1
|
Jin Y, Conneely KN, Ma W, Naviaux RK, Siddique T, Allen EG, Guingrich S, Pascuzzi RM, Jin P. Whole-genome bisulfite sequencing of cell-free DNA unveils age-dependent and ALS-associated methylation alterations. Cell Biosci 2025; 15:26. [PMID: 39980027 PMCID: PMC11843967 DOI: 10.1186/s13578-025-01366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) in plasma carries epigenetic signatures specific to tissue or cell of origin. Aberrant methylation patterns in circulating cfDNA have emerged as valuable tools for noninvasive cancer detection, prenatal diagnostics, and organ transplant assessment. Such epigenetic changes also hold significant promise for the diagnosis of neurodegenerative diseases, which often progresses slowly and has a lengthy asymptomatic period. However, genome-wide cfDNA methylation changes in neurodegenerative diseases remain poorly understood. RESULTS We used whole-genome bisulfite sequencing (WGBS) to profile age-dependent and ALS-associated methylation signatures in cfDNA from 30 individuals, including young and middle-aged controls, as well as ALS patients with matched controls. We identified 5,223 age-related differentially methylated loci (DMLs) (FDR < 0.05), with 51.6% showing hypomethylation in older individuals. Our results significantly overlapped with age-associated CpGs identified in a large blood-based epigenome-wide association study (EWAS). Comparing ALS patients to controls, we detected 1,045 differentially methylated regions (DMRs) in gene bodies, promoters, and intergenic regions. Notably, these DMRs were linked to key ALS-associated pathways, including endocytosis and cell adhesion. Integration with spinal cord transcriptomics revealed that 31% of DMR-associated genes exhibited differential expression in ALS patients compared to controls, with over 20 genes significantly correlating with disease duration. Furthermore, comparison with published single-nucleus RNA sequencing (snRNA-Seq) data of ALS demonstrated that cfDNA methylation changes reflects cell-type-specific gene dysregulation in the brain of ALS patients, particularly in excitatory neurons and astrocytes. Deconvolution of cfDNA methylation profiles suggested altered proportions of immune and liver-derived cfDNA in ALS patients. CONCLUSIONS cfDNA methylation is a powerful tool for assessing age-related changes and ALS-specific molecular dysregulation by revealing perturbed locus, genes, and the proportional contributions of different tissues/cells to the plasma. This technique holds promise for clinical application in biomarker discovery across a broad spectrum of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yulin Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenjing Ma
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert K Naviaux
- Departments of Medicine, Pediatrics, and Pathology, and the Mitochondrial and Metabolic Disease Center (MMDC), School of Medicine, University of California San Diego, San Diego, CA, 92103, USA
| | - Teepu Siddique
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra Guingrich
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Pascuzzi
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Yang C, Sun ZP, Jiang J, Cai XL, Wang Y, Wang H, Che C, Tu E, Pan AH, Zhang Y, Wang XP, Cui MZ, Xu XM, Yan XX, Zhang QL. Increased expression of the proapoptotic presenilin associated protein is involved in neuronal tangle formation in human brain. Sci Rep 2024; 14:25274. [PMID: 39455681 PMCID: PMC11512019 DOI: 10.1038/s41598-024-77026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Presenilin-associated protein (PSAP) is a mitochondrial proapoptotic protein as established in cell biology studies. It remains unknown whether it involves in neurodegenerative diseases. Here, we explored PASP expression in adult and aged human brains and its alteration relative to Alzheimer-disease (AD)-type neuropathology. In pathology-free brains, light PASP immunoreactivity (IR) occurred among largely principal neurons in the cerebrum and subcortical structures. In the brains with AD pathology, enhanced PSAP IR occurred in neuronal and neuritic profiles with a tangle-like appearance, with PSAP and pTau protein levels elevated in neocortical lysates relative to control. Neuronal/neuritic profiles with enhanced PSAP IR partially colocalized with pTau, but invariably with Amylo-Glo labelled tangles. The neuronal somata with enhanced PASP IR also showed diminished IR for casein kinase 1 delta (Ck1δ), a marker of granulovacuolar degeneration; and diminished IR for sortilin, which is normally expressed in membrane and intracellular protein sorting/trafficking organelles. In old 3xTg-AD mice with β-amyloid and pTau pathologies developed in the brain, PSAP IR in the cerebral sections exhibited no difference relative to wildtype mice. These findings indicate that PSAP upregulation is involved in the course of tangle formation especially in the human brain during aging and in AD pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhong-Ping Sun
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Yan Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd, Changchun High-Tech Development Zone, Changchun, Jilin Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Ai-Hua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Mei-Zhen Cui
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xue-Min Xu
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Parisi B, Esposito A, Castroflorio E, Bramini M, Pepe S, Marte A, Guarnieri FC, Valtorta F, Baldelli P, Benfenati F, Fassio A, Giovedì S. Apache is a neuronal player in autophagy required for retrograde axonal transport of autophagosomes. Cell Mol Life Sci 2024; 81:416. [PMID: 39367928 PMCID: PMC11455771 DOI: 10.1007/s00018-024-05441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/07/2024]
Abstract
Neurons are dependent on efficient quality control mechanisms to maintain cellular homeostasis and function due to their polarization and long-life span. Autophagy is a lysosomal degradative pathway that provides nutrients during starvation and recycles damaged and/or aged proteins and organelles. In neurons, autophagosomes constitutively form in distal axons and at synapses and are trafficked retrogradely to the cell soma to fuse with lysosomes for cargo degradation. How the neuronal autophagy pathway is organized and controlled remains poorly understood. Several presynaptic endocytic proteins have been shown to regulate both synaptic vesicle recycling and autophagy. Here, by combining electron, fluorescence, and live imaging microscopy with biochemical analysis, we show that the neuron-specific protein APache, a presynaptic AP-2 interactor, functions in neurons as an important player in the autophagy process, regulating the retrograde transport of autophagosomes. We found that APache colocalizes and co-traffics with autophagosomes in primary cortical neurons and that induction of autophagy by mTOR inhibition increases LC3 and APache protein levels at synaptic boutons. APache silencing causes a blockade of autophagic flux preventing the clearance of p62/SQSTM1, leading to a severe accumulation of autophagosomes and amphisomes at synaptic terminals and along neurites due to defective retrograde transport of TrkB-containing signaling amphisomes along the axons. Together, our data identify APache as a regulator of the autophagic cycle, potentially in cooperation with AP-2, and hypothesize that its dysfunctions contribute to the early synaptic impairments in neurodegenerative conditions associated with impaired autophagy.
Collapse
Affiliation(s)
- Barbara Parisi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- Present Affiliation: Department of Cell Biology, Universidad de Granada, Granada, Spain
| | - Alessandro Esposito
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Enrico Castroflorio
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- Present Affiliation: Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy
| | - Sara Pepe
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Antonella Marte
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabrizia C Guarnieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Baldelli
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Anna Fassio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Silvia Giovedì
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia.
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia.
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV, 3, Genova, 16122, Italy.
| |
Collapse
|
4
|
Bjornson KJ, Vanderplow AM, Bhasker AI, Cahill ME. Increased regional activity of a pro-autophagy pathway in schizophrenia as a contributor to sex differences in the disease pathology. Cell Rep Med 2024; 5:101652. [PMID: 39019008 PMCID: PMC11293356 DOI: 10.1016/j.xcrm.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Based on recent genome-wide association studies, it is theorized that altered regulation of autophagy contributes to the pathophysiology of schizophrenia and bipolar disorder. As activity of autophagy-regulatory pathways is controlled by discrete phosphorylation sites on the relevant proteins, phospho-protein profiling is one of the few approaches available for enabling a quantitative assessment of autophagic activity in the brain. Despite this, a comprehensive phospho-protein assessment in the brains of schizophrenia and bipolar disorder subjects is currently lacking. Using this direction, our broad screening identifies an increase in AMP-activated protein kinase (AMPK)-mediated phospho-activation of the pro-autophagy protein beclin-1 solely in the prefrontal cortex of female, but not male, schizophrenia subjects. Using a reverse translational approach, we surprisingly find that this increase in beclin-1 activity facilitates synapse formation and enhances cognition. These findings are interpreted in the context of human studies demonstrating that female schizophrenia subjects have a lower susceptibility to cognitive dysfunction than males.
Collapse
Affiliation(s)
- Kathryn J Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda M Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aishwarya I Bhasker
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Salaudeen MA, Allan S, Pinteaux E. Hypoxia and interleukin-1-primed mesenchymal stem/stromal cells as novel therapy for stroke. Hum Cell 2024; 37:154-166. [PMID: 37987924 PMCID: PMC10764391 DOI: 10.1007/s13577-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Promising preclinical stroke research has not yielded meaningful and significant success in clinical trials. This lack of success has prompted the need for refinement of preclinical studies with the intent to optimize the chances of clinical success. Regenerative medicine, especially using mesenchymal stem/stromal cells (MSCs), has gained popularity in the last decade for treating many disorders, including central nervous system (CNS), such as stroke. In addition to less stringent ethical constraints, the ample availability of MSCs also makes them an attractive alternative to totipotent and other pluripotent stem cells. The ability of MSCs to differentiate into neurons and other brain parenchymal and immune cells makes them a promising therapy for stroke. However, these cells also have some drawbacks that, if not addressed, will render MSCs unfit for treating ischaemic stroke. In this review, we highlighted the molecular and cellular changes that occur following an ischaemic stroke (IS) incidence and discussed the physiological properties of MSCs suitable for tackling these changes. We also went further to discuss the major drawbacks of utilizing MSCs in IS and how adequate priming using both hypoxia and interleukin-1 can optimize the beneficial properties of MSCs while eliminating these drawbacks.
Collapse
Affiliation(s)
- Maryam Adenike Salaudeen
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Stuart Allan
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Lyu S, Lan Z, Li C. The triggering receptor expressed on myeloid cells 2-apolipoprotein E signaling pathway in diseases. Chin Med J (Engl) 2023; 136:1291-1299. [PMID: 37130227 PMCID: PMC10309513 DOI: 10.1097/cm9.0000000000002167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.
Collapse
Affiliation(s)
- Shukai Lyu
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Zhuoqing Lan
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Caixia Li
- Department of General Practice, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
Bademosi AT, Decet M, Kuenen S, Calatayud C, Swerts J, Gallego SF, Schoovaerts N, Karamanou S, Louros N, Martin E, Sibarita JB, Vints K, Gounko NV, Meunier FA, Economou A, Versées W, Rousseau F, Schymkowitz J, Soukup SF, Verstreken P. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron 2023; 111:1402-1422.e13. [PMID: 36827984 PMCID: PMC10166451 DOI: 10.1016/j.neuron.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ella Martin
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium.
| |
Collapse
|
8
|
Dutta SB, Linneweber GA, Andriatsilavo M, Hiesinger PR, Hassan BA. EGFR-dependent suppression of synaptic autophagy is required for neuronal circuit development. Curr Biol 2023; 33:517-532.e5. [PMID: 36640763 DOI: 10.1016/j.cub.2022.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
The development of neuronal connectivity requires stabilization of dynamic axonal branches at sites of synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion to ensure branching toward future synaptic partners while also stabilizing the emerging synaptic contacts between such partners. We investigated this question using neuronal circuit development in the Drosophila brain as a model system. We report that epidermal growth factor receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching. EGFR activity is then independently required at a later stage to prevent degradation of the synaptic active zone protein Bruchpilot (Brp). Inactivation of EGFR results in a local increase of autophagy in presynaptic branches and the translocation of active zone proteins into autophagic vesicles. The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity, and appropriate visual behavior. Phenotypes of EGFR inactivation can be rescued by increasing Brp levels or downregulating autophagy. In summary, we identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.
Collapse
Affiliation(s)
- Suchetana B Dutta
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, 75013 Paris, France; Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany; Einstein-BIH, Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | - Maheva Andriatsilavo
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, 75013 Paris, France; Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany; Einstein-BIH, Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | - Bassem A Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, 75013 Paris, France; Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany; Einstein-BIH, Charité Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
10
|
Pérez-Villegas EM, Ruiz R, Bachiller S, Ventura F, Armengol JA, Rosa JL. The HERC proteins and the nervous system. Semin Cell Dev Biol 2022; 132:5-15. [PMID: 34848147 DOI: 10.1016/j.semcdb.2021.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla, Virgen del Rocío University Hospital, CSIC, University of Sevilla, Sevilla, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
11
|
Gundelfinger ED, Karpova A, Pielot R, Garner CC, Kreutz MR. Organization of Presynaptic Autophagy-Related Processes. Front Synaptic Neurosci 2022; 14:829354. [PMID: 35368245 PMCID: PMC8968026 DOI: 10.3389/fnsyn.2022.829354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Brain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
Collapse
Affiliation(s)
- Eckart D. Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Rainer Pielot
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Craig C. Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
12
|
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022; 110:824-840.e10. [PMID: 35065714 PMCID: PMC9017068 DOI: 10.1016/j.neuron.2021.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
Collapse
Affiliation(s)
- Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Daehun Park
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Sarah E Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Mian Cao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ian Gonzalez
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Lin Shao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ifechukwu Okeke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Interaction between TRPML1 and p62 in Regulating Autophagosome-Lysosome Fusion and Impeding Neuroaxonal Dystrophy in Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8096009. [PMID: 35116093 PMCID: PMC8807035 DOI: 10.1155/2022/8096009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
The loss of transient receptor potential mucolipin 1 (TRPML1), an endosomal and lysosomal Ca2+-releasing channel, has been implicated in neurodegenerative disorders. Mounting evidence have shown that TRPML1 could clear intraneuronal amyloid-β (Aβ), which triggers a hypothesis that TRPML1 activation may be beneficial for axonal transport in Alzheimer's disease (AD). In this work, the functional roles of TRPML1 were studied in the APP/PS1 transgenic mice and Aβ1-42-stimulated hippocampal neurons HT22. We found that lentivirus-mediated overexpression of TRPML1 was shown to promote an accumulation of autolysosomes and increase brain-derived neurotrophic factor (BDNF) transportation to the nucleus, suggesting an axon-protective function. More importantly, we found that TRPML1 also increased p62 that interacted with dynein. Lentivirus-mediated knockdown of p62 or inhibition of dynein by ciliobrevin D stimulation was found to reduce autolysosome formation and nuclear accumulation of BDNF in HT22 cells with Aβ1-42 stimulation. Inhibition of p62 by XRK3F2 stimulation was observed to promote the death of hippocampal neurons of the APP/PS1 transgenic mice. TRPML1 recruited dynein by interacting with p62 to promote the autophagosome-lysosome fusion to mediate BDNF nuclear translocation to impede axon dystrophy in mice with Alzheimer-like phenotypes. In summary, these results demonstrate the presence of a TRPML1/p62/dynein regulatory network in AD, and activation of TRPML1 is required for axon protection to prevent neuroaxonal dystrophy.
Collapse
|
14
|
Guerra-Vázquez CM, Martínez-Ávila M, Guajardo-Flores D, Antunes-Ricardo M. Punicic Acid and Its Role in the Prevention of Neurological Disorders: A Review. Foods 2022; 11:252. [PMID: 35159404 PMCID: PMC8834450 DOI: 10.3390/foods11030252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Millions of people worldwide are affected by neurodegenerative diseases (NDs). NDs are characterized by progressive damage and death of nerve cells accompanied by high levels of inflammatory biomarkers and oxidative stress conditions. Punicic acid, the main bioactive component of pomegranate (Punica granatum) seed oil, is an omega-5 isomer of conjugated α-linoleic acid that has shown strong anti-oxidative and anti-inflammatory effects that contributes towards its positive effect against a wide arrange of diseases. Punicic acid decreases oxidative damage and inflammation by increasing the expression of peroxisome proliferator-activated receptors. In addition, it can reduce beta-amyloid deposits formation and tau hyperphosphorylation by increasing the expression of GLUT4 protein and the inhibition of calpain hyperactivation. Microencapsulated pomegranate, with high levels of punicic acid, increases antioxidant PON1 activity in HDL. Likewise, encapsulated pomegranate formulations with high levels of punicic acid have shown an increase in the antioxidant PON1 activity in HDL. Because of the limited brain permeability of punicic acid, diverse delivery formulations have been developed to enhance the biological activity of punicic acid in the brain, diminishing neurological disorders symptoms. Punicic acid is an important nutraceutical compound in the prevention and treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
| | | | | | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, NL, Mexico; (C.M.G.-V.); (M.M.-Á.); (D.G.-F.)
| |
Collapse
|
15
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
16
|
Sirtuins and Autophagy in Age-Associated Neurodegenerative Diseases: Lessons from the C. elegans Model. Int J Mol Sci 2021; 22:ijms222212263. [PMID: 34830158 PMCID: PMC8619060 DOI: 10.3390/ijms222212263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Age-associated neurodegenerative diseases are known to have "impaired protein clearance" as one of the key features causing their onset and progression. Hence, homeostasis is the key to maintaining balance throughout the cellular system as an organism ages. Any imbalance in the protein clearance machinery is responsible for accumulation of unwanted proteins, leading to pathological consequences-manifesting in neurodegeneration and associated debilitating outcomes. Multiple processes are involved in regulating this phenomenon; however, failure to regulate the autophagic machinery is a critical process that hampers the protein clearing pathway, leading to neurodegeneration. Another important and widely known component that plays a role in modulating neurodegeneration is a class of proteins called sirtuins. These are class III histone deacetylases (HDACs) that are known to regulate various vital processes such as longevity, genomic stability, transcription and DNA repair. These enzymes are also known to modulate neurodegeneration in an autophagy-dependent manner. Considering its genetic relevance and ease of studying disease-related endpoints in neurodegeneration, the model system Caenorhabditis elegans has been successfully employed in deciphering various functional outcomes related to critical protein molecules, cell death pathways and their association with ageing. This review summarizes the vital role of sirtuins and autophagy in ageing and neurodegeneration, in particular highlighting the knowledge obtained using the C. elegans model system.
Collapse
|
17
|
Issac PK, Guru A, Velayutham M, Pachaiappan R, Arasu MV, Al-Dhabi NA, Choi KC, Harikrishnan R, Arockiaraj J. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci 2021; 283:119864. [PMID: 34358548 DOI: 10.1016/j.lfs.2021.119864] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
AIMS The study examined that morin as possible antioxidant and neuroprotective due to oxidative stress (H2O2) in zebrafish larval model. MATERIALS AND METHODS Zebrafish larvae were induced with oxidative stress using H2O2 at 1 mM; their behavioural changes were assessed through partition preference and horizontal compartment test. The head section without eyes and yolk sac of zebrafish larvae were employed for enzyme assays such as SOD, CAT, Thiobarbituric acid reactive substances assay, reduced glutathione, glutathione peroxidase activity, glutathione S transferase, Acetylcholinesterase activity and nitrate levels. Also, intracellular ROS and apoptosis in larval head was detected by DCFDA and acridine orange staining followed by gene expression studies. KEY FINDINGS Morin exposure was not harmful to the larvae at concentration between 20 and 60 μM, but it caused non-lethal deformity between 80 and 100 μM. In the partition test, zebrafish embryos treated with H2O2 showed cognitive impairment, whereas the morin-treated groups showed an improved behavioural activity. The study also found that restoring antioxidant enzymes and reduced lipid peroxidation which had a neuroprotective impact. Inhibition of NO overproduction and increased AChE activity were also shown to reduce the neuronal damage. Apoptosis and intracellular ROS levels were reduced in larvae when it was co-incubated with morin. Morin treatment up regulated the antioxidant enzymes against oxidative stress. SIGNIFICANCE Morin provides protection against H2O2 induced oxidative stress through a cellular antioxidant defence mechanism by up-regulating gene expression, thus increasing the antioxidant activity at cellular or organismal stage.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
Schechter M, Sharon R. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1725-1750. [PMID: 34151859 PMCID: PMC8609718 DOI: 10.3233/jpd-212684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
19
|
Memudu AE, Adewumi AE. Alpha lipoic acid ameliorates scopolamine induced memory deficit and neurodegeneration in the cerebello-hippocampal cortex. Metab Brain Dis 2021; 36:1729-1745. [PMID: 34021876 DOI: 10.1007/s11011-021-00720-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Scopolamine- induced memory loss is used to study new drug discovery in Alzheimer's disease (AD) pathogenesis. This study was aimed at evaluating the role of an antioxidant supplement alpha-lipoic acid (AHA), in ameliorating the oxidative damaging effects of scopolamine on cognition, memory, and the neurohistology of the cerebello-hippocampal cortex. Twenty adult male Wistar rats used were categorized into four (4) groups (n = 5): Group A- Control, Group B- 200 mg/kg of AHA, Group C- Scopolamine (memory-impaired model), and Group D- Neurodegenerative repair model (Scopolamine + AHA). The treatment lasted for fourteen (14) days. Y-maze and hang-wire (limb use test) were used as behavioural index to assess memory and motor function while brain tissues were processed for histology (H and E stain), histochemistry using Cresyl Fast violet stain for Nissl bodies, and immunohistochemistry of astrocytes using glial fibrillary acidic protein (GFAP). Results showed that scopolamine led to a decline in brain weight, impaired memory and motor function, induced oxidative tissue damage cumulating in loss of neuronal cells, chromatolysis, the proliferation of reactive astrocytes (neuroinflammation biomarker) in the cerebello-hippocampal cortex; but upon administration of AHA these neuropathological characterizations were inhibited and reversed by AHA demonstrating its antioxidant and neuro- repair potential. In conclusion, AHA is a useful therapeutic agent against scopolamine-induced cognitive and memory deficit because it has the ability to ameliorate oxidative tissue damage by attenuating reactive astrocytes proliferation and neuron chromatolysis thereby improving memory and motor function.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Department of Anatomy Faculty of Basic Medical Science, College of Medical Sciences, Edo University, KM 7 Auchi-Abuja Road Iyamho-Uzairue, P.M.B 04, Auchi, Zip Code 312102, Nigeria.
| | - Abosede Esther Adewumi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Bingham University, P.M.B 005, Karu, Nassarawa State, Nigeria
| |
Collapse
|
20
|
Pan PY, Sheehan P, Wang Q, Zhu X, Zhang Y, Choi I, Li X, Saenz J, Zhu J, Wang J, El Gaamouch F, Zhu L, Cai D, Yue Z. Synj1 haploinsufficiency causes dopamine neuron vulnerability and alpha-synuclein accumulation in mice. Hum Mol Genet 2021; 29:2300-2312. [PMID: 32356558 DOI: 10.1093/hmg/ddaa080] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
Synaptojanin1 (synj1) is a phosphoinositide phosphatase with dual SAC1 and 5'-phosphatase enzymatic activities in regulating phospholipid signaling. The brain-enriched isoform has been shown to participate in synaptic vesicle (SV) recycling. More recently, recessive human mutations were identified in the two phosphatase domains of SYNJ1, including R258Q, R459P and R839C, which are linked to rare forms of early-onset Parkinsonism. We now demonstrate that Synj1 heterozygous deletion (Synj1+/-), which is associated with an impaired 5'-phosphatase activity, also leads to Parkinson's disease (PD)-like pathologies in mice. We report that male Synj1+/- mice display age-dependent motor function abnormalities as well as alpha-synuclein accumulation, impaired autophagy and dopaminergic terminal degeneration. Synj1+/- mice contain elevated 5'-phosphatase substrate, PI(4,5)P2, particularly in the midbrain neurons. Moreover, pharmacological elevation of membrane PI(4,5)P2 in cultured neurons impairs SV endocytosis, specifically in midbrain neurons, and further exacerbates SV trafficking defects in Synj1+/- midbrain neurons. We demonstrate down-regulation of SYNJ1 transcript in a subset of sporadic PD brains, implicating a potential role of Synj1 deficiency in the decline of dopaminergic function during aging.
Collapse
Affiliation(s)
- Ping-Yue Pan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Patricia Sheehan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Qian Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Xinyu Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Yuanxi Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Insup Choi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Xianting Li
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jacqueline Saenz
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Justin Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Jing Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
21
|
Terni B, Llobet A. Axon terminals control endolysosome diffusion to support synaptic remodelling. Life Sci Alliance 2021; 4:4/8/e202101105. [PMID: 34226200 PMCID: PMC8321675 DOI: 10.26508/lsa.202101105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Endolysosomes present in the presynaptic terminal move by diffusion constrained by F-actin and increase their mobility during the remodelling of synaptic connectivity to support a local degradative activity. Endolysosomes are acidic organelles formed by the fusion of endosomes with lysosomes. In the presynaptic compartment they contribute to protein homeostasis, the maintenance of vesicle pools and synaptic stability. Here, we evaluated the mobility of endolysosomes found in axon terminals of olfactory sensory neurons of Xenopus tropicalis tadpoles. F-actin restricts the motion of these presynaptic acidic organelles which is characterized by a diffusion coefficient of 6.7 × 10−3 μm2·s−1. Local injection of secreted protein acidic and rich in cysteine (SPARC) in the glomerular layer of the olfactory bulb disrupts the structure of synaptic F-actin patches and increases the presence and mobility of endolysosomal organelles found in axon terminals. The increased motion of endolysosomes is localized to the presynaptic compartment and does not promote their access to axonal regions for retrograde transportation to the cell body. Local activation of synaptic degradation mechanisms mediated by SPARC coincides with a loss of the ability of tadpoles to detect waterborne odorants. Together, these observations show that the diffusion of presynaptic endolysosomes increases during conditions of synaptic remodelling to support their local degradative activity.
Collapse
Affiliation(s)
- Beatrice Terni
- Department of Pathology and Experimental Therapy, School of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain .,Laboratory of Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Artur Llobet
- Department of Pathology and Experimental Therapy, School of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain .,Laboratory of Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
22
|
Hattori A, Ohta E, Nagai M, Iwabuchi K, Okano H. A new approach to analysis of intracellular proteins and subcellular localization using cellprofiler and imageJ in combination. Methods 2021; 203:233-241. [PMID: 33915291 DOI: 10.1016/j.ymeth.2021.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Analytical pipeline, which is used for various analysis application, of CellProfiler, an open-source software for cell imaging analysis, is very important. In the present study, to examine whether intracellular proteins can be discriminated using a combination of CellProfiler and ImageJ, we analyzed neuroblastoma and monocytic cell lines, and disease-specific induced pluripotent stem cell (iPSC)-derived neurons. This revealed that scattered puncta of Rab7 and transferrin in neuroblastoma lines were clearly detectable by created analytical pipelines in CellProfiler. We then constructed pipelines for measuring the distance from the center of the nucleus to allow investigation of the intracellular localization of Rab7 or transferrin. Using CellProfiler and ImageJ in combination, we confirmed that our pipelines were applicable both quantitatively and objectively to analysis of membrane trafficking of proteins such as Rab proteins and transferrin. In addition, when applied to quantitative measurement of phagocytosis, our pipelines clearly detected monocytic cell lines that had engulfed bioparticles. Finally, we developed new pipelines for analysis of disease phenotype using iPSCs from a patient with familial Parkinson's disease (PD), harboring the I2020T LRRK2 mutation (PARK8). These were able to successfully detect Rab5 puncta and Rab7 puncta in PARK8 patient iPSC-derived neurons. Interestingly, in long-term culture, we found that the numbers of Rab7 puncta in a single PARK8 patient iPSC-derived neurons were lower than that of control iPSC-derived neurons. On the other hands, at 14 days in vitro, the numbers of Rab5 puncta in PARK8 patient iPSC-derived neurons were lower than those of isogenic iPSC-derived neurons, but not Rab7 puncta. Furthermore, Rab5 puncta of PARK8 patient iPSC-derived neurons exhibited distinct localization pattern relative to isogenic iPSC-derived neurons. These present results suggest that this new analytical tool can be used as a supporting method for quantification of intracellular protein.
Collapse
Affiliation(s)
- Akito Hattori
- Program in Cellular Immunology, Graduate School of Medical Science, Kitasato University, Kanagawa, Japan
| | - Etsuro Ohta
- R & D Center for Cell Design, Institute for Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences,Kanagawa, Japan; Department of ImmunologyⅡ, Kitasato University of Allied Health Science, Kanagawa, Japan; Division of Clinical Immunology, Graduate School of Medical Science, Kitasato University, Kanagawa, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | - Makiko Nagai
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kazuya Iwabuchi
- Program in Cellular Immunology, Graduate School of Medical Science, Kitasato University, Kanagawa, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
23
|
Valencia M, Kim SR, Jang Y, Lee SH. Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology. Biomol Ther (Seoul) 2021; 29:605-614. [PMID: 33875624 PMCID: PMC8551733 DOI: 10.4062/biomolther.2021.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.
Collapse
Affiliation(s)
- McNeil Valencia
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeseul Jang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
24
|
Yurinskaya MM, Garbuz DG, Afanasiev VN, Evgen’ev MB, Vinokurov MG. Effects of the Hydrogen Sulfide Donor GYY4137 and HSP70 Protein on the Activation of SH-SY5Y Cells by Lipopolysaccharide. Mol Biol 2021. [DOI: 10.1134/s002689332006014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Schechter M, Atias M, Abd Elhadi S, Davidi D, Gitler D, Sharon R. α-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2020; 295:18076-18090. [PMID: 33087443 PMCID: PMC7939461 DOI: 10.1074/jbc.ra120.015319] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn-mediated membrane trafficking.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Merav Atias
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suaad Abd Elhadi
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dana Davidi
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
26
|
Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron 2020; 109:299-313.e9. [PMID: 33157003 PMCID: PMC7837115 DOI: 10.1016/j.neuron.2020.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/22/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
Abstract
Neurons are known to rely on autophagy for removal of defective proteins or organelles to maintain synaptic neurotransmission and counteract neurodegeneration. In spite of its importance for neuronal health, the physiological substrates of neuronal autophagy in the absence of proteotoxic challenge have remained largely elusive. We use knockout mice conditionally lacking the essential autophagy protein ATG5 and quantitative proteomics to demonstrate that loss of neuronal autophagy causes selective accumulation of tubular endoplasmic reticulum (ER) in axons, resulting in increased excitatory neurotransmission and compromised postnatal viability in vivo. The gain in excitatory neurotransmission is shown to be a consequence of elevated calcium release from ER stores via ryanodine receptors accumulated in axons and at presynaptic sites. We propose a model where neuronal autophagy controls axonal ER calcium stores to regulate neurotransmission in healthy neurons and in the brain. Neuronal autophagy controls the endoplasmic reticulum (ER) in axons Loss of neuronal autophagy leads to increased excitatory neurotransmission Increased neurotransmission is due to elevated calcium release from ER stores
Collapse
|
27
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Meir S, Merav A, Suaad AE, Dana D, Daniel G, Ronit S. α-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate.. [DOI: 10.1101/2020.06.18.158709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstractα-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson’s disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we have investigated the role of α-Syn in membrane trafficking through its association with acidic phosphoinositides (PIPs), such as phosphatidylinositol 4,5-bisphosphate (PI4,5P2) and phosphatidylinositol 3,4-bisphosphate (PI3,4P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor AP2 at clathrin-coated pits. Using endocytosis of transferrin, an indicator of clathrin mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI4,5P2 levels. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by α-Syn mutations. In accord with their effects on PI4,5P2 levels at the plasma membrane, the PD associated E46K and A53T mutations further enhance SV endocytosis. However, neither A30P mutation, nor Lysine to Glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, that interfere with phospholipid binding, affect SV endocytosis. This study provides evidence for a critical involvement of PIPs in α-Syn-mediated membrane trafficking.Significance Statementα-Synuclein (α-Syn) protein is known for its causative role in Parkinson’s disease. α-Syn is normally involved in mechanisms of membrane trafficking, including endocytosis, exocytosis and synaptic vesicles cycling. However, a certain degree of controversy regarding the exact role of α-Syn in these mechanisms persists. Here we show that α-Syn acts to increase plasma membrane levels PI4,5P2 and PI3,4P2 to facilitate clathrin mediated and synaptic vesicles endocytosis. Based on the results, we suggest that α-Syn interactions with the acidic phosphoinositides facilitate a shift in their homeostasis to support endocytosis.
Collapse
|
29
|
Bera S, Camblor‐Perujo S, Calleja Barca E, Negrete‐Hurtado A, Racho J, De Bruyckere E, Wittich C, Ellrich N, Martins S, Adjaye J, Kononenko NL. AP-2 reduces amyloidogenesis by promoting BACE1 trafficking and degradation in neurons. EMBO Rep 2020; 21:e47954. [PMID: 32323475 PMCID: PMC7271323 DOI: 10.15252/embr.201947954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cleavage of amyloid precursor protein (APP) by BACE-1 (β-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-β (Aβ) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and Aβ production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis. Now, we find that AP-2 prevents amyloidogenesis by additionally functioning downstream of BACE1 endocytosis, regulating BACE1 endosomal trafficking and its delivery to lysosomes. AP-2 is decreased in iPSC-derived neurons from patients with late-onset AD, while conditional AP-2 knockout (KO) mice exhibit increased Aβ production, resulting from accumulation of BACE1 within late endosomes and autophagosomes. Deletion of BACE1 decreases amyloidogenesis and mitigates synapse loss in neurons lacking AP-2. Taken together, these data suggest a mechanism for BACE1 intracellular trafficking and degradation via an endocytosis-independent function of AP-2 and reveal a novel role for endocytic proteins in AD.
Collapse
Affiliation(s)
- Sujoy Bera
- CECAD Research CenterUniversity of CologneCologneGermany
- Present address:
Centre for Neuroscience and Regenerative MedicineFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | | | | | | | - Julia Racho
- CECAD Research CenterUniversity of CologneCologneGermany
| | | | | | - Nina Ellrich
- CECAD Research CenterUniversity of CologneCologneGermany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative MedicineMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative MedicineMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | | |
Collapse
|
30
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
31
|
Lee YK, Lee SK, Choi S, Huh YH, Kwak JH, Lee YS, Jang DJ, Lee JH, Lee K, Kaang BK, Lim CS, Lee JA. Autophagy pathway upregulation in a human iPSC-derived neuronal model of Cohen syndrome with VPS13B missense mutations. Mol Brain 2020; 13:69. [PMID: 32375900 PMCID: PMC7203861 DOI: 10.1186/s13041-020-00611-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Significant clinical symptoms of Cohen syndrome (CS), a rare autosomal recessive disorder, include intellectual disability, facial dysmorphism, postnatal microcephaly, retinal dystrophy, and intermittent neutropenia. CS has been associated with mutations in the VPS13B (vacuolar protein sorting 13 homolog B) gene, which regulates vesicle-mediated protein sorting and transport; however, the cellular mechanism underlying CS pathogenesis in patient-derived neurons remains uncertain. This report states that autophagic vacuoles accumulate in CS fibroblasts and the axonal terminals of CS patient-specific induced pluripotent stem cells (CS iPSC)-derived neurons; additionally, autophagic flux was significantly increased in CS-derived neurons compared to control neurons. VPS13B knockout HeLa cell lines generated using the CRISPR/Cas9 genome editing system showed significant upregulation of autophagic flux, indicating that VSP13B may be associated with autophagy in CS. Transcriptomic analysis focusing on the autophagy pathway revealed that genes associated with autophagosome organization were dysregulated in CS-derived neurons. ATG4C is a mammalian ATG4 paralog and a crucial regulatory component of the autophagosome biogenesis/recycling pathway. ATG4C was significantly upregulated in CS-derived neurons, indicating that autophagy is upregulated in CS neurons. The autophagy pathway in CS neurons may be associated with the pathophysiology exhibited in the neural network of CS patients.
Collapse
Affiliation(s)
- You-Kyung Lee
- Department of Biological Sciences and Biotechnology, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34054, Korea
| | - Soo-Kyeong Lee
- Department of Biological Sciences and Biotechnology, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34054, Korea
| | - Suin Choi
- Department of Biological Sciences and Biotechnology, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34054, Korea.,Center for Electron Microscopy Research, Korea Basic Science Institute, Daejeon, 34133, Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Daejeon, 34133, Korea
| | - Ji-Hye Kwak
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Yong-Seok Lee
- Department of Physiology, Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Korea
| | - Jae-Hyung Lee
- Department of Life and Nanopharmaceutical Sciences, Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Korea
| | - Kyungmin Lee
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, 41944, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, 460 Iksan-daero, Iksan, 54538, Korea.
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34054, Korea.
| |
Collapse
|
32
|
Perdigão C, Barata MA, Araújo MN, Mirfakhar FS, Castanheira J, Guimas Almeida C. Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2020; 14:72. [PMID: 32362813 PMCID: PMC7180223 DOI: 10.3389/fncel.2020.00072] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss. Although AD neuropathological hallmarks are extracellular amyloid plaques and intracellular tau tangles, the best correlate of disease progression is synapse loss. What causes synapse loss has been the focus of several researchers in the AD field. Synapses become dysfunctional before plaques and tangles form. Studies based on early-onset familial AD (eFAD) models have supported that synaptic transmission is depressed by β-amyloid (Aβ) triggered mechanisms. Since eFAD is rare, affecting only 1% of patients, research has shifted to the study of the most common late-onset AD (LOAD). Intracellular trafficking has emerged as one of the pathways of LOAD genes. Few studies have assessed the impact of trafficking LOAD genes on synapse dysfunction. Since endocytic traffic is essential for synaptic function, we reviewed Aβ-dependent and independent mechanisms of the earliest synaptic dysfunction in AD. We have focused on the role of intraneuronal and secreted Aβ oligomers, highlighting the dysfunction of endocytic trafficking as an Aβ-dependent mechanism of synapse dysfunction in AD. Here, we reviewed the LOAD trafficking genes APOE4, ABCA7, BIN1, CD2AP, PICALM, EPH1A, and SORL1, for which there is a synaptic link. We conclude that in eFAD and LOAD, the earliest synaptic dysfunctions are characterized by disruptions of the presynaptic vesicle exo- and endocytosis and of postsynaptic glutamate receptor endocytosis. While in eFAD synapse dysfunction seems to be triggered by Aβ, in LOAD, there might be a direct synaptic disruption by LOAD trafficking genes. To identify promising therapeutic targets and biomarkers of the earliest synaptic dysfunction in AD, it will be necessary to join efforts in further dissecting the mechanisms used by Aβ and by LOAD genes to disrupt synapses.
Collapse
Affiliation(s)
- Catarina Perdigão
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mariana A Barata
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Margarida N Araújo
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Farzaneh S Mirfakhar
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jorge Castanheira
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Guimas Almeida
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson's Disease. J Mol Biol 2020; 432:2651-2672. [PMID: 32061929 PMCID: PMC7211126 DOI: 10.1016/j.jmb.2020.01.037] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Impaired protein homeostasis and accumulation of damaged or abnormally modified protein are common disease mechanisms in many neurodegenerative disorders, including Parkinson's disease (PD). As one of the major degradation pathways, autophagy plays a pivotal role in maintaining effective turnover of proteins and damaged organelles in cells. Several decades of research efforts led to insights into the potential contribution of impaired autophagy machinery to α-synuclein accumulation and the degeneration of dopaminergic neurons, two major features of PD pathology. In this review, we summarize recent pathological, genetic, and mechanistic findings that link defective autophagy with PD pathogenesis in human patients, animals, and cellular models and discuss current challenges in the field.
Collapse
Affiliation(s)
- Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
34
|
Kargbo-Hill SE, Colón-Ramos DA. The Journey of the Synaptic Autophagosome: A Cell Biological Perspective. Neuron 2020; 105:961-973. [PMID: 32191859 DOI: 10.1016/j.neuron.2020.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023]
Abstract
Autophagy is a key cellular degradative pathway, important for neuronal homeostasis and function. Disruption of autophagy is associated with neuronal dysfunction and neurodegeneration. Autophagy is compartmentalized in neurons, with specific stages of the pathway occurring in distinct subcellular compartments. Coordination of these stages drives progression of autophagy and enables clearance of substrates. Yet, we are only now learning how these distributed processes are integrated across the neuron. In this review, we focus on the cell biological course of autophagy in neurons, from biogenesis at the synapse to degradation in the soma. We describe how the steps of autophagy are distributed across neuronal subcellular compartments, how local machinery regulates autophagy, and the impact of coordinated regulation on neuronal physiology and disease. We also discuss how recent advances in our understanding of neuronal autophagic mechanisms have reframed how we think about the role of local regulation of autophagy in all tissues.
Collapse
Affiliation(s)
- Sarah E Kargbo-Hill
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología José del Castillo, Universidad de Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
35
|
Fassio A, Falace A, Esposito A, Aprile D, Guerrini R, Benfenati F. Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders With Epilepsy. Front Cell Neurosci 2020; 14:39. [PMID: 32231521 PMCID: PMC7082311 DOI: 10.3389/fncel.2020.00039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a highly conserved degradative process that conveys dysfunctional proteins, lipids, and organelles to lysosomes for degradation. The post-mitotic nature, complex and highly polarized morphology, and high degree of specialization of neurons make an efficient autophagy essential for their homeostasis and survival. Dysfunctional autophagy occurs in aging and neurodegenerative diseases, and autophagy at synaptic sites seems to play a crucial role in neurodegeneration. Moreover, a role of autophagy is emerging for neural development, synaptogenesis, and the establishment of a correct connectivity. Thus, it is not surprising that defective autophagy has been demonstrated in a spectrum of neurodevelopmental disorders, often associated with early-onset epilepsy. Here, we discuss the multiple roles of autophagy in neurons and the recent experimental evidence linking neurodevelopmental disorders with epilepsy to genes coding for autophagic/lysosomal system-related proteins and envisage possible pathophysiological mechanisms ranging from synaptic dysfunction to neuronal death.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Alessandro Esposito
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
36
|
Jin Y, Seo KH, Ko HM, Jung TW, Chung YH, Lee JH, Park HH, Kim HC, Jeong JH, Lee SH. Various approaches for measurement of synaptic vesicle endocytosis at the central nerve terminal. Arch Pharm Res 2019; 42:455-465. [PMID: 31115782 DOI: 10.1007/s12272-019-01161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
At the presynaptic terminal, neurotransmitters are stored in synaptic vesicles (SVs), which are released and recycled via exo- and endocytosis. SV endocytosis is crucial for sustaining synaptic transmission by maintaining the SV pool. Many studies have shown that presynaptic dysfunction, particularly impairment of SV endocytosis, is related to neurological disorders. Notably, the presynaptic terminal is considered to be a sensitive structure because certain presynaptic dysfunctions, manifested as impaired SV endocytosis or ultrastructural changes in the presynaptic terminal, can be observed before there is a biochemical or pathological evidence of a neurological disorder. Therefore, monitoring and assessing the presynaptic function by SV endocytosis facilitates the development of early markers for neurological disorders. In this study, we reviewed the current methods for assessing and visualizing SV endocytosis at the central nerve terminal.
Collapse
Affiliation(s)
- Yeonsun Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyoung Hee Seo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon, 27841, Republic of Korea
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan, 31499, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
37
|
Saleem U, Raza Z, Anwar F, Ahmad B, Hira S, Ali T. Experimental and Computational Studies to Characterize and Evaluate the Therapeutic Effect of Albizia lebbeck (L.) Seeds in Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E184. [PMID: 31117312 PMCID: PMC6572470 DOI: 10.3390/medicina55050184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Background and Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder that deteriorates daily life due to loss of memory and cognitive impairment. It is believed that oxidative stress and cholinergic deficit are the leading causes of AD. Disease-modifying therapies for the treatment of AD are a challenging task for this century. The search for natural and synthetic agents has attracted the attention of researchers. The objective of this study was a scientific approach to search for most suitable remedy for AD by exploiting the potential of Albizia lebbeck (L.) seeds. Materials and Methods: Hydromethanolic extract of Albizia lebbeck seeds (ALE) was prepared by maceration. The plant was characterized by physico-chemical, phyto-chemical, and high-performance liquid chromatography (HPLC). Thirty-six Wistar albino rats were used in this study and divided into six groups (n = 6). Group I: normal control; Group II: disease control (AlCl3; 100 mg/Kg); Group III: standard control (galantamine; 0.5mg/Kg); Groups IV-VI were treated ALE at 100, 200 and 300 mg/Kg dose levels, respectively. All the treatments were given orally for 21 consecutive days. Y-maze, T-maze, Morris water maze, hole board, and open field behavioral tests were performed to analyze the cognitive impairment. Biochemical, histological, and computational studies were performed to support the results of behavioral tests. Results: HPLC analysis indicated the presence of quercetin, gallic acid, m-coumaric acid, and sinapic acid. ALE significantly improved the memory and cognitive impairments. Endogenous antioxidant stress biomarker levels and histopathological outcomes supported the therapeutic potential of A. lebbeck in AD. Cholinergic deficits were also ameliorated by ALE co-administration, possibly by the inhibition of hyperactive acetylcholinesterase (AChE). Docking studies supported the potential of ALE against AD. Conclusions: The data suggested that ALE has neuroprotective potential that can be exploited for beneficial effects to treat AD.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad-38000, Pakistan.
| | - Zohaib Raza
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad-38000, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| | - Sundas Hira
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| | - Tahir Ali
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| |
Collapse
|
38
|
Izquierdo V, Palomera-Ávalos V, López-Ruiz S, Canudas AM, Pallàs M, Griñán-Ferré C. Maternal Resveratrol Supplementation Prevents Cognitive Decline in Senescent Mice Offspring. Int J Mol Sci 2019; 20:ijms20051134. [PMID: 30845644 PMCID: PMC6429303 DOI: 10.3390/ijms20051134] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer’s Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this process is called epigenetic inheritance. We investigate the beneficial effects of maternal resveratrol supplementation in the direct exposed F1 generation and the transgenerational F2 generation. The offspring was generated from females Senescence Accelerated Mouse-Prone (SAMP8) fed a resveratrol-enriched diet for two months prior to mating. Object novel recognition and Morris Water Maze (MWM) demonstrated improvements in cognition in the 6-month-old F1 and F2 generations from resveratrol fed mothers. A significant increase in global DNA methylation with a decrease in hydroxymethylation in F1 and F2 were found. Accordingly, Dnmt3a/b and Tet2 gene expression changed. Methylation levels of Nrf2 and NF-kβ genes promoters raised in offspring, inducing changes in target genes expression, as well as hydrogen peroxide levels. Offspring that resulted from a resveratrol fed mother showed increase AMPKα activation, mTOR inhibition, and an increase in Pgc-1α gene expression and Beclin-1 protein levels. Endoplasmic reticulum stress sensors were found changed both in F1 and F2 generations. Overall, our results demonstrated that maternal resveratrol supplementation could prevent cognitive impairment in the SAMP8 mice offspring through epigenetic changes and cell signaling pathways.
Collapse
Affiliation(s)
- Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
- Department of Cellular and Molecular Biology, University Center of Biological and Agricultural Sciences, University of Guadalajara, km 15.5 Guadalajara-Nogales highway, C.P. 45110 Zapopan, Jalisco, Mexico.
| | - Sergio López-Ruiz
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Anna-Maria Canudas
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry. Institut de Neurociències-University of Barcelona, Avda. Joan XXIII, 27. 08028 Barcelona, Spain.
| |
Collapse
|
39
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
40
|
Liang Y. Emerging Concepts and Functions of Autophagy as a Regulator of Synaptic Components and Plasticity. Cells 2019; 8:cells8010034. [PMID: 30634508 PMCID: PMC6357011 DOI: 10.3390/cells8010034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis (proteostasis) is crucial to the maintenance of neuronal integrity and function. As the contact sites between neurons, synapses rely heavily on precisely regulated protein-protein interactions to support synaptic transmission and plasticity processes. Autophagy is an effective degradative pathway that can digest cellular components and maintain cellular proteostasis. Perturbations of autophagy have been implicated in aging and neurodegeneration due to a failure to remove damaged proteins and defective organelles. Recent evidence has demonstrated that autophagosome formation is prominent at synaptic terminals and neuronal autophagy is regulated in a compartment-specific fashion. Moreover, synaptic components including synaptic proteins and vesicles, postsynaptic receptors and synaptic mitochondria are known to be degraded by autophagy, thereby contributing to the remodeling of synapses. Indeed, emerging studies indicate that modulation of autophagy may be required for different forms of synaptic plasticity and memory formation. In this review, I will discuss our current understanding of the important role of neuronal/synaptic autophagy in maintaining neuronal function by degrading synaptic components and try to propose a conceptual framework of how the degradation of synaptic components via autophagy might impact synaptic function and contribute to synaptic plasticity.
Collapse
Affiliation(s)
- YongTian Liang
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany.
- NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
41
|
The Role of APOE and TREM2 in Alzheimer's Disease-Current Understanding and Perspectives. Int J Mol Sci 2018; 20:ijms20010081. [PMID: 30587772 PMCID: PMC6337314 DOI: 10.3390/ijms20010081] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. The extracellular deposits of Amyloid beta (Aβ) in the brain-called amyloid plaques, and neurofibrillary tangles-intracellular tau aggregates, are morphological hallmarks of the disease. The risk for AD is a complicated interplay between aging, genetic risk factors, and environmental influences. One of the Apolipoprotein E (APOE) alleles-APOEε4, is the major genetic risk factor for late-onset AD (LOAD). APOE is the primary cholesterol carrier in the brain, and plays an essential role in lipid trafficking, cholesterol homeostasis, and synaptic stability. Recent genome-wide association studies (GWAS) have identified other candidate LOAD risk loci, as well. One of those is the triggering receptor expressed on myeloid cells 2 (TREM2), which, in the brain, is expressed primarily by microglia. While the function of TREM2 is not fully understood, it promotes microglia survival, proliferation, and phagocytosis, making it important for cell viability and normal immune functions in the brain. Emerging evidence from protein binding assays suggests that APOE binds to TREM2 and APOE-containing lipoproteins in the brain as well as periphery, and are putative ligands for TREM2, thus raising the possibility of an APOE-TREM2 interaction modulating different aspects of AD pathology, potentially in an isoform-specific manner. This review is focusing on the interplay between APOE isoforms and TREM2 in association with AD pathology.
Collapse
|
42
|
Antioxidant and Neuroprotective Properties of Eugenia dysenterica Leaves. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3250908. [PMID: 30327710 PMCID: PMC6169239 DOI: 10.1155/2018/3250908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Eugenia dysenterica ex DC Mart. (Myrtaceae), popularly known as “cagaita,” is a Brazilian plant rich in polyphenols and other antioxidant compounds. Aiming to evaluate the potential use of cagaita in pathologies involving oxidative stress, such as neurodegenerative disorders, this study investigated its antioxidant potential and neuroprotective effect. Electrochemical approaches and aluminium-induced neurotoxicity were used to determine respectively in vitro and in vivo antioxidant properties of cagaita. Voltammetric experiments were carried out in a three-electrode system, whose working electrode consisted of glassy carbon. Male Swiss mice were administered with AlCl3 orally at a dose of 100 mg/kg/day and with cagaita leaf hydroalcoholic extract (CHE) at doses of 10, 100, and 300 mg/kg/day. The redox behavior of CHE presented similar features to that of quercetin, a widely known antioxidant standard. CHE prevented mouse memory impairment which resulted from aluminium intake. In addition, biochemical markers of oxidative stress (catalase, superoxide dismutase activity, and lipid peroxidation) were normalized by CHE treatment. The potential of CHE to prevent aluminium-induced neurotoxicity was reflected at the microscopic level, through the decrease of the number of eosinophilic necrosis phenotypes seen in treated groups. Moreover, the protective effect of CHE was similar to that of quercetin, which was taken as the standard. These findings showed that the CHE of cagaita leaves has a potential to protect the brain against oxidative-induced brain damage.
Collapse
|
43
|
PSEN1 p.Thr116Ile Variant in Two Korean Families with Young Onset Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19092604. [PMID: 30200536 PMCID: PMC6164060 DOI: 10.3390/ijms19092604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
An in depth study of PSEN1 mutation p.Thr116Ile (c.335C>T) is presented from two Korean families with autosomal dominant inheritance. Clinical manifestation of our patients included memory loss, attention deficits, visuospatial dysfunction, agnosia, aphasia, apraxia, and personality changes, which occurred in their 30s. PSEN1 Thr116Ile was initially discovered in an Italian patient and two French families with early onset Alzheimer’s disease (EOAD) with similar age of onset. To verify the possible pathogenic mechanisms of mutation, in silico predictions and 3D modeling were performed. Structure predictions revealed significant aberrations in first hydrophilic loop (HL-I loop). The hydrophobic isoleucine could alter the loop orientation through increased hydrophobic contacts with the surrounding amino acids. Mutation could destroy a possible hydrogen bond between tyrosine 115 and threonine 116, which may affect the loop conformation. HL-I was confirmed as a conservative region of PSEN1, which may be critical in PSEN1 functions. An additional pathogenic mutation, PSEN1 Thr116Asn, was also found for the same residue, where the patient presented young onset AD (YOND). Other mutations in HL-I loop, such as Tyr115His and Glu120Asp, were described in patients with YOND, supporting the critical role of HL-I loop in PSEN1 activity.
Collapse
|
44
|
Presynaptic neurodegeneration: CSP-α/DNAJC5 at the synaptic vesicle cycle and beyond. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|