1
|
Evans CG, Barry MA, Reaver CN, Patel PR, Chestek CA, Perkins MH, Jing J, Cropper EC. Convergent effects of peptides on the initiation of feeding motor programs in the mollusk Aplysia. J Neurophysiol 2025; 133:1368-1379. [PMID: 40183430 DOI: 10.1152/jn.00042.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025] Open
Abstract
Neuropeptides configure the feeding network of Aplysia. For example, egestive activity is promoted by small cardioactive peptide (SCP), and ingestive activity is promoted by a combination of feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP-2). In addition, SCP and FCAP/CP-2 have a common network effect that does not contribute to motor program specification. They increase the excitability of an interneuron, B63. In this report, we further characterized the effects of peptides on B63. We performed voltage-clamp experiments and used a step protocol to look at steady-state currents. We found that SCP and FCAP/CP-2 both induced an inward current that was virtually absent in low-sodium saline. Previous work has established that B63 is unusual in the feeding circuit in that subthreshold depolarizations are autonomously generated that can trigger motor programs. Here, we show that this autonomous activity is more frequent in the presence of peptides. Previous studies have also shown that activity of the feeding central pattern generator (CPG) can be initiated by neurons that excite B63, e.g., by cerebral buccal interneuron 2 (CBI-2), a projection neuron that triggers biting-like motor programs. Here, we show that the latency of CBI-2-induced activity is decreased by stimulation of the esophageal nerve (EN) (which releases endogenous SCP). These results, taken together with previous results, indicate that peptides that act divergently to configure network activity additionally act convergently to promote motor program induction. We present data that suggest that this arrangement facilitates brief switches between ingestive and egestive motor activity.NEW & NOTEWORTHY The activity of most networks is affected by multiple neuromodulators. Studies that have sought to determine why this is the case have focused on how the effects of one modulator differ from those of another (how modulators uniquely determine motor output). This study differs in that we ask why a convergent (common) network modification is important. We show that it can promote program induction and present data that suggest this may have consequences for task switching.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Michael A Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Carrie N Reaver
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Paras R Patel
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Cynthia A Chestek
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Electrical Engineering and Computer Science, Neurosciences Program, Robotics Program, University of Michigan, Ann Arbor, Michigan, United States
| | - Matthew H Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Held M, Bisen RS, Zandawala M, Chockley AS, Balles IS, Hilpert S, Liessem S, Cascino-Milani F, Ache JM. Aminergic and peptidergic modulation of insulin-producing cells in Drosophila. eLife 2025; 13:RP99548. [PMID: 40063677 PMCID: PMC11893105 DOI: 10.7554/elife.99548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila - a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based 'intrinsic pharmacology' approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.
Collapse
Affiliation(s)
- Martina Held
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Rituja S Bisen
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Meet Zandawala
- Zandawala Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
- Department of Biochemistry and Molecular Biology, University of Nevada RenoRenoUnited States
| | - Alexander S Chockley
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Isabella S Balles
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Selina Hilpert
- Zandawala Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Sander Liessem
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Federico Cascino-Milani
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| | - Jan M Ache
- Ache Lab, Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am HublandWürzburgGermany
| |
Collapse
|
3
|
Schneider AC, Cronin E, Daur N, Bucher D, Nadim F. Convergent Comodulation Reduces Interindividual Variability of Circuit Output. eNeuro 2024; 11:ENEURO.0167-24.2024. [PMID: 39134416 PMCID: PMC11403100 DOI: 10.1523/eneuro.0167-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Ionic current levels of identified neurons vary substantially across individual animals. Yet, under similar conditions, neural circuit output can be remarkably similar, as evidenced in many motor systems. All neural circuits are influenced by multiple neuromodulators, which provide flexibility to their output. These neuromodulators often overlap in their actions by modulating the same channel type or synapse, yet have neuron-specific actions resulting from distinct receptor expression. Because of this different receptor expression pattern, in the presence of multiple convergent neuromodulators, a common downstream target would be activated more uniformly in circuit neurons across individuals. We therefore propose that a baseline tonic (non-saturating) level of comodulation by convergent neuromodulators can reduce interindividual variability of circuit output. We tested this hypothesis in the pyloric circuit of the crab, Cancer borealis Multiple excitatory neuropeptides converge to activate the same voltage-gated current in this circuit, but different subsets of pyloric neurons have receptors for each peptide. We quantified the interindividual variability of the unmodulated pyloric circuit output by measuring the activity phases, cycle frequency, and intraburst spike number and frequency. We then examined the variability in the presence of different combinations and concentrations of three neuropeptides. We found that at mid-level concentration (30 nM) but not at near-threshold (1 nM) or saturating (1 µM) concentrations, comodulation by multiple neuropeptides reduced the circuit output variability. Notably, the interindividual variability of response properties of an isolated neuron was not reduced by comodulation, suggesting that the reduction of output variability may emerge as a network effect.
Collapse
|
4
|
Fahoum SRH, Blitz DM. Neuropeptide modulation of bidirectional internetwork synapses. J Neurophysiol 2024; 132:184-205. [PMID: 38776457 DOI: 10.1152/jn.00149.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Oscillatory networks underlying rhythmic motor behaviors, and sensory and complex neural processing, are flexible, even in their neuronal composition. Neuromodulatory inputs enable neurons to switch participation between networks or participate in multiple networks simultaneously. Neuromodulation of internetwork synapses can both recruit and coordinate a switching neuron in a second network. We previously identified an example in which a neuron is recruited into dual-network activity via peptidergic modulation of intrinsic properties. We now ask whether the same neuropeptide also modulates internetwork synapses for internetwork coordination. The crab (Cancer borealis) stomatogastric nervous system contains two well-defined feeding-related networks (pyloric, food filtering, ∼1 Hz; gastric mill, food chewing, ∼0.1 Hz). The projection neuron MCN5 uses the neuropeptide Gly1-SIFamide to recruit the pyloric-only lateral posterior gastric (LPG) neuron into dual pyloric- plus gastric mill-timed bursting via modulation of LPG's intrinsic properties. Descending input is not required for a coordinated rhythm, thus intranetwork synapses between LPG and its second network must underlie coordination among these neurons. However, synapses between LPG and gastric mill neurons have not been documented. Using two-electrode voltage-clamp recordings, we found that graded synaptic currents between LPG and gastric mill neurons (lateral gastric, inferior cardiac, and dorsal gastric) were primarily negligible in saline, but were enhanced by Gly1-SIFamide. Furthermore, LPG and gastric mill neurons entrain each other during Gly1-SIFamide application, indicating bidirectional, functional connectivity. Thus, a neuropeptide mediates neuronal switching through parallel actions, modulating intrinsic properties for recruitment into a second network and as shown here, also modulating bidirectional internetwork synapses for coordination.NEW & NOTEWORTHY Neuromodulation can enable neurons to simultaneously coordinate with separate networks. Both recruitment into, and coordination with, a second network can occur via modulation of internetwork synapses. Alternatively, recruitment can occur via modulation of intrinsic ionic currents. We find that the same neuropeptide previously determined to modulate intrinsic currents also modulates bidirectional internetwork synapses that are typically ineffective. Thus, complementary modulatory peptide actions enable recruitment and coordination of a neuron into a second network.
Collapse
Affiliation(s)
- Savanna-Rae H Fahoum
- Department of Biology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, United States
| |
Collapse
|
5
|
Gnanabharathi B, Fahoum SRH, Blitz DM. Neuropeptide Modulation Enables Biphasic Internetwork Coordination via a Dual-Network Neuron. eNeuro 2024; 11:ENEURO.0121-24.2024. [PMID: 38834302 PMCID: PMC11211724 DOI: 10.1523/eneuro.0121-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, ∼0.1 Hz]; pyloric [filtering food, ∼1 Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.
Collapse
Affiliation(s)
- Barathan Gnanabharathi
- Department of Biology, Center for Neuroscience and Behavior, Miami University, Oxford, Ohio 45056
| | - Savanna-Rae H Fahoum
- Department of Biology, Center for Neuroscience and Behavior, Miami University, Oxford, Ohio 45056
| | - Dawn M Blitz
- Department of Biology, Center for Neuroscience and Behavior, Miami University, Oxford, Ohio 45056
| |
Collapse
|
6
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
7
|
Skinner F. Building a mathematical model of the brain. eLife 2024; 13:e96231. [PMID: 38416130 PMCID: PMC10901502 DOI: 10.7554/elife.96231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Automatic leveraging of information in a hippocampal neuron database to generate mathematical models should help foster interactions between experimental and computational neuroscientists.
Collapse
Affiliation(s)
- Frances Skinner
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network and Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
8
|
Fahoum SRH, Blitz DM. Switching neuron contributions to second network activity. J Neurophysiol 2024; 131:417-434. [PMID: 38197163 PMCID: PMC11305648 DOI: 10.1152/jn.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.
Collapse
Affiliation(s)
- Savanna-Rae H Fahoum
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio, United States
| |
Collapse
|
9
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
10
|
Cronin EM, Schneider AC, Nadim F, Bucher D. Modulation by Neuropeptides with Overlapping Targets Results in Functional Overlap in Oscillatory Circuit Activation. J Neurosci 2024; 44:e1201232023. [PMID: 37968117 PMCID: PMC10851686 DOI: 10.1523/jneurosci.1201-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.
Collapse
Affiliation(s)
- Elizabeth M Cronin
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey 07102
| | - Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey 07102
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey 07102
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
11
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythmogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564834. [PMID: 37961254 PMCID: PMC10634953 DOI: 10.1101/2023.10.30.564834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "pre-inspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S Phillips
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA, USA
| |
Collapse
|
12
|
Ellis GFR. Efficient, Formal, Material, and Final Causes in Biology and Technology. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1301. [PMID: 37761600 PMCID: PMC10529506 DOI: 10.3390/e25091301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
This paper considers how a classification of causal effects as comprising efficient, formal, material, and final causation can provide a useful understanding of how emergence takes place in biology and technology, with formal, material, and final causation all including cases of downward causation; they each occur in both synchronic and diachronic forms. Taken together, they underlie why all emergent levels in the hierarchy of emergence have causal powers (which is Noble's principle of biological relativity) and so why causal closure only occurs when the upwards and downwards interactions between all emergent levels are taken into account, contra to claims that some underlying physics level is by itself causality complete. A key feature is that stochasticity at the molecular level plays an important role in enabling agency to emerge, underlying the possibility of final causation occurring in these contexts.
Collapse
Affiliation(s)
- George F R Ellis
- Mathematics Department, The New Institute, University of Cape Town, 20354 Hamburg, Germany
| |
Collapse
|
13
|
Viteri JA, Schulz DJ. Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs. J Neurophysiol 2023; 130:569-584. [PMID: 37529838 PMCID: PMC11550874 DOI: 10.1152/jn.00098.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023] Open
Abstract
Recently, activity has been proposed as a primary feedback mechanism used by continuously bursting neurons to coordinate ion channel mRNA relationships that underlie stable output. However, some neuron types only have intermittent periods of activity and so may require alternative mechanisms that induce and constrain the appropriate ion channel profile in different states of activity. To address this, we used the pyloric dilator (PD; constitutively active) and the lateral gastric (LG; periodically active) neurons of the stomatogastric ganglion (STG) of the crustacean Cancer borealis. We experimentally stimulated descending inputs to the STG to cause release of neuromodulators known to elicit the active state of LG neurons and quantified the mRNA abundances and pairwise relationships of 11 voltage-gated ion channels in active and silent LG neurons. The same stimulus does not significantly alter PD activity. Activation of LG upregulated ion channel mRNAs and lead to a greater number of positively correlated pairwise channel mRNA relationships. Conversely, this stimulus did not induce major changes in ion channel mRNA abundances and relationships of PD cells, suggesting their ongoing activity is sufficient to maintain channel mRNA relationships even under changing modulatory conditions. In addition, we found that ion channel mRNA correlations induced by the active state of LG are influenced by a combination of activity- and neuromodulator-dependent feedback mechanisms. Interestingly, some of these same correlations are maintained by distinct mechanisms in PD, suggesting that these motor networks use distinct feedback mechanisms to coordinate the same mRNA relationships across neuron types.NEW & NOTEWORTHY Neurons use various feedback mechanisms to adjust and maintain their output. Here, we demonstrate that different neurons within the same network can use distinct signaling mechanisms to regulate the same ion channel mRNA relationships.
Collapse
Affiliation(s)
- Jose A Viteri
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States
| |
Collapse
|
14
|
Schneider AC, Itani O, Cronin E, Daur N, Bucher D, Nadim F. Comodulation reduces interindividual variability of circuit output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543573. [PMID: 37383946 PMCID: PMC10298844 DOI: 10.1101/2023.06.03.543573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Ionic current levels of identified neurons vary substantially across individual animals. Yet, under similar conditions, neural circuit output can be remarkably similar, as evidenced in many motor systems. All neural circuits are influenced by multiple neuromodulators which provide flexibility to their output. These neuromodulators often overlap in their actions by modulating the same channel type or synapse, yet have neuron-specific actions resulting from distinct receptor expression. Because of this different receptor expression pattern, in the presence of multiple convergent neuromodulators, a common downstream target would be activated more uniformly in circuit neurons across individuals. We therefore propose that a baseline tonic (non-saturating) level of comodulation by convergent neuromodulators can reduce interindividual variability of circuit output. We tested this hypothesis in the pyloric circuit of the crab, Cancer borealis. Multiple excitatory neuropeptides converge to activate the same voltage-gated current in this circuit, but different subsets of pyloric neurons have receptors for each peptide. We quantified the interindividual variability of the unmodulated pyloric circuit output by measuring the activity phases, cycle frequency and intraburst spike number and frequency. We then examined the variability in the presence of different combinations and concentrations of three neuropeptides. We found that at mid-level concentration (30 nM) but not at near-threshold (1 nM) or saturating (1 μM) concentrations, comodulation by multiple neuropeptides reduced the circuit output variability. Notably, the interindividual variability of response properties of an isolated neuron was not reduced by comodulation, suggesting that the reduction of output variability may emerge as a network effect.
Collapse
|
15
|
Cronin EM, Schneider AC, Nadim F, Bucher D. Modulation by neuropeptides with overlapping targets results in functional overlap in oscillatory circuit activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543756. [PMID: 37333253 PMCID: PMC10274681 DOI: 10.1101/2023.06.05.543756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the crab Cancer borealis stomatogastric nervous system. Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) all activate the same modulatory inward current, IMI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.
Collapse
|
16
|
Jacobs EAK, Ryu S. Larval zebrafish as a model for studying individual variability in translational neuroscience research. Front Behav Neurosci 2023; 17:1143391. [PMID: 37424749 PMCID: PMC10328419 DOI: 10.3389/fnbeh.2023.1143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
The larval zebrafish is a popular model for translational research into neurological and psychiatric disorders due to its conserved vertebrate brain structures, ease of genetic and experimental manipulation and small size and scalability to large numbers. The possibility of obtaining in vivo whole-brain cellular resolution neural data is contributing important advances into our understanding of neural circuit function and their relation to behavior. Here we argue that the larval zebrafish is ideally poised to push our understanding of how neural circuit function relates to behavior to the next level by including considerations of individual differences. Understanding variability across individuals is particularly relevant for tackling the variable presentations that neuropsychiatric conditions frequently show, and it is equally elemental if we are to achieve personalized medicine in the future. We provide a blueprint for investigating variability by covering examples from humans and other model organisms as well as existing examples from larval zebrafish. We highlight recent studies where variability may be hiding in plain sight and suggest how future studies can take advantage of existing paradigms for further exploring individual variability. We conclude with an outlook on how the field can harness the unique strengths of the zebrafish model to advance this important impending translational question.
Collapse
Affiliation(s)
- Elina A. K. Jacobs
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Soojin Ryu
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Blitz DM. Neural circuit regulation by identified modulatory projection neurons. Front Neurosci 2023; 17:1154769. [PMID: 37008233 PMCID: PMC10063799 DOI: 10.3389/fnins.2023.1154769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Rhythmic behaviors (e.g., walking, breathing, and chewing) are produced by central pattern generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully identified connectomes to establishing general principles of circuit function and flexibility, identified modulatory neurons have enabled key insights into neural circuit modulation. For instance, while bath-applying neuromodulators continues to be an important approach to studying neural circuit modulation, this approach does not always mimic the neural circuit response to neuronal release of the same modulator. There is additional complexity in the actions of neuronally-released modulators due to: (1) the prevalence of co-transmitters, (2) local- and long-distance feedback regulating the timing of (co-)release, and (3) differential regulation of co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that activate modulatory projection neurons has demonstrated multiple “modulatory codes” for selecting particular circuit outputs. In some cases, population coding occurs, and in others circuit output is determined by the firing pattern and rate of the modulatory projection neurons. The ability to perform electrophysiological recordings and manipulations of small populations of identified neurons at multiple levels of rhythmic motor systems remains an important approach for determining the cellular and synaptic mechanisms underlying the rapid adaptability of rhythmic neural circuits.
Collapse
|
18
|
Gonzalez J, Follmann R, Rosa E, Stein W. Computational and experimental modulation of a noisy chaotic neuronal system. CHAOS (WOODBURY, N.Y.) 2023; 33:033109. [PMID: 37003818 DOI: 10.1063/5.0130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
In this work, we study the interplay between chaos and noise in neuronal state transitions involving period doubling cascades. Our approach involves the implementation of a neuronal mathematical model under the action of neuromodulatory input, with and without noise, as well as equivalent experimental work on a biological neuron in the stomatogastric ganglion of the crab Cancer borealis. Our simulations show typical transitions between tonic and bursting regimes that are mediated by chaos and period doubling cascades. While this transition is less evident when intrinsic noise is present in the model, the noisy computational output displays features akin to our experimental results. The differences and similarities observed in the computational and experimental approaches are discussed.
Collapse
Affiliation(s)
- Josselyn Gonzalez
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | - Rosangela Follmann
- School of Information Technology, Illinois State University, Normal, Illinois 61790, USA
| | - Epaminondas Rosa
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| |
Collapse
|
19
|
Snyder RR, Blitz DM. Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity. J Neurophysiol 2022; 128:1181-1198. [PMID: 36197020 PMCID: PMC9621714 DOI: 10.1152/jn.00337.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab (Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly1-SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly1-SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly1-SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties.NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity.
Collapse
Affiliation(s)
- Ryan R Snyder
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio
| |
Collapse
|
20
|
Andrews PLR, Ponte G, Rosas C. Methodological considerations in studying digestive system physiology in octopus: limitations, lacunae and lessons learnt. Front Physiol 2022; 13:928013. [PMID: 36160859 PMCID: PMC9501996 DOI: 10.3389/fphys.2022.928013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current understanding of cephalopod digestive tract physiology is based on relatively “old” literature and a “mosaic of data” from multiple species. To provide a background to the discussion of methodologies for investigating physiology we first review the anatomy of the cephalopod digestive tract with a focus on Octopus vulgaris, highlighting structure-function relationships and species differences with potential functional consequences (e.g., absence of a crop in cuttlefish and squid; presence of a caecal sac in squid). We caution about extrapolation of data on the digestive system physiology from one cephalopod species to another because of the anatomical differences. The contribution of anatomical and histological techniques (e.g., digestive enzyme histochemistry and neurotransmitter immunohistochemistry) to understanding physiological processes is discussed. For each major digestive tract function we briefly review current knowledge, and then discuss techniques and their limitations for the following parameters: 1) Measuring motility in vitro (e.g., spatiotemporal mapping, tension and pressure), in vivo (labelled food, high resolution ultrasound) and aspects of pharmacology; 2) Measuring food ingestion and the time course of digestion with an emphasis on understanding enzyme function in each gut region with respect to time; 3) Assessing transepithelial transport of nutrients; 4) Measuring the energetic cost of food processing, impact of environmental temperature and metabolic rate (flow-through/intermittent respirometry); 4) Investigating neural (brain, gastric ganglion, enteric) and endocrine control processes with an emphasis on application of molecular techniques to identify receptors and their ligands. A number of major knowledge lacunae are identified where available techniques need to be applied to cephalopods, these include: 1) What is the physiological function of the caecal leaflets and intestinal typhlosoles in octopus? 2) What role does the transepithelial transport in the caecum and intestine play in ion, water and nutrient transport? 3) What information is signalled from the digestive tract to the brain regarding the food ingested and the progress of digestion? It is hoped that by combining discussion of the physiology of the cephalopod digestive system with an overview of techniques and identification of key knowledge gaps that this will encourage a more systematic approach to research in this area.
Collapse
Affiliation(s)
- Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Paul L. R. Andrews,
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
21
|
Marder E, Kedia S, Morozova EO. New insights from small rhythmic circuits. Curr Opin Neurobiol 2022; 76:102610. [PMID: 35986971 DOI: 10.1016/j.conb.2022.102610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Small rhythmic circuits, such as those found in invertebrates, have provided fundamental insights into how circuit dynamics depend on individual neuronal and synaptic properties. Degenerate circuits are those with different network parameters and similar behavior. New work on degenerate circuits and their modulation illustrates some of the rules that help maintain stable and robust circuit function despite environmental perturbations. Advances in neuropeptide isolation and identification provide enhanced understanding of the neuromodulation of circuits for behavior. The advent of molecular studies of mRNA expression provides new insight into animal-to-animal variability and the homeostatic regulation of excitability in neurons and networks.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Sonal Kedia
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA. https://twitter.com/Sonal_Kedia
| | - Ekaterina O Morozova
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
22
|
Stein W, DeMaegd ML, Benson AM, Roy RS, Vidal-Gadea AG. Combining Old and New Tricks: The Study of Genes, Neurons, and Behavior in Crayfish. Front Physiol 2022; 13:947598. [PMID: 35874546 PMCID: PMC9297122 DOI: 10.3389/fphys.2022.947598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis, is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the ‘Receptor-mediated ovary transduction of cargo’ (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| | - Margaret L. DeMaegd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Center for Neural Sciences, New York University, New York, NY, United States
| | - Abigail M. Benson
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Rajit S. Roy
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| |
Collapse
|
23
|
Due MR, Wang Y, Barry MA, Jing J, Reaver CN, Weiss KR, Cropper EC. Convergent effects of neuropeptides on the feeding central pattern generator of Aplysia californica. J Neurophysiol 2022; 127:1445-1459. [PMID: 35507477 PMCID: PMC9142162 DOI: 10.1152/jn.00025.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulators that induce distinct motor programs act divergently on neural networks to specify output. We study a situation where modulators that act divergently also act convergently. We focus on an interneuron (B63) that is part of the feeding central pattern generator (CPG) in Aplysia californica. Previous work has established that B63 is critical for program initiation regardless of the type of evoked activity. B63 receives input from a number of different elements of the feeding circuit. Program initiation occurs reliably when some are activated, but we show it does not occur reliably with activation of others. When program initiation is reliable, modulatory neuropeptides are released. For example, previous work has established that an ingestive input to the feeding CPG, cerebral buccal interneuron 2 (CBI-2), releases feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP-2). Afferents with processes in the esophageal nerve (EN) that trigger egestive motor programs release small cardioactive peptide (SCP). Previous studies have described divergent effects of FCAP/CP-2 and SCP on the feeding circuit that specify motor activity. Here, we show that FCAP/CP-2 and SCP increase the B63 excitability. Thus, we show that peptides that have well characterized divergent effects on the feeding circuit additionally act convergently at the level of a single neuron. Since convergent effects of neuromodulators are not necessary for specifying network output, we ask why they might be important. Our data suggest that they have an impact during a task switch.
Collapse
Affiliation(s)
- Michael R Due
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yanqing Wang
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael A Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Carrie N Reaver
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Gorur-Shandilya S, Cronin EM, Schneider AC, Haddad SA, Rosenbaum P, Bucher D, Nadim F, Marder E. Mapping circuit dynamics during function and dysfunction. eLife 2022; 11:e76579. [PMID: 35302489 PMCID: PMC9000962 DOI: 10.7554/elife.76579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.
Collapse
Affiliation(s)
| | - Elizabeth M Cronin
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Sara Ann Haddad
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Philipp Rosenbaum
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
25
|
Cook AP, Nusbaum MP. Feeding state-dependent modulation of feeding-related motor patterns. J Neurophysiol 2021; 126:1903-1924. [PMID: 34669505 PMCID: PMC8715047 DOI: 10.1152/jn.00387.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ("unfed" hemolymph) or fed 15 min to 2 h before hemolymph removal ("fed" hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing) and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1 h, or 2 h after feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1-h time-point (i.e., reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested that the fed hemolymph also enhanced the influence of a projection neuron that innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.NEW & NOTEWORTHY Little is known about behavior-linked modulation of microcircuit activity. We show that the VCN-triggered gastric mill (chewing) and pyloric (food filtering) rhythms in the isolated crab Cancer borealis stomatogastric nervous system were changed by applying hemolymph from recently fed but not unfed crabs. This included some distinct parameter changes during each examined post-fed hemolymph time-point. These results suggest the presence of feeding-related changes in circulating hormones that regulate consummatory microcircuit activity.
Collapse
Affiliation(s)
- Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Synaptic Dynamics Convey Differential Sensitivity to Input Pattern Changes in Two Muscles Innervated by the Same Motor Neurons. eNeuro 2021; 8:ENEURO.0351-21.2021. [PMID: 34764189 PMCID: PMC8609967 DOI: 10.1523/eneuro.0351-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic responses depend on input patterns as well as short-term synaptic plasticity, summation, and postsynaptic membrane properties, but the interactions of those dynamics with realistic input patterns are not well understood. We recorded the responses of the two pyloric dilator (PD) muscles, cpv2a and cpv2b, that are innervated by and receive identical periodic bursting input from the same two motor neurons in the lobster Homarus americanus. Cpv2a and cpv2b showed quantitative differences in membrane nonlinearities and synaptic summation. At a short timescale, responses in both muscles were dominated by facilitation, albeit with different frequency and time dependence. Realistic burst stimulations revealed more substantial differences. Across bursts, cpv2a showed transient depression, whereas cpv2b showed transient facilitation. Steady-state responses to bursting input also differed substantially. Neither muscle had a monotonic dependence on frequency, but cpv2b showed particularly pronounced bandpass filtering. Cpv2a was sensitive to changes in both burst frequency and intra-burst spike frequency, whereas, despite its much slower responses, cpv2b was largely insensitive to changes in burst frequency. Cpv2a was sensitive to both burst duration and number of spikes per burst, whereas cpv2b was sensitive only to the former parameter. Neither muscle showed consistent sensitivity to changes in the overall spike interval structure, but cpv2b was surprisingly sensitive to changes in the first intervals in each burst, a parameter known to be regulated by dopamine (DA) modulation of spike propagation of the presynaptic axon. These findings highlight how seemingly minor circuit output changes mediated by neuromodulation could be read out differentially at the two synapses.
Collapse
|
27
|
Frequency-Dependent Action of Neuromodulation. eNeuro 2021; 8:ENEURO.0338-21.2021. [PMID: 34593519 PMCID: PMC8584230 DOI: 10.1523/eneuro.0338-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
In oscillatory circuits, some actions of neuromodulators depend on the oscillation frequency. However, the mechanisms are poorly understood. We explored this problem by characterizing neuromodulation of the lateral pyloric (LP) neuron of the crab stomatogastric ganglion (STG). Many peptide modulators, including proctolin, activate the same ionic current (IMI) in STG neurons. Because IMI is fast and non-inactivating, its peak level does not depend on the temporal properties of neuronal activity. We found, however, that the amplitude and peak time of the proctolin-activated current in LP is frequency dependent. Because frequency affects the rate of voltage change, we measured these currents with voltage ramps of different slopes and found that proctolin activated two kinetically distinct ionic currents: the known IMI, whose amplitude is independent of ramp slope or direction, and an inactivating current (IMI-T), which was only activated by positive ramps and whose amplitude increased with increasing ramp slope. Using a conductance-based model we found that IMI and IMI-T make distinct contributions to the bursting activity, with IMI increasing the excitability, and IMI-T regulating the burst onset by modifying the postinhibitory rebound in a frequency-dependent manner. The voltage dependence and partial calcium permeability of IMI-T is similar to other characterized neuromodulator-activated currents in this system, suggesting that these are isoforms of the same channel. Our computational model suggests that calcium permeability may allow this current to also activate the large calcium-dependent potassium current in LP, providing an additional mechanism to regulate burst termination. These results demonstrate a mechanism for frequency-dependent actions of neuromodulators.
Collapse
|
28
|
Neuronal Switching between Single- and Dual-Network Activity via Modulation of Intrinsic Membrane Properties. J Neurosci 2021; 41:7848-7863. [PMID: 34349000 DOI: 10.1523/jneurosci.0286-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Oscillatory networks underlie rhythmic behaviors (e.g., walking, chewing) and complex behaviors (e.g., memory formation, decision-making). Flexibility of oscillatory networks includes neurons switching between single- and dual-network participation, even generating oscillations at two distinct frequencies. Modulation of synaptic strength can underlie this neuronal switching. Here we ask whether switching into dual-frequency oscillations can also result from modulation of intrinsic neuronal properties. The isolated stomatogastric nervous system of male Cancer borealis crabs contains two well-characterized rhythmic feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz). The identified modulatory projection neuron MCN5 causes the pyloric-only lateral posterior gastric (LPG) neuron to switch to dual pyloric/gastric mill bursting. Bath applying the MCN5 neuropeptide transmitter Gly1-SIFamide only partly mimics the LPG switch to dual activity because of continued LP neuron inhibition of LPG. Here, we find that MCN5 uses a cotransmitter, glutamate, to inhibit LP, unlike Gly1-SIFamide excitation of LP. Thus, we modeled the MCN5-elicited LPG switching with Gly1-SIFamide application and LP photoinactivation. Using hyperpolarization of pyloric pacemaker neurons and gastric mill network neurons, we found that LPG pyloric-timed oscillations require rhythmic electrical synaptic input. However, LPG gastric mill-timed oscillations do not require any pyloric/gastric mill synaptic input and are voltage-dependent. Thus, we identify modulation of intrinsic properties as an additional mechanism for switching a neuron into dual-frequency activity. Instead of synaptic modulation switching a neuron into a second network as a passive follower, modulation of intrinsic properties could enable a switching neuron to become an active contributor to rhythm generation in the second network.SIGNIFICANCE STATEMENT Neuromodulation of oscillatory networks can enable network neurons to switch from single- to dual-network participation, even when two networks oscillate at distinct frequencies. We used small, well-characterized networks to determine whether modulation of synaptic strength, an identified mechanism for switching, is necessary for dual-network recruitment. We demonstrate that rhythmic electrical synaptic input is required for continued linkage with a "home" network, whereas modulation of intrinsic properties enables a neuron to generate oscillations at a second frequency. Neuromodulator-induced switches in neuronal participation between networks occur in motor, cognitive, and sensory networks. Our study highlights the importance of considering intrinsic properties as a pivotal target for enabling parallel participation of a neuron in two oscillatory networks.
Collapse
|
29
|
Mass spectrometry profiling and quantitation of changes in circulating hormones secreted over time in Cancer borealis hemolymph due to feeding behavior. Anal Bioanal Chem 2021; 414:533-543. [PMID: 34184104 DOI: 10.1007/s00216-021-03479-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The crustacean stomatogastric ganglion (STG) is a valuable model for understanding circuit dynamics in neuroscience as it contains a small number of neurons, all easily distinguishable and most of which contribute to two complementary feeding-related neural circuits. These circuits are modulated by numerous neuropeptides, with many gaining access to the STG as hemolymph-transported hormones. Previous work characterized neuropeptides in the hemolymph of the crab Cancer borealis but was limited by low peptide abundance in the presence of a complex biological matrix and the propensity for rapid peptide degradation. To improve their detection, a data-independent acquisition (DIA) mass spectrometry (MS) method was implemented. This approach improved the number of neuropeptides detected by approximately twofold and showed greater reproducibility between experimental and biological replicates. This method was then used to profile neuropeptides at different stages of the feeding process, including hemolymph from crabs that were unfed, or 0 min, 15 min, 1 h, and 2 h post-feeding. The results show differences both in the presence and relative abundance of neuropeptides at the various time points. Additionally, 96 putative neuropeptide sequences were identified with de novo sequencing, indicating there may be more key modulators within this system than is currently known. These results suggest that a distinct cohort of neuropeptides provides modulation to the STG at different times in the feeding process, providing groundwork for targeted follow-up electrophysiological studies to better understand the functional role of circulating hormones in the neural basis of feeding behavior.
Collapse
|
30
|
Vogt G. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. ZOOLOGY 2021; 147:125945. [PMID: 34217027 DOI: 10.1016/j.zool.2021.125945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
The ∼15.000 decapod crustaceans that are mostly omnivorous have evolved a structurally and functionally complex digestive system. They have highly effective cuticular chewing and filtering structures in the stomach, which are regularly renewed by moulting. Decapods produce a broad range of digestive enzymes including chitinases, cellulases, and collagenases with unique properties. These enzymes are synthesized in the F-cells of the hepatopancreas and are encoded in the genome as pre-pro-proteins. In contrast to mammals, they are stored in a mature form in the lumen of the stomach to await the next meal, and therefore, the enzymes are particularly stable. The fat emulsifiers are fatty acyl-dipeptides rather than bile salts. After mechanical and chemical processing of the food in the cardiac stomach, the chyme is filtered by two unique filter systems of different mesh-size. The filtrate is then transferred to the hepatopancreas where the nutrients are absorbed by the R-cells, mostly via carriers, resembling nutrient absorption in the small intestine of mammals. The absorbed nutrients are used to fuel the metabolism of the hepatopancreas, are supplied to other organs, and are stored in the R-cells as glycogen and lipid reserves. Export lipids are secreted from the R-cells into the haemolymph as high density lipoproteins that mainly consist of phospholipids. In contrast to mammals, the midgut tube and hindgut contribute only little to food processing and nutrient absorption. The oesophagus, stomach and hindgut are well innervated but the hepatopancreas lacks nerves. Hormone cells are abundant in the midgut and hepatopancreas epithelia. Microorganisms are often present in the intestine of decapods, but they are apparently not essential for digestion and nutrition.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| |
Collapse
|
31
|
DeLaney K, Hu M, Hellenbrand T, Dickinson PS, Nusbaum MP, Li L. Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in Cancer borealis. ACS Chem Neurosci 2021; 12:782-798. [PMID: 33522802 DOI: 10.1021/acschemneuro.1c00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The crab Cancer borealis nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals. MS imaging revealed that an additional 7 and 11 neuropeptides exhibited altered spatial distributions in the brain and the neuroendocrine pericardial organs (POs), respectively, during these two feeding states. Furthermore, de novo sequencing yielded 69 newly identified putative neuropeptides that may influence feeding state-related neuromodulation. Two of these latter neuropeptides were determined to be upregulated in PO tissue from fed crabs, and one of these two peptides influenced heartbeat in ex vivo preparations. Overall, the results presented here identify a cohort of neuropeptides that are poised to influence feeding-related behaviors, providing valuable opportunities for future functional studies.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Mengzhou Hu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Tessa Hellenbrand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, United States
| | - Michael P. Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 211 Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
32
|
Rainey AN, Fukui SM, Mark K, King HM, Blitz DM. Intrinsic sources of tachykinin-related peptide in the thoracic ganglion mass of the crab, Cancer borealis. Gen Comp Endocrinol 2021; 302:113688. [PMID: 33275935 DOI: 10.1016/j.ygcen.2020.113688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptides comprise the largest class of neural and neuroendocrine signaling molecules. Vertebrate tachykinins (TKs) and the structurally-related invertebrate tachykinin-related peptides (TRPs) together form the largest neuropeptide superfamily, with a number of conserved neural and neuroendocrine functions across species. Arthropods, including crustaceans, have provided many insights into neuropeptide signaling and function. Crustacean tachykinin-related peptide occurs in endocrine organs and cells and in two of the major crustacean CNS components, the supraoesophageal ganglion ("brain") and the stomatogastric nervous system. However, little is known about TRP sources in the remaining major CNS component, the thoracic ganglion mass (TGM). To gain further insight into the function of this peptide, we aimed to identify intrinsic TRP sources in the TGM of the Jonah crab, Cancer borealis. We first adapted a clearing protocol to improve TRP immunoreactivity specifically in the TGM, which is a dense, fused mass of multiple ganglia in short-bodied crustaceans such as Cancer species of crabs. We verified that the clearing protocol avoided distortion of cell body morphology yet increased visibility of TRP immunoreactivity. Using confocal microscopy, we found TRP-immunoreactive (TRP-IR) axon tracts running the length of the TGM, TRP-IR neuropil in all ganglia, and approximately 110 TRP-IR somata distributed throughout the TGM, within and between ganglia. These somata likely represent both neural and neuroendocrine sources of TRP. Thus, there are many potential intrinsic sources of TRP in the TGM that are positioned to regulate behaviors such as food intake, locomotion, respiration, and reproduction.
Collapse
Affiliation(s)
- Amanda N Rainey
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Stephanie M Fukui
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Katie Mark
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Hailey M King
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
33
|
Colton GF, Cook AP, Nusbaum MP. Different microcircuit responses to comparable input from one versus both copies of an identified projection neuron. J Exp Biol 2020; 223:jeb228114. [PMID: 32820029 PMCID: PMC7648612 DOI: 10.1242/jeb.228114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Neuronal inputs to microcircuits are often present as multiple copies of apparently equivalent neurons. Thus far, however, little is known regarding the relative influence on microcircuit output of activating all or only some copies of such an input. We examine this issue in the crab (Cancer borealis) stomatogastric ganglion, where the gastric mill (chewing) microcircuit is activated by modulatory commissural neuron 1 (MCN1), a bilaterally paired modulatory projection neuron. Both MCN1s contain the same co-transmitters, influence the same gastric mill microcircuit neurons, can drive the biphasic gastric mill rhythm, and are co-activated by all identified MCN1-activating pathways. Here, we determine whether the gastric mill microcircuit response is equivalent when stimulating one or both MCN1s under conditions where the pair are matched to collectively fire at the same overall rate and pattern as single MCN1 stimulation. The dual MCN1 stimulations elicited more consistently coordinated rhythms, and these rhythms exhibited longer phases and cycle periods. These different outcomes from single and dual MCN1 stimulation may have resulted from the relatively modest, and equivalent, firing rate of the gastric mill neuron LG (lateral gastric) during each matched set of stimulations. The LG neuron-mediated, ionotropic inhibition of the MCN1 axon terminals is the trigger for the transition from the retraction to protraction phase. This LG neuron influence on MCN1 was more effective during the dual stimulations, where each MCN1 firing rate was half that occurring during the matched single stimulations. Thus, equivalent individual- and co-activation of a class of modulatory projection neurons does not necessarily drive equivalent microcircuit output.
Collapse
Affiliation(s)
- Gabriel F Colton
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron P Cook
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Nusbaum
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Sykes AV, Almansa E, Ponte G, Cooke GM, Andrews PLR. Can Cephalopods Vomit? Hypothesis Based on a Review of Circumstantial Evidence and Preliminary Experimental Observations. Front Physiol 2020; 11:765. [PMID: 32848811 PMCID: PMC7396502 DOI: 10.3389/fphys.2020.00765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
In representative species of all vertebrate classes, the oral ejection of upper digestive tract contents by vomiting or regurgitation is used to void food contaminated with toxins or containing indigestible material not voidable in the feces. Vomiting or regurgitation has been reported in a number of invertebrate marine species (Exaiptasia diaphana, Cancer productus, and Pleurobranchaea californica), prompting consideration of whether cephalopods have this capability. This "hypothesis and theory" paper reviews four lines of supporting evidence: (1) the mollusk P. californica sharing some digestive tract morphological and innervation similarities with Octopus vulgaris is able to vomit or regurgitate with the mechanisms well characterized, providing an example of motor program switching; (2) a rationale for vomiting or regurgitation in cephalopods based upon the potential requirement to void indigestible material, which may cause damage and ejection of toxin contaminated food; (3) anecdotal reports (including from the literature) of vomiting- or regurgitation-like behavior in several species of cephalopod (Sepia officinalis, Sepioteuthis sepioidea, O. vulgaris, and Enteroctopus dofleini); and (4) anatomical and physiological studies indicating that ejection of gastric/crop contents via the buccal cavity is a theoretical possibility by retroperistalsis in the upper digestive tract (esophagus, crop, and stomach). We have not identified any publications refuting our hypothesis, so a balanced review is not possible. Overall, the evidence presented is circumstantial, so experiments adapting current methodology (e.g., research community survey, in vitro studies of motility, and analysis of indigestible gut contents and feces) are described to obtain additional evidence to either support or refute our hypothesis. We recognize the possibility that further research may not support the hypothesis; therefore, we consider how cephalopods may protect themselves against ingestion of toxic food by external chemodetection prior to ingestion and digestive gland detoxification post-ingestion. Reviewing the evidence for the hypothesis has identified a number of gaps in knowledge of the anatomy (e.g., the presence of sphincters) and physiology (e.g., the fate of indigestible food residues, pH of digestive secretions, sensory innervation, and digestive gland detoxification mechanisms) of the digestive tract as well as a paucity of recent studies on the role of epithelial chemoreceptors in prey identification and food intake.
Collapse
Affiliation(s)
- António V Sykes
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Eduardo Almansa
- Department of Aquaculture, Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Santa Cruz de Tenerife, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Paul L R Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
35
|
Schulz DJ, Zornik E. Central pattern generators reveal neuronal circuit dynamics across many time scales. Dev Neurobiol 2020; 80:3-5. [PMID: 32311844 DOI: 10.1002/dneu.22750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/10/2022]
Affiliation(s)
- David J Schulz
- Biological Sciences, University of Missouri Columbia, Columbia, MO, USA
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR, USA
| |
Collapse
|
36
|
Borde M, Quintana L, Comas V, Silva A. Hormone‐mediated modulation of the electromotor CPG in pulse‐type weakly electric fish. Commonalities and differences across species. Dev Neurobiol 2020; 80:70-80. [DOI: 10.1002/dneu.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Michel Borde
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Virginia Comas
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Laboratorio de Neurociencias Facultad de Ciencias Universidad de la República Montevideo Uruguay
| |
Collapse
|
37
|
Daur N, Zhang Y, Nadim F, Bucher D. Mutual Suppression of Proximal and Distal Axonal Spike Initiation Determines the Output Patterns of a Motor Neuron. Front Cell Neurosci 2019; 13:477. [PMID: 31708748 PMCID: PMC6819512 DOI: 10.3389/fncel.2019.00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal spike initiation at sites far from somatodendritic integration occurs in a range of systems, but its contribution to neuronal output activity is not well understood. We studied the interactions of distal and proximal spike initiation in an unmyelinated motor axon of the stomatogastric nervous system in the lobster, Homarus americanus. The peripheral axons of the pyloric dilator (PD) neurons generate tonic spiking in response to dopamine application. Centrally generated bursting activity and peripheral spike initiation had mutually suppressive effects. The two PD neurons and the electrically coupled oscillatory anterior burster (AB) neuron form the pacemaker ensemble of the pyloric central pattern generator, and antidromic invasion of central compartments by peripherally generated spikes caused spikelets in AB. Antidromic spikes suppressed burst generation in an activity-dependent manner: slower rhythms were diminished or completely disrupted, while fast rhythmic activity remained robust. Suppression of bursting was based on interference with the underlying slow wave oscillations in AB and PD, rather than a direct effect on spike initiation. A simplified multi-compartment circuit model of the pacemaker ensemble replicated this behavior. Antidromic activity disrupted slow wave oscillations by resetting the inward and outward current trajectories in each spike interval. Centrally generated bursting activity in turn suppressed peripheral spike initiation in an activity-dependent manner. Fast bursting eliminated peripheral spike initiation, while slower bursting allowed peripheral spike initiation to continue during the intervals between bursts. The suppression of peripheral spike initiation was associated with a small after-hyperpolarization in the sub-millivolt range. A realistic model of the PD axon replicated this behavior and showed that a sub-millivolt cumulative after-hyperpolarization across bursts was sufficient to eliminate peripheral spike initiation. This effect was based on the dynamic interaction between slow activity-dependent hyperpolarization caused by the Na+/K+-pump and inward rectification through the hyperpolarization-activated inward current, I h . These results demonstrate that interactions between different spike initiation sites based on spike propagation can shift the relative contributions of different types of activity in an activity-dependent manner. Therefore, distal axonal spike initiation can play an important role in shaping neural output, conditional on the relative level of centrally generated activity.
Collapse
Affiliation(s)
- Nelly Daur
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| | - Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
38
|
Dickinson PS, Samuel HM, Stemmler EA, Christie AE. SIFamide peptides modulate cardiac activity differently in two species of Cancer crab. Gen Comp Endocrinol 2019; 282:113204. [PMID: 31201801 PMCID: PMC6719312 DOI: 10.1016/j.ygcen.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10-9 to 10-8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Heidi M Samuel
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
39
|
Martinez D, Santin JM, Schulz D, Nadim F. The differential contribution of pacemaker neurons to synaptic transmission in the pyloric network of the Jonah crab, Cancer borealis. J Neurophysiol 2019; 122:1623-1633. [PMID: 31411938 DOI: 10.1152/jn.00038.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Many neurons receive synchronous input from heterogeneous presynaptic neurons with distinct properties. An instructive example is the crustacean stomatogastric pyloric circuit pacemaker group, consisting of the anterior burster (AB) and pyloric dilator (PD) neurons, which are active synchronously and exert a combined synaptic action on most pyloric follower neurons. Previous studies in lobster have indicated that AB is glutamatergic, whereas PD is cholinergic. However, although the stomatogastric system of the crab Cancer borealis has become a preferred system for exploration of cellular and synaptic basis of circuit dynamics, the pacemaker synaptic output has not been carefully analyzed in this species. We examined the synaptic properties of these neurons using a combination of single-cell mRNA analysis, electrophysiology, and pharmacology. The crab PD neuron expresses high levels of choline acetyltransferase and the vesicular acetylcholine transporter mRNAs, hallmarks of cholinergic neurons. In contrast, the AB neuron expresses neither cholinergic marker but expresses high levels of vesicular glutamate transporter mRNA, consistent with a glutamatergic phenotype. Notably, in the combined synapses to follower neurons, 70-75% of the total current was blocked by putative glutamatergic blockers, but short-term synaptic plasticity remained unchanged, and although the total pacemaker current in two follower neuron types was different, this difference did not contribute to the phasing of the follower neurons. These findings provide a guide for similar explorations of heterogeneous synaptic connections in other systems and a baseline in this system for the exploration of the differential influence of neuromodulators.NEW & NOTEWORTHY The pacemaker-driven pyloric circuit of the Jonah crab stomatogastric nervous system is a well-studied model system for exploring circuit dynamics and neuromodulation, yet the understanding of the synaptic properties of the two pacemaker neuron types is based on older analyses in other species. We use single-cell PCR and electrophysiology to explore the neurotransmitters used by the pacemaker neurons and their distinct contribution to the combined synaptic potentials.
Collapse
Affiliation(s)
- Diana Martinez
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - David Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey
| |
Collapse
|
40
|
Traub RD, Whittington MA, Maier N, Schmitz D, Nagy JI. Could electrical coupling contribute to the formation of cell assemblies? Rev Neurosci 2019; 31:121-141. [DOI: 10.1515/revneuro-2019-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Cell assemblies and central pattern generators (CPGs) are related types of neuronal networks: both consist of interacting groups of neurons whose collective activities lead to defined functional outputs. In the case of a cell assembly, the functional output may be interpreted as a representation of something in the world, external or internal; for a CPG, the output ‘drives’ an observable (i.e. motor) behavior. Electrical coupling, via gap junctions, is critical for the development of CPGs, as well as for their actual operation in the adult animal. Electrical coupling is also known to be important in the development of hippocampal and neocortical principal cell networks. We here argue that electrical coupling – in addition to chemical synapses – may therefore contribute to the formation of at least some cell assemblies in adult animals.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center , Yorktown Heights, NY 10598 , USA
| | | | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin , Neuroscience Research Center , Charitéplatz 1 , D-10117 Berlin , Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin , Neuroscience Research Center , Charitéplatz 1 , D-10117 Berlin , Germany
| | - James I. Nagy
- Department of Physiology and Pathophysiology , University of Manitoba , Winnipeg R3E OJ9, MB , Canada
| |
Collapse
|
41
|
Martinez D, Anwar H, Bose A, Bucher DM, Nadim F. Short-term synaptic dynamics control the activity phase of neurons in an oscillatory network. eLife 2019; 8:46911. [PMID: 31180323 PMCID: PMC6590986 DOI: 10.7554/elife.46911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/08/2019] [Indexed: 11/17/2022] Open
Abstract
In oscillatory systems, neuronal activity phase is often independent of network frequency. Such phase maintenance requires adjustment of synaptic input with network frequency, a relationship that we explored using the crab, Cancer borealis, pyloric network. The burst phase of pyloric neurons is relatively constant despite a > two fold variation in network frequency. We used noise input to characterize how input shape influences burst delay of a pyloric neuron, and then used dynamic clamp to examine how burst phase depends on the period, amplitude, duration, and shape of rhythmic synaptic input. Phase constancy across a range of periods required a proportional increase of synaptic duration with period. However, phase maintenance was also promoted by an increase of amplitude and peak phase of synaptic input with period. Mathematical analysis shows how short-term synaptic plasticity can coordinately change amplitude and peak phase to maximize the range of periods over which phase constancy is achieved.
Collapse
Affiliation(s)
- Diana Martinez
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States
| | - Haroon Anwar
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Dirk M Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
| |
Collapse
|
42
|
Drion G, Franci A, Sepulchre R. Cellular switches orchestrate rhythmic circuits. BIOLOGICAL CYBERNETICS 2019; 113:71-82. [PMID: 30178150 DOI: 10.1007/s00422-018-0778-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Small inhibitory neuronal circuits have long been identified as key neuronal motifs to generate and modulate the coexisting rhythms of various motor functions. Our paper highlights the role of a cellular switching mechanism to orchestrate such circuits. The cellular switch makes the circuits reconfigurable, robust, adaptable, and externally controllable. Without this cellular mechanism, the circuit rhythms entirely rely on specific tunings of the synaptic connectivity, which makes them rigid, fragile, and difficult to control externally. We illustrate those properties on the much studied architecture of a small network controlling both the pyloric and gastric rhythms of crabs. The cellular switch is provided by a slow negative conductance often neglected in mathematical modeling of central pattern generators. We propose that this conductance is simple to model and key to computational studies of rhythmic circuit neuromodulation.
Collapse
Affiliation(s)
- Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium.
| | - Alessio Franci
- Department of Mathematics, Science Faculty, National Autonomous University of Mexico, Coyoacán, D.F., México
| | | |
Collapse
|
43
|
Lane BJ, Kick DR, Wilson DK, Nair SS, Schulz DJ. Dopamine maintains network synchrony via direct modulation of gap junctions in the crustacean cardiac ganglion. eLife 2018; 7:e39368. [PMID: 30325308 PMCID: PMC6199132 DOI: 10.7554/elife.39368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
The Large Cell (LC) motor neurons of the crab cardiac ganglion have variable membrane conductance magnitudes even within the same individual, yet produce identical synchronized activity in the intact network. In a previous study we blocked a subset of K+ conductances across LCs, resulting in loss of synchronous activity (Lane et al., 2016). In this study, we hypothesized that this same variability of conductances makes LCs vulnerable to desynchronization during neuromodulation. We exposed the LCs to serotonin (5HT) and dopamine (DA) while recording simultaneously from multiple LCs. Both amines had distinct excitatory effects on LC output, but only 5HT caused desynchronized output. We further determined that DA rapidly increased gap junctional conductance. Co-application of both amines induced 5HT-like output, but waveforms remained synchronized. Furthermore, DA prevented desynchronization induced by the K+ channel blocker tetraethylammonium (TEA), suggesting that dopaminergic modulation of electrical coupling plays a protective role in maintaining network synchrony.
Collapse
Affiliation(s)
- Brian J Lane
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - Daniel R Kick
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - David K Wilson
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - Satish S Nair
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaUnited States
| | - David J Schulz
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| |
Collapse
|
44
|
Distinct Co-Modulation Rules of Synapses and Voltage-Gated Currents Coordinate Interactions of Multiple Neuromodulators. J Neurosci 2018; 38:8549-8562. [PMID: 30126969 DOI: 10.1523/jneurosci.1117-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023] Open
Abstract
Multiple neuromodulators act in concert to shape the properties of neural circuits. Different neuromodulators usually activate distinct receptors but can have overlapping targets. Therefore, circuit output depends on neuromodulator interactions at shared targets, a poorly understood process. We explored quantitative rules of co-modulation of two principal targets of neuromodulation: synapses and voltage-gated ionic currents. In the stomatogastric ganglion of the male crab Cancer borealis, the neuropeptides proctolin (Proc) and the crustacean cardioactive peptide (CCAP) modulate synapses of the pyloric circuit and activate a voltage-gated current (I MI) in multiple neurons. We examined the validity of a simple dose-dependent quantitative rule, that co-modulation by Proc and CCAP is predicted by the linear sum of the individual effects of each modulator up to saturation. We found that this rule is valid for co-modulation of synapses, but not for the activation of I MI, in which co-modulation was sublinear. The predictions for the co-modulation of I MI activation were greatly improved if we assumed that the intracellular pathways activated by two peptide receptors inhibit one another. These findings suggest that the pathways activated by two neuromodulators could have distinct interactions, leading to distinct co-modulation rules for different targets even in the same neuron. Given the evolutionary conservation of neuromodulator receptors and signaling pathways, such distinct rules for co-modulation of different targets are likely to be common across neuronal circuits.SIGNIFICANCE STATEMENT We examine the quantitative rules of co-modulation at multiple shared targets, the first such characterization to our knowledge. Our results show that dose-dependent co-modulation of distinct targets in the same cells by the same two neuromodulators follows different rules: co-modulation of synaptic currents is linearly additive up to saturation, whereas co-modulation of the voltage-gated ionic current targeted in a single neuron is nonlinear, a mechanism that is likely generalizable. Given that all neural systems are multiply modulated and neuromodulators often act on shared targets, these findings and the methodology could guide studies to examine dynamic actions of neuromodulators at the biophysical and systems level in sensory and motor functions, sleep/wake regulation, and cognition.
Collapse
|
45
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
DeLaney K, Buchberger AR, Atkinson L, Gründer S, Mousley A, Li L. New techniques, applications and perspectives in neuropeptide research. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151167. [PMID: 29439063 DOI: 10.1242/jeb.151167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptides are one of the most diverse classes of signaling molecules and have attracted great interest over the years owing to their roles in regulation of a wide range of physiological processes. However, there are unique challenges associated with neuropeptide studies stemming from the highly variable molecular sizes of the peptides, low in vivo concentrations, high degree of structural diversity and large number of isoforms. As a result, much effort has been focused on developing new techniques for studying neuropeptides, as well as novel applications directed towards learning more about these endogenous peptides. The areas of importance for neuropeptide studies include structure, localization within tissues, interaction with their receptors, including ion channels, and physiological function. Here, we discuss these aspects and the associated techniques, focusing on technologies that have demonstrated potential in advancing the field in recent years. Most identification and structural information has been gained by mass spectrometry, either alone or with confirmations from other techniques, such as nuclear magnetic resonance spectroscopy and other spectroscopic tools. While mass spectrometry and bioinformatic tools have proven to be the most powerful for large-scale analyses, they still rely heavily on complementary methods for confirmation. Localization within tissues, for example, can be probed by mass spectrometry imaging, immunohistochemistry and radioimmunoassays. Functional information has been gained primarily from behavioral studies coupled with tissue-specific assays, electrophysiology, mass spectrometry and optogenetic tools. Concerning the receptors for neuropeptides, the discovery of ion channels that are directly gated by neuropeptides opens up the possibility of developing a new generation of tools for neuroscience, which could be used to monitor neuropeptide release or to specifically change the membrane potential of neurons. It is expected that future neuropeptide research will involve the integration of complementary bioanalytical technologies and functional assays.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Amanda R Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Louise Atkinson
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Angela Mousley
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA .,School of Pharmacy, University of Wisconsin-Madison, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
47
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
48
|
Lett KM, Garcia VJ, Temporal S, Bucher D, Schulz DJ. Removal of endogenous neuromodulators in a small motor network enhances responsiveness to neuromodulation. J Neurophysiol 2017; 118:1749-1761. [PMID: 28659465 DOI: 10.1152/jn.00383.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 02/08/2023] Open
Abstract
We studied the changes in sensitivity to a peptide modulator, crustacean cardioactive peptide (CCAP), as a response to loss of endogenous modulation in the stomatogastric ganglion (STG) of the crab Cancer borealis Our data demonstrate that removal of endogenous modulation for 24 h increases the response of the lateral pyloric (LP) neuron of the STG to exogenously applied CCAP. Increased responsiveness is accompanied by increases in CCAP receptor (CCAPr) mRNA levels in LP neurons, requires de novo protein synthesis, and can be prevented by coincubation for the 24-h period with exogenous CCAP. These results suggest that there is a direct feedback from loss of CCAP signaling to the production of CCAPr that increases subsequent response to the ligand. However, we also demonstrate that the modulator-evoked membrane current (IMI) activated by CCAP is greater in magnitude after combined loss of endogenous modulation and activity compared with removal of just hormonal modulation. These results suggest that both receptor expression and an increase in the target conductance of the CCAP G protein-coupled receptor are involved in the increased response to exogenous hormone exposure following experimental loss of modulation in the STG.NEW & NOTEWORTHY The nervous system shows a tremendous amount of plasticity. More recently there has been an appreciation for compensatory actions that stabilize output in the face of perturbations to normal activity. In this study we demonstrate that neurons of the crustacean stomatogastric ganglion generate apparent compensatory responses to loss of peptide neuromodulation, adding to the repertoire of mechanisms by which the stomatogastric nervous system can regulate and stabilize its own output.
Collapse
Affiliation(s)
- Kawasi M Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Veronica J Garcia
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida; and
| | - Simone Temporal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Dirk Bucher
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida; and.,Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri;
| |
Collapse
|
49
|
Blitz DM. Circuit feedback increases activity level of a circuit input through interactions with intrinsic properties. J Neurophysiol 2017; 118:949-963. [PMID: 28469000 DOI: 10.1152/jn.00772.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/14/2017] [Accepted: 04/30/2017] [Indexed: 11/22/2022] Open
Abstract
Central pattern generator (CPG) motor circuits underlying rhythmic behaviors provide feedback to the projection neuron inputs that drive these circuits. This feedback elicits projection neuron bursting linked to CPG rhythms. The brief periodic interruptions in projection neuron activity in turn influence CPG output, gate sensory input, and enable coordination of multiple target CPGs. However, despite the importance of the projection neuron activity level for circuit output, it remains unknown whether feedback also regulates projection neuron intraburst firing rates. I addressed this issue using identified neurons in the stomatogastric nervous system of the crab, Cancer borealis, a small motor system controlling chewing and filtering of food. Mechanosensory input triggers long-lasting activation of two projection neurons to elicit a chewing rhythm, during which their activity is patterned by circuit feedback. Here I show that feedback increases the intraburst firing rate of only one of the two projection neurons (commissural projection neuron 2: CPN2). Furthermore, this is not a fixed property because the CPN2 intraburst firing rate is decreased instead of increased by feedback when a chewing rhythm is activated by a different modulatory input. I establish that a feedback pathway that does not impact the CPN2 activity level in the control state inhibits CPN2 sufficiently to trigger postinhibitory rebound following mechanosensory stimulation. The rebound increases the CPN2 intraburst firing rate above the rate due only to mechanosensory activation of CPN2. Thus in addition to patterning projection neuron activity, circuit feedback can adjust the intraburst firing rate, demonstrating a novel functional role for circuit feedback to central projection neurons.NEW & NOTEWORTHY Feedback from central pattern generator (CPG) circuits patterns activity of their projection neuron inputs. However, whether the intraburst firing rate between rhythmic feedback inhibition is also impacted by CPG feedback was not known. I establish that CPG feedback can alter the projection neuron intraburst firing rate through interactions with projection neuron intrinsic properties. The contribution of feedback to projection neuron activity level is specific to the modulatory condition, demonstrating a state dependence for this novel role of circuit feedback.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Biology, Miami University, Oxford, Ohio
| |
Collapse
|
50
|
Zhu L, Selverston AI, Ayers J. The transient potassium outward current has different roles in modulating the pyloric and gastric mill rhythms in the stomatogastric ganglion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:275-290. [PMID: 28315939 DOI: 10.1007/s00359-017-1162-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/27/2022]
Abstract
The crustacean stomatogastric nervous system is a classic model for understanding the effects of modulating ionic currents and synapses at both the cell and network levels. The stomatogastric ganglion in this system contains two distinct central pattern generators: a slow gastric mill network that generates flexible rhythmic outputs (8-20 s) and is often silent, and a fast pyloric network that generates more consistent rhythmic outputs (0.5-2 s) and is always active in vitro. Different ionic conductances contribute to the properties of individual neurons and therefore to the overall dynamics of the pyloric and gastric mill networks. However, the contributions of ionic currents to different dynamics between the pyloric and gastric mill networks are not well understood. The goal of this study is to evaluate how changes in outward potassium current (I A) in the stomatogastric ganglion affect the dynamics of the pyloric and gastric mill rhythms by interfering with normal I A activity. We bath-applied the specific I A blocker 4-aminopyridine to reduce I A's effect in the stomatogastric ganglion in vitro and evaluated quantitatively the changes in both rhythms. We found that blocking I A in the stomatogastric ganglion alters the synchronization between pyloric neurons, and consistently activates the gastric mill rhythm in quiescent preparations.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Allen I Selverston
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, 01908, USA
| | - Joseph Ayers
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, 01908, USA
| |
Collapse
|