuronal inclusions in patients with hexanucleotide repeat expansion C9orf72, the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Sense and antisense transcripts of the (G4C2)n repeat are translated by repeat-associated non-ATG (RAN) translation in all reading frames into five aggregating DPR proteins. We show that the hydrophobic DPR proteins poly-GA, poly-GP, and poly-PA are transmitted between cells using co-culture assays and cell extracts. Moreover, uptake or expression of poly-GA induces nuclear RNA foci in (G4C2)80-expressing cells and patient fibroblasts, suggesting an unexpected positive feedback loop. Exposure to recombinant poly-GA and cerebellar extracts of C9orf72 patients increases repeat RNA levels and seeds aggregation of all DPR proteins in receiver cells expressing (G4C2)80 Treatment with anti-GA antibodies inhibits intracellular poly-GA aggregation and blocks the seeding activity of C9orf72 brain extracts. Poly-GA-directed immunotherapy may thus reduce DPR aggregation and disease progression in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Carina Lehmer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kohji Mori
- Biomedical Center, Biochemistry, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany.,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Dominik Alterauge
- Institute for Immunology, Biomedical Center Munich, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center Munich, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Johanna Greiling
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Stephanie May
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany.,Department of Psychiatry and Psychotherapy, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Kuhm
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden and German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
42
|
Zhu J, Shen L, Lin X, Hong Y, Feng Y. Clinical Research on Traditional Chinese Medicine compounds and their preparations for Amyotrophic Lateral Sclerosis. Biomed Pharmacother 2017; 96:854-864. [DOI: 10.1016/j.biopha.2017.09.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
|
43
|
Boeynaems S, Bogaert E, Kovacs D, Konijnenberg A, Timmerman E, Volkov A, Guharoy M, De Decker M, Jaspers T, Ryan VH, Janke AM, Baatsen P, Vercruysse T, Kolaitis RM, Daelemans D, Taylor JP, Kedersha N, Anderson P, Impens F, Sobott F, Schymkowitz J, Rousseau F, Fawzi NL, Robberecht W, Van Damme P, Tompa P, Van Den Bosch L. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol Cell 2017; 65:1044-1055.e5. [PMID: 28306503 PMCID: PMC5364369 DOI: 10.1016/j.molcel.2017.02.013] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023]
Abstract
Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD. Arginine-rich peptides undergo LLPS dependent on counterions or polyaromates Toxic arginine-rich DPRs perturb stress granule dynamics and protein content PR-induced stress granule formation is dependent on eIF2α phosphorylation and G3BP PR promotes aggregation of ALS-related proteins containing prion-like domains
Collapse
Affiliation(s)
- Steven Boeynaems
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Elke Bogaert
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Denes Kovacs
- Center for Structural Biology (CSB), VIB, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium; VIB Proteomics Core, 9000 Gent, Belgium; Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Alex Volkov
- Center for Structural Biology (CSB), VIB, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Mainak Guharoy
- Center for Structural Biology (CSB), VIB, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Mathias De Decker
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Tom Jaspers
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA
| | - Abigail M Janke
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | - Thomas Vercruysse
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Regina-Maria Kolaitis
- Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - J Paul Taylor
- Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nancy Kedersha
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium; VIB Proteomics Core, 9000 Gent, Belgium; Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joost Schymkowitz
- Switch Laboratory, Center for Brain and Disease Research, VIB, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Center for Brain and Disease Research, VIB, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Wim Robberecht
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Tompa
- Center for Structural Biology (CSB), VIB, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Ludo Van Den Bosch
- Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Department of Neurosciences, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Wauters E, Van Mossevelde S, Van der Zee J, Cruts M, Van Broeckhoven C. Modifiers of GRN-Associated Frontotemporal Lobar Degeneration. Trends Mol Med 2017; 23:962-979. [PMID: 28890134 DOI: 10.1016/j.molmed.2017.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous loss-of-function (LOF) mutations in the human progranulin gene (GRN) cause frontotemporal lobar degeneration (FTLD) by a mechanism of haploinsufficiency. Patients present most frequently with frontotemporal dementia, which is the second most common neurodegenerative dementia at young age. Currently, no disease-modifying therapies are available for these patients. Stimulating GRN protein expression or inhibiting its breakdown is an obvious therapeutic strategy, and is indeed the focus of current preclinical research and clinical trials. Multiple studies have demonstrated the heterogeneity in clinical presentation and wide variability in age of onset in patients carrying a GRN LOF mutation. Recently, this heterogeneity became an opportunity to identify disease modifiers, considering that these might constitute suitable targets for developing disease-modifying or disease-delaying therapies.
Collapse
Affiliation(s)
- Eline Wauters
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sara Van Mossevelde
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Julie Van der Zee
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Marc Cruts
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
45
|
Schludi MH, Becker L, Garrett L, Gendron TF, Zhou Q, Schreiber F, Popper B, Dimou L, Strom TM, Winkelmann J, von Thaden A, Rentzsch K, May S, Michaelsen M, Schwenk BM, Tan J, Schoser B, Dieterich M, Petrucelli L, Hölter SM, Wurst W, Fuchs H, Gailus-Durner V, de Angelis MH, Klopstock T, Arzberger T, Edbauer D. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol 2017; 134:241-254. [PMID: 28409281 PMCID: PMC5508040 DOI: 10.1007/s00401-017-1711-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Translation of the expanded (ggggcc)n repeat in C9orf72 patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) causes abundant poly-GA inclusions. To elucidate their role in pathogenesis, we generated transgenic mice expressing codon-modified (GA)149 conjugated with cyan fluorescent protein (CFP). Transgenic mice progressively developed poly-GA inclusions predominantly in motoneurons and interneurons of the spinal cord and brain stem and in deep cerebellar nuclei. Poly-GA co-aggregated with p62, Rad23b and the newly identified Mlf2, in both mouse and patient samples. Consistent with the expression pattern, 4-month-old transgenic mice showed abnormal gait and progressive balance impairment, but showed normal hippocampus-dependent learning and memory. Apart from microglia activation we detected phosphorylated TDP-43 but no neuronal loss. Thus, poly-GA triggers behavioral deficits through inflammation and protein sequestration that likely contribute to the prodromal symptoms and disease progression of C9orf72 patients.
Collapse
Affiliation(s)
- Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franziska Schreiber
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
- Molecular and Translational Neuroscience, Department of Neurology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tim M Strom
- Institut für Humangenetik, Helmholtz Zentrum München, 85764, Munich, Germany
| | - Juliane Winkelmann
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Institut für Neurogenomik, Helmholtz Zentrum München, 85764, Munich, Germany
- Neurologische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
- Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Anne von Thaden
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Kristin Rentzsch
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Stephanie May
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Benjamin M Schwenk
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jing Tan
- Institut für Neurogenomik, Helmholtz Zentrum München, 85764, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany
| | - Marianne Dieterich
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Institute of Developmental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Center for Neuopathology and Prion Research, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 23, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Munich Cluster for System Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Institute for Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 17, 81337, Munich, Germany.
| |
Collapse
|
46
|
Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez-Martinez A, Cooper-Knock J, Higginbottom A, Lin YH, Bauer CS, Dodd JE, Myszczynska MA, Alam SM, Garneret P, Chandran JS, Karyka E, Stopford MJ, Smith EF, Kirby J, Meyer K, Kaspar BK, Isaacs AM, El-Khamisy SF, De Vos KJ, Ning K, Azzouz M, Whitworth AJ, Shaw PJ. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun 2017; 8:16063. [PMID: 28677678 PMCID: PMC5504286 DOI: 10.1038/ncomms16063] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depletion of the nuclear export adaptor SRSF1 prevents neurodegeneration and locomotor deficits in a Drosophila model of C9ORF72-related disease. This intervention suppresses cell death of patient-derived motor neuron and astrocytic-mediated neurotoxicity in co-culture assays. We further demonstrate that either depleting SRSF1 or preventing its interaction with NXF1 specifically inhibits the nuclear export of pathological C9ORF72 transcripts, the production of dipeptide-repeat proteins and alleviates neurotoxicity in Drosophila, patient-derived neurons and neuronal cell models. Taken together, we show that repeat RNA-sequestration of SRSF1 triggers the NXF1-dependent nuclear export of C9ORF72 transcripts retaining expanded hexanucleotide repeats and reveal a novel promising therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Lydia M. Castelli
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S. Bauer
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jennifer E. Dodd
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Monika A. Myszczynska
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Sarah M. Alam
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pierre Garneret
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Jayanth S. Chandran
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew J. Stopford
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Emma F. Smith
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Kathrin Meyer
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Brian K. Kaspar
- Nationwide Children’s Research Institute, Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Rm. WA3022, Columbus, Ohio 43205, USA
| | - Adrian M. Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Sherif F. El-Khamisy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Kurt J. De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J. Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
47
|
Khosravi B, Hartmann H, May S, Möhl C, Ederle H, Michaelsen M, Schludi MH, Dormann D, Edbauer D. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum Mol Genet 2017; 26:790-800. [PMID: 28040728 PMCID: PMC5409121 DOI: 10.1093/hmg/ddw432] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/17/2016] [Indexed: 11/12/2022] Open
Abstract
A repeat expansion in the non-coding region of C9orf72 gene is the most common mutation causing frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Sense and antisense transcripts are translated into aggregating dipeptide repeat (DPR) proteins in all reading frames (poly-GA,-GP,-GR,-PA and -PR) through an unconventional mechanism. How these changes contribute to cytoplasmic mislocalization and aggregation of TDP-43 and thereby ultimately leading to neuron loss remains unclear. The repeat RNA itself and poly-GR/PR have been linked to impaired nucleocytoplasmic transport. Here, we show that compact cytoplasmic poly-GA aggregates impair nuclear import of a reporter containing the TDP-43 nuclear localization (NLS) signal. However, a reporter containing a non-classical PY-NLS was not affected. Moreover, poly-GA expression prevents TNFα induced nuclear translocation of p65 suggesting that poly-GA predominantly impairs the importin-α/β-dependent pathway. In neurons, prolonged poly-GA expression induces partial mislocalization of TDP-43 into cytoplasmic granules. Rerouting poly-GA to the nucleus prevented TDP-43 mislocalization, suggesting a cytoplasmic mechanism. In rescue experiments, expression of importin-α (KPNA3, KPNA4) or nucleoporins (NUP54, NUP62) restores the nuclear localization of the TDP reporter. Taken together, inhibition of nuclear import of TDP-43 by cytoplasmic poly-GA inclusions causally links the two main aggregating proteins in C9orf72 ALS/FTLD pathogenesis.
Collapse
Affiliation(s)
- Bahram Khosravi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-University Munich, Germany
| | - Hannelore Hartmann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Stephanie May
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Christoph Möhl
- Image and Data Analysis Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Helena Ederle
- Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-University Munich, Germany.,Biomedical Center (BMC), Institute for Cell Biology (Anatomy III), Ludwig Maximilians University Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Dorothee Dormann
- Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-University Munich, Germany.,Biomedical Center (BMC), Institute for Cell Biology (Anatomy III), Ludwig Maximilians University Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-University Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| |
Collapse
|
48
|
Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem 2017; 138 Suppl 1:32-53. [PMID: 27009575 DOI: 10.1111/jnc.13622] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a highly heterogeneous group of disorders clinically associated with behavioral and personality changes, language impairment, and deficits in executive functioning, and pathologically associated with degeneration of frontal and temporal lobes. Some patients present with motor symptoms including amyotrophic lateral sclerosis. Genetic research over the past two decades in FTLD families led to the identification of three common FTLD genes (microtubule-associated protein tau, progranulin, and chromosome 9 open reading frame 72) and a small number of rare FTLD genes, explaining the disease in almost all autosomal dominant FTLD families but only a minority of apparently sporadic patients or patients in whom the family history is less clear. Identification of additional FTLD (risk) genes is therefore highly anticipated, especially with the emerging use of next-generation sequencing. Common variants in the transmembrane protein 106 B were identified as a genetic risk factor of FTLD and disease modifier in patients with known mutations. This review summarizes for each FTLD gene what we know about the type and frequency of mutations, their associated clinical and pathological features, and potential disease mechanisms. We also provide an overview of emerging disease pathways encompassing multiple FTLD genes. We further discuss how FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants. Finally, we highlight emerging clinical, genetic, and translational research opportunities that lie ahead. Genetic research led to the identification of three common FTLD genes with rare variants (MAPT, GRN, and C9orf72) and a small number of rare genes. Efforts are now ongoing, which aimed at the identification of rare variants with high risk and/or low frequency variants with intermediate effect. Common risk variants have also been identified, such as TMEM106B. This review discusses the current knowledge on FTLD genes and the emerging disease pathways encompassing multiple FTLD genes.
Collapse
Affiliation(s)
- Cyril Pottier
- Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA
| | | | | | - Rosa Rademakers
- Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA
| |
Collapse
|
49
|
Ederle H, Dormann D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 2017; 591:1489-1507. [PMID: 28380257 DOI: 10.1002/1873-3468.12646] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 12/13/2022]
Abstract
Misfolded or mislocalized RNA-binding proteins (RBPs) and, consequently, altered mRNA processing, can cause neuronal dysfunction, eventually leading to neurodegeneration. Two prominent examples are the RBPs TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), which form pathological messenger ribonucleoprotein aggregates in patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative disorders. Here, we review the multiple functions of TDP-43 and FUS in mRNA processing, both in the nucleus and in the cytoplasm. We discuss how TDP-43 and FUS may exit the nucleus and how defects in both nuclear and cytosolic mRNA processing events, and possibly nuclear export defects, may contribute to neurodegeneration and ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Helena Ederle
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Germany
| |
Collapse
|
50
|
Freibaum BD, Taylor JP. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front Mol Neurosci 2017; 10:35. [PMID: 28243191 PMCID: PMC5303742 DOI: 10.3389/fnmol.2017.00035] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
Expansion of a hexanucleotide (GGGGCC) repeat in the gene chromosome 9 open reading frame 72 (C9ORF72) is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Three non-exclusive mechanisms have been proposed to contribute to the pathology initiated by this genetic insult. First, it was suggested that decreased expression of the C9orf72 protein product may contribute to disease. Second, the recognition that C9ORF72-related disease is associated with accumulation of GGGGCC repeat-containing RNA in nuclear foci led to the suggestion that toxic gain of RNA function, perhaps related to sequestration of RNA-binding proteins, might be an important driver of disease. Third, it was subsequently appreciated that GGGGCC repeat-containing RNA undergoes unconventional translation to produce unnatural dipeptide repeat (DPR) proteins that accumulate in patient brain early in disease. DPRs translated from all six reading frames in either the sense or antisense direction of the hexanucleotide repeat result in the expression of five DPRs: glycine–alanine (GA), glycine–arginine (GR), proline–alanine (PA), proline–arginine (PR) and glycine–proline (GP; GP is generated from both the sense and antisense reading frames). However, the relative contribution of each DPR to disease pathogenesis remains unclear. Here, we review evidence for the contribution of each specific DPR to pathogenesis and examine the probable mechanisms through which these DPRs induce neurodegeneration. We also consider the association of the toxic DPRs with impaired RNA metabolism and alterations to the liquid-like state of non-membrane-bound organelles.
Collapse
Affiliation(s)
- Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital Memphis, TN, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research HospitalMemphis, TN, USA; Howard Hughes Medical InstituteChevy Chase, MD, USA
| |
Collapse
|