1
|
Malone CA, Ziobro P, Khinno J, Tschida KA. Rates of female mouse ultrasonic vocalizations are low and are not modulated by estrous state during interactions with muted males. Sci Rep 2025; 15:6841. [PMID: 40000725 PMCID: PMC11862114 DOI: 10.1038/s41598-025-91479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Adult male mice produce high rates of ultrasonic vocalizations (USVs) during courtship interactions with females. It was long thought that only males produced courtship USVs, but recent studies using microphone arrays to assign USVs to individual signalers report that females produce a portion (5-18%) of total courtship USVs. The factors that regulate female courtship USV production are poorly understood. Here, we tested the idea that female courtship USV production is regulated by estrous state. To facilitate the detection of female USVs, we paired females with males that were muted for USV production via caspase-mediated ablation of midbrain neurons that are required for USV production. We report that total USVs recorded during interactions between group-housed B6 females and muted males are low and are not modulated by female estrous state. Similar results were obtained for single-housed B6 females and for single-housed outbred wild-derived female mice paired with muted males. These findings suggest either that female mice produce substantial rates of courtship USVs only when interacting with vocal male partners or that prior studies have overestimated female courtship USV production. Studies employing methods that can unambiguously assign USVs to individual signalers, regardless of inter-mouse distances, are needed to distinguish between these possibilities.
Collapse
Affiliation(s)
- Cassidy A Malone
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Julia Khinno
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
2
|
Leuner LR, Hurley LM. What matters to a mouse? Effects of internal and external context on male vocal response to female squeaks. PLoS One 2025; 20:e0312789. [PMID: 39970156 PMCID: PMC11838898 DOI: 10.1371/journal.pone.0312789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
House mice adjust their signaling behavior depending on the social context of an interaction, but which aspects of context elicit the strongest responses from these individuals is often difficult to determine. To explore how internal and external contextual factors influence how house mice produce and respond to social signals, we assessed how dominant and subordinate male mice differed in their ultrasonic vocalization (USV) production in response to playback of broadband vocalizations (BBVs, or squeaks) when given limited access to a stimulus female. We used a repeated measures design in which each male was exposed to two types of trials with different odor conditions: either just female odors (Fem condition) or female odors in addition to the odors of potential competitors, other males (Fem+Male condition). The presence of odors from other males in this assay served as a proxy for an "audience" as the male interacted with the stimulus female. These conditions were replicated for two distinct cohorts of individuals: males exposed to the odor of familiar competitors in the Fem+Male condition (Familiar odor cohort), and males exposed to the odor of unfamiliar competitors in the Fem+Male condition (Unfamiliar odor cohort). By assessing dominance status of the focal individual and familiarity of the "audience", we are able to explore how these factors may affect one another as males respond to BBVs. Dominants and subordinates did not differ in their baseline vocal production (vocalizations produced prior to squeak playback) or response to squeaks. However, all groups, regardless of dominance status or odor condition, reduced their vocal production in response to BBV playback. The presence of unfamiliar male odor prompted mice to decrease their baseline level of calling and decrease the complexity of their vocal repertoire compared to trials that only included female odor, and this effect also did not differ across dominance status. Importantly, the presence of male odor did not affect vocal behavior when the male odor was familiar to the focal individual. These findings suggest that mice alter their vocal behavior during courtship interactions in response to cues that indicate the presence of potential competitors, and this response is modulated by the familiarity of these competitor cues.
Collapse
Affiliation(s)
- Lauren R. Leuner
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
3
|
Guoynes CD, Pavalko G, Sidorov MS. Courtship and distress ultrasonic vocalizations are disrupted in a mouse model of Angelman syndrome. RESEARCH SQUARE 2025:rs.3.rs-5953744. [PMID: 39989972 PMCID: PMC11844654 DOI: 10.21203/rs.3.rs-5953744/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Angelman syndrome (AS) is a single-gene neurodevelopmental disorder caused by loss of function of the maternal copy of the UBE3A gene. Nearly all individuals with AS lack speech, resulting in major impacts on daily life for patients and caregivers. To evaluate new therapies for AS, it is crucial to have a mouse model that characterizes meaningful clinical features. Vocalizations are used in many contexts in mice, including pup retrieval, social interactions, courtship, and distress. Previous work in the Ube3a m-/p+ mouse model of AS found abnormalities in the number of ultrasonic vocalizations (USVs) mice produced during pup isolation and same-sex social interactions. Here, we evaluated Ube3a m-/p+ vocalizations during courtship and distress. Quantifying USVs in these contexts enables comparison of USVs in social (courtship) and non-social (distress) settings. In addition, we assessed the utility of incorporating USV testing into existing Ube3a m-/p+ mouse behavioral assessments used to evaluate potential AS treatments. Methods We used a three-chamber social preference test for courtship vocalizations and a tail suspension test for distress vocalizations in adult wild-type (WT) and Ube3a m-/p+ littermates, and quantified USV properties using the program DeepSqueak. Next, mice performed an established Ube3a m-/p+ behavioral battery that included rotarod, open field, marble burying, and nest building. We used principal component analysis to evaluate the value of USV testing in the context of other behaviors. Results In both social courtship and nonsocial distress behavioral paradigms, Ube3a m-/p+ mice made fewer USVs compared to WT mice. Spectral properties of USVs were abnormal in Ube3a m-/p+ mice on the courtship test but mostly typical on the distress test. Including USVs in the Ube3a m-/p+ mouse behavior battery increased the distance between Ube3a m-/p+ and WT clusters in principal component space. Conclusions Ube3a m-/p+ mice have difficulty producing USVs in social and nonsocial contexts. Spectral properties of USVs are most impacted in the social courtship context. Adding USVs to the Ube3a m-/p+ behavior battery may improve sensitivity to detect group differences and changes in communication.
Collapse
|
4
|
Ghasemahmad Z, Perumal KD, Sharma B, Panditi R, Wenstrup JJ. Acoustic features of and behavioral responses to emotionally intense mouse vocalizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632636. [PMID: 39868082 PMCID: PMC11761797 DOI: 10.1101/2025.01.12.632636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Social vocalizations contain cues that reflect the motivational state of a vocalizing animal. Once perceived, these cues may in turn affect the internal state and behavioral responses of listening animals. Using the CBA/CAJ mouse model of acoustic communication, this study examined acoustic cues that signal intensity in male-female interactions, then compared behavioral responses to intense mating vocal sequences with those from another intense behavioral context, restraint. Experiment I in this study examined behaviors and vocalizations associated with male-female social interactions. Based on several behaviors, we distinguished more general, courtship-type interactions from mating interactions involving mounting or attempted mounting behaviors. We then compared vocalizations between courtship and mating. The increase in behavioral intensity from courtship to mating was associated with altered syllable composition, more harmonic structure, lower minimum frequency, longer duration, reduced inter-syllable interval, and increased sound intensity. We then used these features to construct highly salient playback stimuli associated with mating. In Experiment II, we compared behavioral responses to playback of these mating sequences with responses to playback of aversive vocal sequences produced by restrained mice, described in previous studies. Subjects were females in estrus and males. We observed a range of behavioral responses. Some (e.g., Attending and Stretch-Attend) showed similar responses across playback type and sex, while others were context dependent (e.g., Flinching, Locomotion). Still other behaviors showed either an effect of sex (e.g., Self-Grooming, Still-and-Alert) or an interaction between playback type and sex (Escape). These results demonstrate both state-dependent features of mouse vocalizations and their effectiveness in evoking a range of behavioral responses, independent of contextual cues provided by other sensory stimuli or behavioral interactions.
Collapse
|
5
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Hossain K, Erata E, Schiapparelli L, Soderling SH. The Epilepsy-Aphasia Syndrome gene, Cnksr2, Plays a Critical Role in the Anterior Cingulate Cortex Mediating Vocal Communication. eNeuro 2024; 12:ENEURO.0532-24.2024. [PMID: 39694826 PMCID: PMC11747972 DOI: 10.1523/eneuro.0532-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
Epilepsy Aphasia Syndrome (EAS) is a spectrum of childhood disorders that exhibit complex co-morbidities that include epilepsy and the emergence of cognitive and language disorders. CNKSR2 is an X-linked gene in which mutations are linked to EAS. We previously demonstrated Cnksr2 knockout (KO) mice model key phenotypes of EAS analogous to those present in clinical patients with mutations in the gene. Cnksr2 KO mice have increased seizures, impaired learning and memory, increased levels of anxiety, and loss of ultrasonic vocalizations (USV). The intricate interplay between these diverse phenotypes at the brain regional and cell type level remains unknown. Here we leverage conditional deletion of the X-linked Cnksr2 in a neuronal cell type manner in male mice to demonstrate that anxiety and impaired USVs track with its loss from excitatory neurons. Finally, we further narrow the essential role of Cnksr2 loss in USV deficits to excitatory neurons of the Anterior Cingulate Cortex (ACC), a region in mice recently implicated in USV production associated with specific emotional states or social contexts, such as mating calls, distress calls, or social bonding signals. Together, our results reveal Cnksr2-based mechanisms that underlie USV impairments that suggest communication impairments can be dissociated from seizures or anxiety. Furthermore, we highlight the cortical circuitry important for initiating USVs.Significance Statement Epilepsy-Aphasia Syndromes are at the severe end of a spectrum of cognitive-behavioral symptoms that are seen in childhood epilepsies and are currently an inadequately understood disorder. The prognosis of EAS is frequently poor and patients have life-long language and cognitive disturbances. We show that the deletion of Cnksr2 specifically within glutamatergic neurons of the anterior cingulate cortex leads to ultrasonic vocalization impairments, providing an important new understanding of the modulation of vocal communication.
Collapse
Affiliation(s)
- Kazi Hossain
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Eda Erata
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Lucio Schiapparelli
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA.
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
7
|
Mercado E, Zhuo J. Do rodents smell with sound? Neurosci Biobehav Rev 2024; 167:105908. [PMID: 39343078 DOI: 10.1016/j.neubiorev.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Chemosensation via olfaction is a critical process underlying social interactions in many different species. Past studies of olfaction in mammals often have focused on its mechanisms in isolation from other systems, limiting the generalizability of findings from olfactory research to perceptual processes in other modalities. Studies of chemical communication, in particular, have progressed independently of research on vocal behavior and acoustic communication. Those bioacousticians who have considered how sound production and reception might interact with olfaction often portray odors as cues to the kinds of vocalizations that might be functionally useful. In the olfaction literature, vocalizations are rarely mentioned. Here, we propose that ultrasonic vocalizations may affect what rodents smell by altering the deposition of inhaled particles and that rodents coordinate active sniffing with sound production specifically to enhance reception of pheromones. In this scenario, rodent vocalizations may contribute to a unique mode of active olfactory sensing, in addition to whatever roles they serve as social signals. Consideration of this hypothesis highlights the perceptual advantages that parallel coordination of multiple sensorimotor processes may provide to individuals exploring novel situations and environments, especially those involving dynamic social interactions.
Collapse
Affiliation(s)
- Eduardo Mercado
- University at Buffalo, The State University of New York, USA.
| | | |
Collapse
|
8
|
Premoli M, Carone M, Mastinu A, Maccarinelli G, Aria F, Mac Sweeney E, Memo M, Bonini SA. Cannabis Sativa Oil Promotes Social Interaction and Ultrasonic Communication by Acting on Oxytocin Pathway. Cannabis Cannabinoid Res 2024; 9:1514-1523. [PMID: 38800950 PMCID: PMC11685290 DOI: 10.1089/can.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Objective: Cannabis sativa is the most used recreational drug worldwide. In recent years, there has been a growing interest in the potential therapeutic benefits of medicinal cannabis to treat a variety of psychiatric and neurological conditions. In particular, cannabidiol (CBD), a nonpsychoactive cannabis constituent, has been investigated for its potential prosocial effects on behavior, although the molecular mechanisms underlying this effect are still largely unknown. The aim of this study was to investigate the effect of a C. sativa oil CBD rich (CS oil) on social interaction and ultrasonic communication in mice. Study Design: Twenty-seven adult male mice (B6; 129P F2) were treated daily with vehicle or CS oil for 2 weeks. At Day 14, mice were tested for behavior (social interaction test and ultrasonic communication). Forty minutes before the behavioral tests, mice were exposed to intranasal treatment with vehicle or the oxytocin receptor antagonist, L-371,257. After behavioral tests, VH- and CS oil-treated mice were sacrificed, RNA was extracted from the hypothalamus and used for quantitative Real Time-PCR experiments. Results: We found that a 2-week treatment with the CS oil on mice exerted a prosocial effect associated with an increase in ultrasonic vocalizations. These effects were inhibited by pretreating mice with an oxytocin receptor antagonist. In addition, at the molecular level, we found that CS oil treatment caused a significant increase in oxytocin and a decrease in oxytocin receptor expression levels in the brain hypothalamus. Conclusion: Our results suggest that CS oil promotes social behavior by acting on oxytocin pathway.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Carone
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Francesca Aria
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Li M, Chen DS, Junker IP, Szorenyi FI, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior in Drosophila. Nat Commun 2024; 15:9210. [PMID: 39468043 PMCID: PMC11519493 DOI: 10.1038/s41467-024-53610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor circuit facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Pilipenko T, Premoli M, Gnutti A, Bonini SA, Leonardi R, Memo M, Migliorati P. Exploring ultrasonic communication in mice treated with Cannabis sativa oil: Audio data processing and correlation study with different behaviours. Eur J Neurosci 2024; 60:4244-4253. [PMID: 38816916 DOI: 10.1111/ejn.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Studying ultrasonic vocalizations (USVs) plays a crucial role in understanding animal communication, particularly in the field of ethology and neuropharmacology. Communication is associated with social behaviour; so, USVs study is a valid assay in behavioural readout and monitoring in this context. This paper delved into an investigation of ultrasonic communication in mice treated with Cannabis sativa oil (CS mice), which has been demonstrated having a prosocial effect on behaviour of mice, versus control mice (vehicle-treated, VH mice). To conduct this study, we created a dataset by recording audio-video files and annotating the duration of time that test mice spent engaging in social activities, along with categorizing the types of emitted USVs. The analysis encompassed the frequency of individual sounds as well as more complex sequences of consecutive syllables (patterns). The primary goal was to examine the extent and nature of diversity in ultrasonic communication patterns emitted by these two groups of mice. As a result, we observed statistically significant differences for each considered pattern length between the two groups of mice. Additionally, the study extended its research by considering specific behaviours, aiming to ascertain whether dissimilarities in ultrasonic communication between CS and VH mice are more pronounced or subtle within distinct behavioural contexts. Our findings suggest that while there is variation in USV communication between the two groups of mice, the degree of this diversity may vary depending on the specific behaviour being observed.
Collapse
Affiliation(s)
- Tatiana Pilipenko
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational, Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Gnutti
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational, Medicine, University of Brescia, Brescia, Italy
| | - Riccardo Leonardi
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational, Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
12
|
Xie B, Daunay V, Petersen TC, Briefer EF. Vocal repertoire and individuality in the plains zebra ( Equus quagga). ROYAL SOCIETY OPEN SCIENCE 2024; 11:240477. [PMID: 39076369 PMCID: PMC11286140 DOI: 10.1098/rsos.240477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/31/2024]
Abstract
Acoustic signals are vital in animal communication, and quantifying them is fundamental for understanding animal behaviour and ecology. Vocalizations can be classified into acoustically and functionally or contextually distinct categories, but establishing these categories can be challenging. Newly developed methods, such as machine learning, can provide solutions for classification tasks. The plains zebra is known for its loud and specific vocalizations, yet limited knowledge exists on the structure and information content of its vocalzations. In this study, we employed both feature-based and spectrogram-based algorithms, incorporating supervised and unsupervised machine learning methods to enhance robustness in categorizing zebra vocalization types. Additionally, we implemented a permuted discriminant function analysis to examine the individual identity information contained in the identified vocalization types. The findings revealed at least four distinct vocalization types-the 'snort', the 'soft snort', the 'squeal' and the 'quagga quagga'-with individual differences observed mostly in snorts, and to a lesser extent in squeals. Analyses based on acoustic features outperformed those based on spectrograms, but each excelled in characterizing different vocalization types. We thus recommend the combined use of these two approaches. This study offers valuable insights into plains zebra vocalization, with implications for future comprehensive explorations in animal communication.
Collapse
Affiliation(s)
- Bing Xie
- Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
- Research and Conservation, Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark
| | - Virgile Daunay
- Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
- Laboratoire Dynamique du Langage, CNRS, University Lumière Lyon 2, Lyon, France
- ENES Bioacoustics Research Lab, CRNL, CNRS, Inserm, University of Saint-Etienne, 42100 Saint-Etienne, France
| | | | - Elodie F. Briefer
- Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
14
|
Perrodin C, Verzat C, Bendor D. Courtship behaviour reveals temporal regularity is a critical social cue in mouse communication. eLife 2023; 12:RP86464. [PMID: 38149925 PMCID: PMC10752583 DOI: 10.7554/elife.86464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
While animals navigating the real world face a barrage of sensory input, their brains evolved to perceptually compress multidimensional information by selectively extracting the features relevant for survival. Notably, communication signals supporting social interactions in several mammalian species consist of acoustically complex sequences of vocalisations. However, little is known about what information listeners extract from such time-varying sensory streams. Here, we utilise female mice's natural behavioural response to male courtship songs to identify the relevant acoustic dimensions used in their social decisions. We found that females were highly sensitive to disruptions of song temporal regularity and preferentially approached playbacks of intact over rhythmically irregular versions of male songs. In contrast, female behaviour was invariant to manipulations affecting the songs' sequential organisation or the spectro-temporal structure of individual syllables. The results reveal temporal regularity as a key acoustic cue extracted by mammalian listeners from complex vocal sequences during goal-directed social behaviour.
Collapse
Affiliation(s)
- Catherine Perrodin
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| | - Colombine Verzat
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College LondonLondonUnited Kingdom
- Idiap Research InstituteMartignySwitzerland
| | - Daniel Bendor
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Li M, Chen DS, Junker IP, Szorenyi F, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570174. [PMID: 38106147 PMCID: PMC10723342 DOI: 10.1101/2023.12.05.570174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor program facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabianna Szorenyi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Current address: School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Gan-Or B, London M. Cortical circuits modulate mouse social vocalizations. SCIENCE ADVANCES 2023; 9:eade6992. [PMID: 37774030 PMCID: PMC10541007 DOI: 10.1126/sciadv.ade6992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Vocalizations provide a means of communication with high fidelity and information rate for many species. Diencephalon and brainstem neural circuits have been shown to control mouse vocal production; however, the role of cortical circuits in this process is debatable. Using electrical and optogenetic stimulation, we identified a cortical region in the anterior cingulate cortex in which stimulation elicits ultrasonic vocalizations. Moreover, fiber photometry showed an increase in Ca2+ dynamics preceding vocal initiation, whereas optogenetic suppression in this cortical area caused mice to emit fewer vocalizations. Last, electrophysiological recordings indicated a differential increase in neural activity in response to female social exposure dependent on vocal output. Together, these results indicate that the cortex is a key node in the neuronal circuits controlling vocal behavior in mice.
Collapse
Affiliation(s)
- Benjamin Gan-Or
- Edmond and Lily Safra Center for Brain Sciences and Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
18
|
Hoffmann LB, McVicar EA, Harris RV, Collar-Fernández C, Clark MB, Hannan AJ, Pang TY. Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones. BMC Biol 2023; 21:186. [PMID: 37667240 PMCID: PMC10478242 DOI: 10.1186/s12915-023-01678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.
Collapse
Affiliation(s)
- Lucas B Hoffmann
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Evangeline A McVicar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rebekah V Harris
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Coralina Collar-Fernández
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Agarwalla S, De A, Bandyopadhyay S. Predictive Mouse Ultrasonic Vocalization Sequences: Uncovering Behavioral Significance, Auditory Cortex Neuronal Preferences, and Social-Experience-Driven Plasticity. J Neurosci 2023; 43:6141-6163. [PMID: 37541836 PMCID: PMC10476644 DOI: 10.1523/jneurosci.2353-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Mouse ultrasonic vocalizations (USVs) contain predictable sequential structures like bird songs and speech. Neural representation of USVs in the mouse primary auditory cortex (Au1) and its plasticity with experience has been largely studied with single-syllables or dyads, without using the predictability in USV sequences. Studies using playback of USV sequences have used randomly selected sequences from numerous possibilities. The current study uses mutual information to obtain context-specific natural sequences (NSeqs) of USV syllables capturing the observed predictability in male USVs in different contexts of social interaction with females. Behavioral and physiological significance of NSeqs over random sequences (RSeqs) lacking predictability were examined. Female mice, never having the social experience of being exposed to males, showed higher selectivity for NSeqs behaviorally and at cellular levels probed by expression of immediate early gene c-fos in Au1. The Au1 supragranular single units also showed higher selectivity to NSeqs over RSeqs. Social-experience-driven plasticity in encoding NSeqs and RSeqs in adult females was probed by examining neural selectivities to the same sequences before and after the above social experience. Single units showed enhanced selectivity for NSeqs over RSeqs after the social experience. Further, using two-photon Ca2+ imaging, we observed social experience-dependent changes in the selectivity of sequences of excitatory and somatostatin-positive inhibitory neurons but not parvalbumin-positive inhibitory neurons of Au1. Using optogenetics, somatostatin-positive neurons were identified as a possible mediator of the observed social-experience-driven plasticity. Our study uncovers the importance of predictive sequences and introduces mouse USVs as a promising model to study context-dependent speech like communications.SIGNIFICANCE STATEMENT Humans need to detect patterns in the sensory world. For instance, speech is meaningful sequences of acoustic tokens easily differentiated from random ordered tokens. The structure derives from the predictability of the tokens. Similarly, mouse vocalization sequences have predictability and undergo context-dependent modulation. Our work investigated whether mice differentiate such informative predictable sequences (NSeqs) of communicative significance from RSeqs at the behavioral, molecular, and neuronal levels. Following a social experience in which NSeqs occur as a crucial component, mouse auditory cortical neurons become more sensitive to differences between NSeqs and RSeqs, although preference for individual tokens is unchanged. Thus, speech-like communication and its dysfunction may be studied in circuit, cellular, and molecular levels in mice.
Collapse
Affiliation(s)
- Swapna Agarwalla
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amiyangshu De
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
20
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540716. [PMID: 37645786 PMCID: PMC10461921 DOI: 10.1101/2023.05.14.540716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L. Troconis
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Melissa R. Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
- Lead Contact
| |
Collapse
|
21
|
Baggi D, Premoli M, Gnutti A, Bonini SA, Leonardi R, Memo M, Migliorati P. Extended performance analysis of deep-learning algorithms for mice vocalization segmentation. Sci Rep 2023; 13:11238. [PMID: 37433808 DOI: 10.1038/s41598-023-38186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
Ultrasonic vocalizations (USVs) analysis represents a fundamental tool to study animal communication. It can be used to perform a behavioral investigation of mice for ethological studies and in the field of neuroscience and neuropharmacology. The USVs are usually recorded with a microphone sensitive to ultrasound frequencies and then processed by specific software, which help the operator to identify and characterize different families of calls. Recently, many automated systems have been proposed for automatically performing both the detection and the classification of the USVs. Of course, the USV segmentation represents the crucial step for the general framework, since the quality of the call processing strictly depends on how accurately the call itself has been previously detected. In this paper, we investigate the performance of three supervised deep learning methods for automated USV segmentation: an Auto-Encoder Neural Network (AE), a U-NET Neural Network (UNET) and a Recurrent Neural Network (RNN). The proposed models receive as input the spectrogram associated with the recorded audio track and return as output the regions in which the USV calls have been detected. To evaluate the performance of the models, we have built a dataset by recording several audio tracks and manually segmenting the corresponding USV spectrograms generated with the Avisoft software, producing in this way the ground-truth (GT) used for training. All three proposed architectures demonstrated precision and recall scores exceeding [Formula: see text], with UNET and AE achieving values above [Formula: see text], surpassing other state-of-the-art methods that were considered for comparison in this study. Additionally, the evaluation was extended to an external dataset, where UNET once again exhibited the highest performance. We suggest that our experimental results may represent a valuable benchmark for future works.
Collapse
Affiliation(s)
- Daniele Baggi
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Gnutti
- Department of Information Engineering, University of Brescia, Brescia, Italy.
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Riccardo Leonardi
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
22
|
Shen P, Wan X, Wu F, Shi K, Li J, Gao H, Zhao L, Zhou C. Neural circuit mechanisms linking courtship and reward in Drosophila males. Curr Biol 2023; 33:2034-2050.e8. [PMID: 37160122 DOI: 10.1016/j.cub.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Courtship has evolved to achieve reproductive success in animal species. However, whether courtship itself has a positive value remains unclear. In the present work, we report that courtship is innately rewarding and can induce the expression of appetitive short-term memory (STM) and long-term memory (LTM) in Drosophila melanogaster males. Activation of male-specific P1 neurons is sufficient to mimic courtship-induced preference and memory performance. Surprisingly, P1 neurons functionally connect to a large proportion of dopaminergic neurons (DANs) in the protocerebral anterior medial (PAM) cluster. The acquisition of STM and LTM depends on two distinct subsets of PAM DANs that convey the courtship-reward signal to the restricted regions of the mushroom body (MB) γ and α/β lobes through two dopamine receptors, D1-like Dop1R1 and D2-like Dop2R. Furthermore, the retrieval of STM stored in the MB α'/β' lobes and LTM stored in the MB α/β lobe relies on two distinct MB output neurons. Finally, LTM consolidation requires two subsets of PAM DANs projecting to the MB α/β lobe and corresponding MB output neurons. Taken together, our findings demonstrate that courtship is a potent rewarding stimulus and reveal the underlying neural circuit mechanisms linking courtship and reward in Drosophila males.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hongjiang Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
23
|
Jourjine N, Woolfolk ML, Sanguinetti-Scheck JI, Sabatini JE, McFadden S, Lindholm AK, Hoekstra HE. Two pup vocalization types are genetically and functionally separable in deer mice. Curr Biol 2023; 33:1237-1248.e4. [PMID: 36893759 DOI: 10.1016/j.cub.2023.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
Vocalization is a widespread social behavior in vertebrates that can affect fitness in the wild. Although many vocal behaviors are highly conserved, heritable features of specific vocalization types can vary both within and between species, raising the questions of why and how some vocal behaviors evolve. Here, using new computational tools to automatically detect and cluster vocalizations into distinct acoustic categories, we compare pup isolation calls across neonatal development in eight taxa of deer mice (genus Peromyscus) and compare them with laboratory mice (C57BL6/J strain) and free-living, wild house mice (Mus musculus domesticus). Whereas both Peromyscus and Mus pups produce ultrasonic vocalizations (USVs), Peromyscus pups also produce a second call type with acoustic features, temporal rhythms, and developmental trajectories that are distinct from those of USVs. In deer mice, these lower frequency "cries" are predominantly emitted in postnatal days one through nine, whereas USVs are primarily made after day 9. Using playback assays, we show that cries result in a more rapid approach by Peromyscus mothers than USVs, suggesting a role for cries in eliciting parental care early in neonatal development. Using a genetic cross between two sister species of deer mice exhibiting large, innate differences in the acoustic structure of cries and USVs, we find that variation in vocalization rate, duration, and pitch displays different degrees of genetic dominance and that cry and USV features can be uncoupled in second-generation hybrids. Taken together, this work shows that vocal behavior can evolve quickly between closely related rodent species in which vocalization types, likely serving distinct functions in communication, are controlled by distinct genetic loci.
Collapse
Affiliation(s)
- Nicholas Jourjine
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Maya L Woolfolk
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Juan I Sanguinetti-Scheck
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - John E Sabatini
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sade McFadden
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Anna K Lindholm
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse, 190 8057 Zürich, Switzerland
| | - Hopi E Hoekstra
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
24
|
Chen Y, Xiang Z, Su Q, Qin J, Liu Q. Vocal signals with different social or non-social contexts in two wild rodent species (Mus caroli and Rattus losea). Anim Cogn 2023; 26:963-972. [PMID: 36683113 DOI: 10.1007/s10071-023-01745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The ultrasonic vocalizations (USVs) of rodents play a substantial role in the communication and interaction between individuals; exhibit a high degree of complexity; and are influenced by a multitude of developmental, environmental, and phylogenetic factors. The functions of USVs are mainly studied in laboratory mice or rats. However, the behavioral relevance of USVs in wild rodents is poorly studied. In this work, we systematically investigated the vocal repertoire of the wild mouse Mus caroli and wild rat Rattus losea in multiple social or non-social contexts, e.g., pup-isolation, juvenile-play, paired opposite-sex encounter, female-female interaction, social-exploring, or foot-shock treatment. Unlike the laboratory mice, M. caroli, whose USVs were recorded during pup-isolation and courtship behaviors, did not produce any vocal sounds during juvenile-play and female-female interactions. R. losea, similar to laboratory rats, emitted USVs in all test situations. We found higher peak frequencies of USVs in both these two wild rodent species than in laboratory animals. Moreover, the parameters and structures of USVs varied significantly across different social or non-social contexts even within each species, confirming the context-sensitivity and complexity of vocal signals in rodents. We also noted a striking difference in call types between these two species: no downward type occurred in M. caroli, but no upward type occurred in R. losea, thereby highlighting the interspecific difference of vocal signals among rodents. Thus, the present study presents behavioral foundations of the vocalization context in wild mice and wild rats, and contributes to revealing the behavioral significance of widely used USVs in rodents.
Collapse
Affiliation(s)
- Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiao Qin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
25
|
Aghi K, Goetz TG, Pfau DR, Sun SED, Roepke TA, Guthman EM. Centering the Needs of Transgender, Nonbinary, and Gender-Diverse Populations in Neuroendocrine Models of Gender-Affirming Hormone Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1268-1279. [PMID: 35863692 PMCID: PMC10472479 DOI: 10.1016/j.bpsc.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.
Collapse
Affiliation(s)
- Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Teddy G Goetz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel R Pfau
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Center for Applied Transgender Studies, Chicago, Illinois
| | - Troy A Roepke
- Department of Animal Sciences, School of Biological and Environmental Sciences, Rutgers University, New Brunswick
| | - Eartha Mae Guthman
- Center for Applied Transgender Studies, Chicago, Illinois; Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
| |
Collapse
|
26
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
27
|
Concha-Miranda M, Tang W, Hartmann K, Brecht M. Large-Scale Mapping of Vocalization-Related Activity in the Functionally Diverse Nuclei in Rat Posterior Brainstem. J Neurosci 2022; 42:8252-8261. [PMID: 36113990 PMCID: PMC9653273 DOI: 10.1523/jneurosci.0813-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/20/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
The identity and location of vocalization pattern generating (VPG) circuits in mammals is debated. Based on physiological experiments, investigators suggested anterior brainstem circuits in the reticular formation, and anatomic evidence suggested the nucleus retroambiguus (NRA) in the posterior brainstem, or combinations of these sites as the putative mammalian VPG. Additionally, vocalization loudness is a critical factor in acoustic communication. However, many of the underlying neuronal mechanisms are still unknown. Here, we evoked calls by stimulation of the periaqueductal gray in anesthetized male rats, performed a large-scale mapping of vocalization-related activity using the activity marker c-fos, and high-density recordings of brainstem circuits using Neuropixels probes. Both c-fos expression and recording of vocalization-related activity point to a participation of the NRA in vocalization. More important, among our recorded structures, we found that the NRA is the only brainstem area showing a strong correlation between unit activity and call intensity. In addition, we observed functionally diverse patterns of vocalization-related activity in a set of regions around NRA. Dorsal to NRA, we observed activity specific to the beginning and end of vocalizations in the posterior level of the medullary reticular nucleus, dorsal part, whereas medial and lateral to the NRA, we observed activity related to call initiation. No clear vocalization-related activity was observed at anterior brainstem sites. Our findings suggest a set of functionally heterogeneous regions around the NRA contribute to vocal pattern generation in rats.SIGNIFICANCE STATEMENT Vocalization patterns are shaped in the mammalian brainstem, but the identity and location of the circuits involved is debated. Additionally, the neuronal mechanisms of vocal intensity control are still unknown. This study consisted of a large-scale mapping of brainstem vocalization circuits based on the activity marker c-fos and high-density recordings with Neuropixels probes. The results confirm the role of nucleus retroambiguus in call production and point to a key role of neurons in this nucleus in loudness control. Dorsal to the nucleus retroambiguus and in the posterior medulla, the authors identify neurons with activity specific to the beginning and end of vocalizations. The results point to specific neural dials for various aspects of rat vocalization control in the posterior brainstem.
Collapse
Affiliation(s)
- Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Wei Tang
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Konstantin Hartmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
28
|
Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals (Basel) 2022; 12:ani12182410. [PMID: 36139269 PMCID: PMC9495000 DOI: 10.3390/ani12182410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
An auditory ability is essential for communication in vertebrates, and considerable attention has been paid to auditory sensitivity in mammals, birds, and frogs. Turtles were thought to be deaf for a long time; however, recent studies have confirmed the presence of an auditory ability in Trachemys scripta elegans as well as sex-related differences in hearing sensitivity. Earlier studies mainly focused on the morphological and physiological functions of the hearing organ in turtles; thus, the gene expression patterns remain unclear. In this study, 36 transcriptomes from six tissues (inner ear, tympanic membrane, brain, eye, lung, and muscle) were sequenced to explore the gene expression patterns of the hearing system in T. scripta elegans. A weighted gene co-expression network analysis revealed that hub genes related to the inner ear and tympanic membrane are involved in development and signal transduction. Moreover, we identified six differently expressed genes (GABRA1, GABRG2, GABBR2, GNAO1, SLC38A1, and SLC12A5) related to the GABAergic synapse pathway as candidate genes to explain the differences in sexually dimorphic hearing sensitivity. Collectively, this study provides a critical foundation for genetic research on auditory functions in turtles.
Collapse
|
29
|
Premoli M, Petroni V, Bulthuis R, Bonini SA, Pietropaolo S. Ultrasonic Vocalizations in Adult C57BL/6J Mice: The Role of Sex Differences and Repeated Testing. Front Behav Neurosci 2022; 16:883353. [PMID: 35910678 PMCID: PMC9330122 DOI: 10.3389/fnbeh.2022.883353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are a major tool for assessing social communication in laboratory mice during their entire lifespan. At adulthood, male mice preferentially emit USVs toward a female conspecific, while females mostly produce ultrasonic calls when facing an adult intruder of the same sex. Recent studies have developed several sophisticated tools to analyze adult mouse USVs, especially in males, because of the increasing relevance of adult communication for behavioral phenotyping of mouse models of autism spectrum disorder (ASD). Little attention has been instead devoted to adult female USVs and impact of sex differences on the quantitative and qualitative characteristics of mouse USVs. Most of the studies have also focused on a single testing session, often without concomitant assessment of other social behaviors (e.g., sniffing), so little is still known about the link between USVs and other aspects of social interaction and their stability/variations across multiple encounters. Here, we evaluated the USVs emitted by adult male and female mice during 3 repeated encounters with an unfamiliar female, with equal or different pre-testing isolation periods between sexes. We demonstrated clear sex differences in several USVs' characteristics and other social behaviors, and these were mostly stable across the encounters and independent of pre-testing isolation. The estrous cycle of the tested females exerted quantitative effects on their vocal and non-vocal behaviors, although it did not affect the qualitative composition of ultrasonic calls. Our findings obtained in B6 mice, i.e., the strain most widely used for engineering of transgenic mouse lines, contribute to provide new guidelines for assessing ultrasonic communication in male and female adult mice.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
30
|
Parker A, Hobson L, Bains R, Wells S, Bowl M. Investigating audible and ultrasonic noise in modern animal facilities. F1000Res 2022; 11:651. [PMID: 35949916 PMCID: PMC9334837 DOI: 10.12688/f1000research.111170.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The environmental housing conditions of laboratory animals are important for both welfare and reliable, reproducible data. Guidelines currently exist for factors such as lighting cycles, temperature, humidity, and noise, however, for the latter the current guidelines may overlook important details. In the case of the most common laboratory species, the mouse, the range of frequencies they can hear is far higher than that of humans. The current guidelines briefly mention that ultrasonic (>20 kHz) frequencies can adversely affect mice, and that the acoustic environment should be checked, though no recommendations are provided relating to acceptable levels of ultrasonic noise. Methods: To investigate the ultrasonic environment in a large mouse breeding facility (the Mary Lyon Centre at MRC Harwell), we compared two systems, the Hottinger Bruel and Kjaer PULSE sound analyser, and an Avisoft Bioacoustics system. Potential noise sources were selected; we used the PULSE system to undertake real-time Fourier analysis of noise up to 100 kHz, and the Avisoft system to record noise up to 125 kHz for later analysis. The microphones from both systems were positioned consistently at the same distance from the source and environmental conditions were identical. In order to investigate our result further, a third system, the AudioMoth (Open Acoustic Devices), was also used for recording. We used DeepSqueak software for most of the recording analysis and, in some cases, we also undertook further spectral analysis using RX8 (iZotope, USA). Results: We found that both systems can detect a range of ultrasonic noise sources, and here discuss the benefits and limitations of each approach. Conclusions: We conclude that measuring the acoustic environment of animal facilities, including ultrasonic frequencies that may adversely affect the animals housed, will contribute to minimising disruption to animal welfare and perturbations in scientific research.
Collapse
Affiliation(s)
- Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, UK
| | - Liane Hobson
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Rasneer Bains
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Michael Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, UK
- UCL Ear Institute, University College London, London, UK
| |
Collapse
|
31
|
Abstract
Abstract
Mice in the diverse genus Peromyscus are emerging as important models in the study of acoustic communication. However, reports on vocal repertoires exist for only 8 of the 56 currently recognized species. Descriptions of acoustic content and context are necessary to facilitate comparative studies. In this study, we present the first recordings of wild-captured pinyon mice (Peromyscus truei) in the laboratory in different social contexts. Similar to other Peromyscus species, pinyon mice produced four general types of vocalizations, including sustained vocalizations (SVs), barks, simple sweeps, and complex sweeps. SVs were produced primarily by females in social isolation, highlighting the potential significance of SVs in female advertisement behavior. While agonistic barks were rare, simple and complex sweeps were reliably produced in response to olfactory cues from same- and opposite-sex mice, and in paired contexts. Opposite-sex pairs produced significantly more complex sweeps than same-sex pairs, consistent with the well-supported function of sweeps in coordinating close-distance interactions. In addition, females produced sweeps with lower peak frequencies following separation from their social partner, indicative of a sex-specific mechanism to facilitate advertisement to potential mates and competitors. Together, our findings highlight the importance of social context in rodent vocal production, the significance of female vocal behavior, and the continued need to sample understudied species to better understand similarities and differences in rodent communication systems.
Collapse
|
32
|
Zeng HH, Huang JF, Li JR, Shen Z, Gong N, Wen YQ, Wang L, Poo MM. Distinct neuron populations for simple and compound calls in the primary auditory cortex of awake marmosets. Natl Sci Rev 2021; 8:nwab126. [PMID: 34876995 PMCID: PMC8645005 DOI: 10.1093/nsr/nwab126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 11/12/2022] Open
Abstract
Marmosets are highly social non-human primates that live in families. They exhibit rich vocalization, but the neural basis underlying this complex vocal communication is largely unknown. Here we report the existence of specific neuron populations in marmoset A1 that respond selectively to distinct simple or compound calls made by conspecific marmosets. These neurons were spatially dispersed within A1 but distinct from those responsive to pure tones. Call-selective responses were markedly diminished when individual domains of the call were deleted or the domain sequence was altered, indicating the importance of the global rather than local spectral-temporal properties of the sound. Compound call-selective responses also disappeared when the sequence of the two simple-call components was reversed or their interval was extended beyond 1 s. Light anesthesia largely abolished call-selective responses. Our findings demonstrate extensive inhibitory and facilitatory interactions among call-evoked responses, and provide the basis for further study of circuit mechanisms underlying vocal communication in awake non-human primates.
Collapse
Affiliation(s)
- Huan-huan Zeng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-feng Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100086, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-ru Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zhiming Shen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Neng Gong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yun-qing Wen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | | | | |
Collapse
|
33
|
de Chaumont F, Lemière N, Coqueran S, Bourgeron T, Ey E. LMT USV Toolbox, a Novel Methodological Approach to Place Mouse Ultrasonic Vocalizations in Their Behavioral Contexts-A Study in Female and Male C57BL/6J Mice and in Shank3 Mutant Females. Front Behav Neurosci 2021; 15:735920. [PMID: 34720899 PMCID: PMC8548730 DOI: 10.3389/fnbeh.2021.735920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are used as a phenotypic marker in mouse models of neuropsychiatric disorders. Nevertheless, current methodologies still require time-consuming manual input or sound recordings clean of any background noise. We developed a method to overcome these two restraints to boost knowledge on mouse USVs. The methods are freely available and the USV analysis runs online at https://usv.pasteur.cloud. As little is currently known about usage and structure of ultrasonic vocalizations during social interactions over the long-term and in unconstrained context, we investigated mouse spontaneous communication by coupling the analysis of USVs with automatic labeling of behaviors. We continuously recorded during 3 days undisturbed interactions of same-sex pairs of C57BL/6J sexually naive males and females at 5 weeks and 3 and 7 months of age. In same-sex interactions, we observed robust differences between males and females in the amount of USVs produced, in the acoustic structure and in the contexts of emission. The context-specific acoustic variations emerged with increasing age. The emission of USVs also reflected a high level of excitement during social interactions. We finally highlighted the importance of studying long-term spontaneous communication by investigating female mice lacking Shank3, a synaptic protein associated with autism. While the previous short-time constrained investigations could not detect USV emission abnormalities, our analysis revealed robust differences in the usage and structure of the USVs emitted by mutant mice compared to wild-type female pairs.
Collapse
Affiliation(s)
- Fabrice de Chaumont
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Nathalie Lemière
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Sabrina Coqueran
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| | - Elodie Ey
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Université de Paris, Paris, France
| |
Collapse
|
34
|
Wallach A, Melanson A, Longtin A, Maler L. Mixed selectivity coding of sensory and motor social signals in the thalamus of a weakly electric fish. Curr Biol 2021; 32:51-63.e3. [PMID: 34741807 DOI: 10.1016/j.cub.2021.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
High-level neural activity often exhibits mixed selectivity to multivariate signals. How such representations arise and modulate natural behavior is poorly understood. We addressed this question in weakly electric fish, whose social behavior is relatively low dimensional and can be easily reproduced in the laboratory. We report that the preglomerular complex, a thalamic region exclusively connecting midbrain with pallium, implements a mixed selectivity strategy to encode interactions related to courtship and rivalry. We discuss how this code enables the pallial recurrent networks to control social behavior, including dominance in male-male competition and female mate selection. Notably, response latency analysis and computational modeling suggest that corollary discharge from premotor regions is implicated in flagging outgoing communications and thereby disambiguating self- versus non-self-generated signals. These findings provide new insights into the neural substrates of social behavior, multi-dimensional neural representation, and its role in perception and decision making.
Collapse
Affiliation(s)
- Avner Wallach
- Zuckerman Institute of Mind, Brain and Behavior, Columbia University, 3227 Broadway, NY 10027, USA.
| | - Alexandre Melanson
- Département de Physique et d'Astronomie, Université de Moncton, 18 Av. Antonine-Maillet, Moncton, NB E1A 3E9, Canada; Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada; Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Leonard Maler
- Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
35
|
Borrie SC, Plasschaert E, Callaerts-Vegh Z, Yoshimura A, D'Hooge R, Elgersma Y, Kushner SA, Legius E, Brems H. MEK inhibition ameliorates social behavior phenotypes in a Spred1 knockout mouse model for RASopathy disorders. Mol Autism 2021; 12:53. [PMID: 34311771 PMCID: PMC8314535 DOI: 10.1186/s13229-021-00458-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND RASopathies are a group of disorders that result from mutations in genes coding for proteins involved in regulating the Ras-MAPK signaling pathway, and have an increased incidence of autism spectrum disorder (ASD). Legius syndrome is a rare RASopathy caused by loss-of-function mutations in the SPRED1 gene. The patient phenotype is similar to, but milder than, Neurofibromatosis type 1-another RASopathy caused by loss-of-function mutations in the NF1 gene. RASopathies exhibit increased activation of Ras-MAPK signaling and commonly manifest with cognitive impairments and ASD. Here, we investigated if a Spred1-/- mouse model for Legius syndrome recapitulates ASD-like symptoms, and whether targeting the Ras-MAPK pathway has therapeutic potential in this RASopathy mouse model. METHODS We investigated social and communicative behaviors in Spred1-/- mice and probed therapeutic mechanisms underlying the observed behavioral phenotypes by pharmacological targeting of the Ras-MAPK pathway with the MEK inhibitor PD325901. RESULTS Spred1-/- mice have robust increases in social dominance in the automated tube test and reduced adult ultrasonic vocalizations during social communication. Neonatal ultrasonic vocalization was also altered, with significant differences in spectral properties. Spred1-/- mice also exhibit impaired nesting behavior. Acute MEK inhibitor treatment in adulthood with PD325901 reversed the enhanced social dominance in Spred1-/- mice to normal levels, and improved nesting behavior in adult Spred1-/- mice. LIMITATIONS This study used an acute treatment protocol to administer the drug. It is not known what the effects of longer-term treatment would be on behavior. Further studies titrating the lowest dose of this drug that is required to alter Spred1-/- social behavior are still required. Finally, our findings are in a homozygous mouse model, whereas patients carry heterozygous mutations. These factors should be considered before any translational conclusions are drawn. CONCLUSIONS These results demonstrate for the first time that social behavior phenotypes in a mouse model for RASopathies (Spred1-/-) can be acutely reversed. This highlights a key role for Ras-MAPK dysregulation in mediating social behavior phenotypes in mouse models for ASD, suggesting that proper regulation of Ras-MAPK signaling is important for social behavior.
Collapse
Affiliation(s)
- Sarah C Borrie
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | - Ellen Plasschaert
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | | | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Rudi D'Hooge
- Laboratory for Biological Psychology, KU Leuven, Leuven, Belgium
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eric Legius
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, O&N1 Herestraat 49, Box 607, 3000, Leuven, Belgium.
| |
Collapse
|
36
|
Li J, Liu S, Song C, Hu Q, Zhao Z, Deng T, Wang Y, Zhu T, Zou L, Wang S, Chen J, Liu L, Hou H, Yuan K, Zheng H, Liu Z, Chen X, Sun W, Xiao B, Xiong W. PIEZO2 mediates ultrasonic hearing via cochlear outer hair cells in mice. Proc Natl Acad Sci U S A 2021; 118:e2101207118. [PMID: 34244441 PMCID: PMC8285978 DOI: 10.1073/pnas.2101207118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ultrasonic hearing and vocalization are the physiological mechanisms controlling echolocation used in hunting and navigation by microbats and bottleneck dolphins and for social communication by mice and rats. The molecular and cellular basis for ultrasonic hearing is as yet unknown. Here, we show that knockout of the mechanosensitive ion channel PIEZO2 in cochlea disrupts ultrasonic- but not low-frequency hearing in mice, as shown by audiometry and acoustically associative freezing behavior. Deletion of Piezo2 in outer hair cells (OHCs) specifically abolishes associative learning in mice during hearing exposure at ultrasonic frequencies. Ex vivo cochlear Ca2+ imaging has revealed that ultrasonic transduction requires both PIEZO2 and the hair-cell mechanotransduction channel. The present study demonstrates that OHCs serve as effector cells, combining with PIEZO2 as an essential molecule for ultrasonic hearing in mice.
Collapse
Affiliation(s)
- Jie Li
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Chenmeng Song
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Qun Hu
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Zhikai Zhao
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Tuantuan Deng
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China 100084
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China 100084
| | - Yi Wang
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Tong Zhu
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Jiaofeng Chen
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Lian Liu
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| | - Kexin Yuan
- School of Life Sciences, Tsinghua University, Beijing, China 100084
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China 100084
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 440305
| | - Zhiyong Liu
- Institute of Neuroscience, CAS (Chinese Academy of Sciences) Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China 400038
- CAS (Chinese Academy of Sciences) Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China 102206
- School of Basic Medical Sciences, Capital Medical University, Beijing, China 100069
| | - Bailong Xiao
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China 100084
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China 100084
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing, China 100084;
- IDG (International Data Group)/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, China 100084
| |
Collapse
|
37
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
38
|
Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain. Prog Neurobiol 2020; 194:101882. [PMID: 32673695 DOI: 10.1016/j.pneurobio.2020.101882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
Abstract
Field crickets are best known for the loud calling songs produced by males to attract conspecific females. This review aims to summarize the current knowledge of the neurobiological basis underlying the acoustic communication for mate finding in field crickets with emphasis on the recent research progress to understand the neuronal networks for motor pattern generation and auditory pattern recognition of the calling song in Gryllus bimaculatus. Strong scientific interest into the neural mechanisms underlying intraspecific communication has driven persistently advancing research efforts to study the male singing behaviour and female phonotaxis for mate finding in these insects. The growing neurobiological understanding also inspired many studies testing verifiable hypotheses in sensory ecology, bioacoustics and on the genetics and evolution of behaviour. Over last decades, acoustic communication in field crickets served as a very successful neuroethological model system. It has contributed significantly to the scientific process of establishing, reconsidering and refining fundamental concepts in behavioural neurosciences such as command neurons, central motor pattern generation, corollary discharge processing and pattern recognition by sensory feature detection, which are basic building blocks of our modern understanding on how nervous systems control and generate behaviour in all animals.
Collapse
|
39
|
Agarwalla S, Arroyo NS, Long NE, O'Brien WT, Abel T, Bandyopadhyay S. Male-specific alterations in structure of isolation call sequences of mouse pups with 16p11.2 deletion. GENES BRAIN AND BEHAVIOR 2020; 19:e12681. [PMID: 32558237 PMCID: PMC7116069 DOI: 10.1111/gbb.12681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
16p11.2 deletion is one of the most common gene copy variations that increases the susceptibility to autism and other neurodevelopmental disorders. This syndrome leads to developmental delays, including speech impairment and delays in expressive language and communication skills. To study developmental impairment of vocal communication associated with 16p11.2 deletion syndrome, we used the 16p11.2del mouse model and performed an analysis of pup isolation calls (PICs). The earliest PICs at postnatal day 5 from 16p11.2del pups were found altered in a male‐specific fashion relative to wild‐type (WT) pups. Analysis of sequences of ultrasonic vocalizations (USVs) emitted by pups using mutual information between syllables at different positions in the USV spectrograms showed that dependencies exist between syllables in WT mice of both sexes. The order of syllables was not random; syllables were emitted in an ordered fashion. The structure observed in the WT pups was identified and the pattern of syllable sequences was considered typical for the mouse line. However, typical patterns were totally absent in the 16p11.2del male pups, showing on average random syllable sequences, while the 16p11.2del female pups had dependencies similar to the WT pups. Thus, we found that PICs were reduced in number in male 16p11.2 pups and their vocalizations lack the syllable sequence order emitted by WT males and females and 16p11.2 females. Therefore, our study is the first to reveal sex‐specific perinatal communication impairment in a mouse model of 16p11.2 deletion and applies a novel, more granular method of analysing the structure of USVs.
Collapse
Affiliation(s)
- Swapna Agarwalla
- Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, Kharagpur, India
| | - Noelle S Arroyo
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA
| | - Natalie E Long
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William T O'Brien
- Department of Pharmacology/ITMAT, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sharba Bandyopadhyay
- Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, Kharagpur, India.,Advanced Technology Development Centre (ATDC), IIT Kharagpur, Kharagpur, India
| |
Collapse
|
40
|
Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020; 15:e0228892. [PMID: 32045453 PMCID: PMC7015103 DOI: 10.1371/journal.pone.0228892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023] Open
Abstract
Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.
Collapse
Affiliation(s)
- Daria D. Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
41
|
Tachibana RO, Kanno K, Okabe S, Kobayasi KI, Okanoya K. USVSEG: A robust method for segmentation of ultrasonic vocalizations in rodents. PLoS One 2020; 15:e0228907. [PMID: 32040540 PMCID: PMC7010259 DOI: 10.1371/journal.pone.0228907] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
Rodents' ultrasonic vocalizations (USVs) provide useful information for assessing their social behaviors. Despite previous efforts in classifying subcategories of time-frequency patterns of USV syllables to study their functional relevance, methods for detecting vocal elements from continuously recorded data have remained sub-optimal. Here, we propose a novel procedure for detecting USV segments in continuous sound data containing background noise recorded during the observation of social behavior. The proposed procedure utilizes a stable version of the sound spectrogram and additional signal processing for better separation of vocal signals by reducing the variation of the background noise. Our procedure also provides precise time tracking of spectral peaks within each syllable. We demonstrated that this procedure can be applied to a variety of USVs obtained from several rodent species. Performance tests showed this method had greater accuracy in detecting USV syllables than conventional detection methods.
Collapse
Affiliation(s)
- Ryosuke O. Tachibana
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kouta Kanno
- Laboratory of Neuroscience, Course of Psychology, Department of Humanities, Faculty of Law, Economics and the Humanities, Kagoshima University, Kagoshima, Japan
| | - Shota Okabe
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Kohta I. Kobayasi
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Mhaouty-Kodja S. Courtship vocalizations: A potential biomarker of adult exposure to endocrine disrupting compounds? Mol Cell Endocrinol 2020; 501:110664. [PMID: 31765692 DOI: 10.1016/j.mce.2019.110664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
In rodents, male courtship is stimulated by pheromones emitted by the sexually receptive female. In response, the male produces ultrasonic vocalizations, which appear to play a role in female attraction and facilitate copulation. The present review summarizes the main findings on courtship vocalizations and their tight regulation by sex steroid hormones. It describes studies that address the effects of exposure to endocrine disrupting compounds (EDC) on ultrasound production, as changes in hormone levels or their signaling pathways may interfere with the emission of ultrasonic vocalizations. It also discusses the potential use of this behavior as a noninvasive biomarker of adult exposure to EDC.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris-Seine, 7 quai St Bernard, Bât A 3ème étage, 75005, Paris, France.
| |
Collapse
|
43
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
44
|
Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2019; 159:107477. [DOI: 10.1016/j.neuropharm.2018.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
45
|
Campbell P, Arévalo L, Martin H, Chen C, Sun S, Rowe AH, Webster MS, Searle JB, Pasch B. Vocal divergence is concordant with genomic evidence for strong reproductive isolation in grasshopper mice ( Onychomys). Ecol Evol 2019; 9:12886-12896. [PMID: 31788222 PMCID: PMC6875671 DOI: 10.1002/ece3.5770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Behavioral barriers to gene flow often evolve faster than intrinsic incompatibilities and can eliminate the opportunity for hybridization between interfertile species. While acoustic signal divergence is a common driver of premating isolation in birds and insects, its contribution to speciation in mammals is less studied. Here we characterize the incidence of, and potential barriers to, hybridization among three closely related species of grasshopper mice (genus Onychomys). All three species use long-distance acoustic signals to attract and localize mates; Onychomys arenicola and Onychomys torridus are acoustically similar and morphologically cryptic whereas Onychomys leucogaster is larger and acoustically distinct. We used genotyping-by-sequencing (GBS) to test for evidence of introgression in 227 mice from allopatric and sympatric localities in the western United States and northern Mexico. We conducted laboratory mating trials for all species pairs to assess reproductive compatibility, and recorded vocalizations from O. arenicola and O. torridus in sympatry and allopatry to test for evidence of acoustic character displacement. Hybridization was rare in nature and, contrary to prior evidence for O. torridus/O. arenicola hybrids, only involved O. leucogaster and O. arenicola. In contrast, laboratory crosses between O. torridus and O. arenicola produced litters whereas O. leucogaster and O. arenicola crosses did not. Call fundamental frequency in O. torridus and O. arenicola was indistinguishable in allopatry but significantly differentiated in sympatry, a pattern consistent with reproductive character displacement. These results suggest that assortative mating based on a long-distance signal is an important isolating mechanism between O. torridus and O. arenicola and highlight the importance of behavioral barriers in determining the permeability of species boundaries.
Collapse
Affiliation(s)
- Polly Campbell
- Department of Integrative BiologyOklahoma State UniversityStillwaterOKUSA
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCAUSA
| | - Lena Arévalo
- Department of Integrative BiologyOklahoma State UniversityStillwaterOKUSA
- Department of Developmental PathologyUniversity of BonnBonnGermany
| | - Heather Martin
- Department of Integrative BiologyOklahoma State UniversityStillwaterOKUSA
| | - Charles Chen
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOKUSA
| | - Shuzhen Sun
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOKUSA
- Department of Forest and Conservation SciencesForest Science CentreThe University of British ColumbiaVancouverBCCanada
| | - Ashlee H. Rowe
- Department of BiologyThe University of OklahomaNormanOKUSA
| | - Michael S. Webster
- Macaulay LibraryCornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Neurobiology and BehaviorCornell UniversityIthacaNYUSA
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Bret Pasch
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| |
Collapse
|
46
|
Tschida K, Michael V, Takatoh J, Han BX, Zhao S, Sakurai K, Mooney R, Wang F. A Specialized Neural Circuit Gates Social Vocalizations in the Mouse. Neuron 2019; 103:459-472.e4. [PMID: 31204083 PMCID: PMC6687542 DOI: 10.1016/j.neuron.2019.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Vocalizations are fundamental to mammalian communication, but the underlying neural circuits await detailed characterization. Here, we used an intersectional genetic method to label and manipulate neurons in the midbrain periaqueductal gray (PAG) that are transiently active in male mice when they produce ultrasonic courtship vocalizations (USVs). Genetic silencing of PAG-USV neurons rendered males unable to produce USVs and impaired their ability to attract females. Conversely, activating PAG-USV neurons selectively triggered USV production, even in the absence of any female cues. Optogenetic stimulation combined with axonal tracing indicates that PAG-USV neurons gate downstream vocal-patterning circuits. Indeed, activating PAG neurons that innervate the nucleus retroambiguus, but not those innervating the parabrachial nucleus, elicited USVs in both male and female mice. These experiments establish that a dedicated population of PAG neurons gives rise to a descending circuit necessary and sufficient for USV production while also demonstrating the communicative salience of male USVs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katherine Tschida
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie Michael
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
47
|
Peleh T, Eltokhi A, Pitzer C. Longitudinal analysis of ultrasonic vocalizations in mice from infancy to adolescence: Insights into the vocal repertoire of three wild-type strains in two different social contexts. PLoS One 2019; 14:e0220238. [PMID: 31365551 PMCID: PMC6668806 DOI: 10.1371/journal.pone.0220238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Ultrasonic vocalizations (USV) are emitted by mice under certain developmental, social and behavioral conditions. The analysis of USV can be used as a reliable measure of the general affective state, for testing the efficacy of pharmacological compounds and for investigating communication in mutant mice with predicted social or communication deficits. Social and communication studies in mice have focused mainly on the investigation of USV emitted by neonatal pups after separation from the dam and during social interaction between adult males and females. Longitudinal USV analysis among the different developmental states remained uninvestigated. In our study, we first recorded USV from three inbred mouse strains C57BL/6N, DBA/2 and FVB/N during the neonatal stages after separation from the littermates and then during a reunion with one littermate. Our results revealed significant strain-specific differences in the numbers and categories of USV calls. In addition, the USV profiles seemed to be sensitive to small developmental progress during infancy. By following these mice to the adolescent stage and measuring USV in the three-chamber social test, we found that USV profiles still showed significant differences between these strains in the different trials of the test. To study the effects of social context on USV characteristics, we measured USV emitted by another cohort of adolescent mice during the direct social interaction test. To this end, this study provides a strategy for evaluating novel mouse mutants in behavioral questions relevant to disorders with deficits in communication and sociability and emphasizes the important contribution of genetics and experimental contexts on the behavioral outcome.
Collapse
Affiliation(s)
- Tatiana Peleh
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail:
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
48
|
Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behav Brain Res 2019; 372:112068. [PMID: 31271818 DOI: 10.1016/j.bbr.2019.112068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023]
Abstract
Fragile X Syndrome (FXS) is a leading genetic cause of autism and intellectual disabilities. The Fmr1 knockout (KO) mouse is a commonly studied pre-clinical model of FXS. Adult male Fmr1 KO mice produce fewer ultrasonic vocalizations (USVs) during mating, suggestive of abnormal social communication. Minocycline treatment for 2 months from birth alleviates a number of FXS phenotypes in mice, including USV call rate deficits. In the current study, we investigated if treatment initiated past the early developmental period would be effective, given that in many cases, individuals with FXS are treated during later developmental periods. Wildtype (WT) and Fmr1 KO mice were treated with minocycline between postnatal day (P) 30 and P58. Mating-related USVs were then recorded from these mice between P75 and P90 and analyzed for call rate, duration, bandwidth, and peak frequency. Untreated Fmr1 KO mice call at a significantly reduced rate compared to untreated WT mice. After minocycline treatment from 1 to 2 months of age, WT and Fmr1 KO mice exhibited similar call rates, due to an increase in calling in the latter group. Minocycline is thought to be effective in reducing FXS symptoms by lowering matrix-metalloproteinase-9 (MMP-9) levels. To determine whether abnormal MMP-9 levels underlie USV deficits, we characterized USVs in Fmr1 KO mice which were heterozygous for MMP-9 (MMP-9+/-/Fmr1 KO). The MMP-9+/-/Fmr1 KO mice were between P75 and P90 at the time of recording. MMP-9+/-/Fmr1 KO mice exhibited significantly increased USV call rates, at times even exceeding WT rates. Taken together, these results suggest that minocycline may reverse USV call rate deficits in Fmr1 KO mice through attenuation of MMP-9 levels. These data suggest targeting MMP-9, even in late development, may reduce FXS symptoms.
Collapse
|
49
|
Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, Bae YC, Kim E. Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitability and Seizure Susceptibility. Front Mol Neurosci 2019; 12:155. [PMID: 31275112 PMCID: PMC6591539 DOI: 10.3389/fnmol.2019.00155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
Shank3, a postsynaptic scaffolding protein involved in regulating excitatory synapse assembly and function, has been implicated in several brain disorders, including autism spectrum disorders (ASD), Phelan-McDermid syndrome, schizophrenia, intellectual disability, and mania. Here we generated and characterized a Shank3 knock-in mouse line carrying the Q321R mutation (Shank3 Q321R mice) identified in a human individual with ASD that affects the ankyrin repeat region (ARR) domain of the Shank3 protein. Homozygous Shank3 Q321R/Q321R mice show a selective decrease in the level of Shank3a, an ARR-containing protein variant, but not other variants. CA1 pyramidal neurons in the Shank3 Q321R/Q321R hippocampus show decreased neuronal excitability but normal excitatory and inhibitory synaptic transmission. Behaviorally, Shank3 Q321R/Q321R mice show moderately enhanced self-grooming and anxiolytic-like behavior, but normal locomotion, social interaction, and object recognition and contextual fear memory. In addition, these mice show abnormal electroencephalogram (EEG) patterns and decreased susceptibility to induced seizures. These results indicate that the Q321R mutation alters Shank3 protein stability, neuronal excitability, repetitive and anxiety-like behavior, EEG patterns, and seizure susceptibility in mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hye-Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
50
|
Kanno K, Kikusui T. Effect of Sociosexual Experience and Aging on Number of Courtship Ultrasonic Vocalizations in Male Mice. Zoolog Sci 2019; 35:208-214. [PMID: 29882498 DOI: 10.2108/zs170175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sexual behaviors are instinctually exhibited without prior training, but they are modulated by experience. One of the precopulatory behaviors in adult male mice, courtship ultrasonic vocalizations (USVs), has attracted considerable academic attention recently. Male mice emit ultrasounds as courtship behavior when encountering females. However, the modulatory effects of experience on USVs remain unclear. In the present study, we aimed to clarify the effects of sociosexual experience and aging on adult male vocalizations. First, we examined the effect of aging. The number of USVs decreased in an age-dependent manner. Following this, young adult male mice were co-housed for two weeks with normal female mice or ovariectomized (OVX) female mice, or housed without female mice, and the number of courtship USVs before and after co-housing were compared. In males housed with normal or OVX females, USVs increased significantly after co-housing. In contrast, males housed without females did not exhibit a significant increase of USVs. A facilitative effect of co-housing with female mice on vocalizations was also observed in aged males. In addition, females used as co-housing partners became pregnant, and the reproductive rate may be related to the vocal activity observed in the partnered males. These results indicate that sociosexual experience and aging affect vocalization activity, which may be related to courtship and/or reproductive function.
Collapse
Affiliation(s)
- Kouta Kanno
- 1 Companion Animal Research, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoh-ku, Sagamihara, Kanagawa 252-5201, Japan.,2 Laboratory of Neuroscience, Course of Psychology, Department of Humanities, Faculty of Law, Economics and the Humanities, Kagoshima University, Korimoto 1-21-30, Kagoshima City, Kagoshima 890-0065, Japan
| | - Takefumi Kikusui
- 1 Companion Animal Research, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoh-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|