1
|
Cevallos CA, White AL, Fazio BA, Wendt LS, Feng JW, Posfai D, Horton AL, Warrick JM, Quintero-Carmona OA. Transcriptomic Analysis of CAD Cell Differentiation. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001574. [PMID: 40331202 PMCID: PMC12053370 DOI: 10.17912/micropub.biology.001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
CAD cells were derived from Cath.a cells, a mouse central nervous system catecholaminergic cell line. Serum-starved CAD cells undergo morphological changes and resemble isolated neurons when observed by microscopy. We carried out an RNAseq transcriptomic analysis to examine differentiated CAD cells for expression signatures related to neuronal functions, identifying ~1900 transcripts whose expression changed with differentiation. Pathview analysis identified ~80 KEGG pathway gene sets that were differentially expressed, including upregulation of at least 13 neuron-related pathways. This dataset can be explored more deeply, allowing further investigation into expression changes relevant to studying neuronal functions in this easy-to-culture model system.
Collapse
Affiliation(s)
- Carlos A. Cevallos
- Department of Biology, University of Richmond, Richmond, Virginia, United States
| | - Anna Leigh White
- Department of Biology, University of Richmond, Richmond, Virginia, United States
| | - Brooke A. Fazio
- Department of Biology, University of Richmond, Richmond, Virginia, United States
| | - Lillian S. Wendt
- Department of Biology, University of Richmond, Richmond, Virginia, United States
| | - Jasmine W. Feng
- Department of Biology, University of Richmond, Richmond, Virginia, United States
| | - Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States
| | - April L. Horton
- Department of Biology, Bates College, Lewiston, Maine, United States
| | - John M. Warrick
- Department of Biology, University of Richmond, Richmond, Virginia, United States
| | | |
Collapse
|
2
|
Cevallos CA, White AL, Fazio BA, Wendt LS, Feng JW, Posfai D, Horton AL, Warrick JM, Quintero-Carmona OA. Transcriptomic Analysis of CAD Cell Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642086. [PMID: 40161715 PMCID: PMC11952321 DOI: 10.1101/2025.03.09.642086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CAD cells were derived from Cath.a cells, a mouse central nervous system catecholaminergic cell line. Serum-starved CAD cells undergo morphological changes and resemble isolated neurons when observed by microscopy. We carried out an RNAseq transcriptomic analysis to examine differentiated CAD cells for expression signatures related to neuronal functions, identifying ~1900 transcripts whose expression changed with differentiation. Pathview analysis identified ~80 KEGG pathway gene sets that were differentially expressed, including upregulation of at least 13 neuron-related pathways. This dataset can be explored more deeply, allowing further investigation into expression changes relevant to studying neuronal functions in this easy-to-culture model system.
Collapse
Affiliation(s)
| | | | - Brooke A Fazio
- Department of Biology, University of Richmond, VA, 23173
| | | | - Jasmine W Feng
- Department of Biology, University of Richmond, VA, 23173
| | - Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27708
| | - April L Horton
- Department of Biology, University of Richmond, VA, 23173
- Department of Biology, Bates College, Lewiston, ME, 04240
| | - John M Warrick
- Department of Biology, University of Richmond, VA, 23173
| | | |
Collapse
|
3
|
Yuan Y, Feng Z, Wang Z. Cluster Neuronal Firing Induced by Uniform Pulses of High-Frequency Stimulation on Axons in Rat Hippocampus. IEEE Trans Biomed Eng 2025; 72:1108-1120. [PMID: 39471114 DOI: 10.1109/tbme.2024.3488014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
OBJECTIVE High-frequency stimulation (HFS) of electrical pulse sequences has been used in various neuromodulation techniques to treat certain disorders. Here, we test the hypothesis that HFS sequences with purely periodic pulses could directly generate non-uniform firing in directly stimulated neurons. METHODS In vivo experiments were conducted in the rat hippocampal CA1 region. A stimulation electrode was placed on the alveus fibers, and a recording electrode array was inserted into the CA1 region upstream of the stimulation site. Antidromic-HFS (A-HFS) of 100 Hz pulses was applied to the alveus to antidromically activate the soma of pyramidal neurons around the recording site. By minimizing the interferences of population spikes, the evoked unit spikes of individual pyramidal neurons were obtained during A-HFS. Additionally, a computational model of pyramidal neuron was used to simulate the neuronal responses to A-HFS, revealing possible mechanisms underlying the different firing patterns. RESULTS Of the total 54 pyramidal neurons recorded during 2-min 100 Hz A-HFS, 38 (70%) neurons fired in a cluster pattern with alternating periods of intensive spikes and silence. The remaining 16 (30%) neurons fired in a non-cluster pattern with regular spikes. Modeling simulations showed that under the situation of HFS-induced intermittent block, conduction failure and generation failure of action potentials along the axons resulted in the cluster and non-cluster firing. CONCLUSION Sustained axonal A-HFS with periodic pulses can induce non-uniform firing in directly stimulated neurons. SIGNIFICANCE This finding provides new evidence for the nonlinear dynamics of neuronal firing, even under uniform stimulation.
Collapse
|
4
|
Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M. Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning. Nat Commun 2025; 16:662. [PMID: 39809755 PMCID: PMC11733012 DOI: 10.1038/s41467-025-55950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C. elegans males do not learn to avoid the pathogenic bacteria PA14 as efficiently and rapidly as hermaphrodites. Notably, neuronal activity following pathogen exposure was dimorphic: hermaphrodites generate robust representations, while males, in line with their behavior, exhibit contrasting representations. Transcriptomic and behavioral analysis revealed that the neuropeptide receptor npr-5, an ortholog of the mammalian NPY/NPF-like receptor, regulates male learning by modulating neuronal activity. Furthermore, we show the dependency of the males' decision-making on their sexual status and demonstrate the role of npr-5 as a modulator of incoming sensory cues. Taken together, these findings illustrate how neuromodulators drive sex-specific behavioral plasticity in response to a shared experience.
Collapse
Affiliation(s)
- Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
5
|
Berchet A, Petkantchin R, Markram H, Kanari L. Computational Generation of Long-range Axonal Morphologies. Neuroinformatics 2025; 23:3. [PMID: 39792293 PMCID: PMC11723904 DOI: 10.1007/s12021-024-09696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Long-range axons are fundamental to brain connectivity and functional organization, enabling communication between different brain regions. Recent advances in experimental techniques have yielded a substantial number of whole-brain axonal reconstructions. While previous computational generative models of neurons have predominantly focused on dendrites, generating realistic axonal morphologies is more challenging due to their distinct targeting. In this study, we present a novel algorithm for axon synthesis that combines algebraic topology with the Steiner tree algorithm, an extension of the minimum spanning tree, to generate both the local and long-range compartments of axons. We demonstrate that our computationally generated axons closely replicate experimental data in terms of their morphological properties. This approach enables the generation of biologically accurate long-range axons that span large distances and connect multiple brain regions, advancing the digital reconstruction of the brain. Ultimately, our approach opens up new possibilities for large-scale in-silico simulations, advancing research into brain function and disorders.
Collapse
Affiliation(s)
- Adrien Berchet
- Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland.
| | - Remy Petkantchin
- Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland
| | - Lida Kanari
- Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland
| |
Collapse
|
6
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
7
|
Brunner J, Arszovszki A, Tarcsay G, Szabadics J. Axons compensate for biophysical constraints of variable size to uniformize their action potentials. PLoS Biol 2024; 22:e3002929. [PMID: 39621771 PMCID: PMC11637306 DOI: 10.1371/journal.pbio.3002929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/12/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
Active conductances tune the kinetics of axonal action potentials (APs) to support specialized functions of neuron types. However, the temporal characteristics of voltage signals strongly depend on the size of neuronal structures, as capacitive and resistive effects slow down voltage discharges in the membranes of small elements. Axonal action potentials are particularly sensitive to these inherent biophysical effects because of the large diameter variabilities within individual axons, potentially implying bouton size-dependent synaptic effects. However, using direct patch-clamp recordings and voltage imaging in small hippocampal axons in acute slices from rat brains, we demonstrate that AP shapes remain uniform within the same axons, even across an order of magnitude difference in caliber. Our results show that smaller axonal structures have more Kv1 potassium channels that locally re-accelerate AP repolarization and contribute to size-independent APs, while they do not preclude the plasticity of AP shapes. Thus, size-independent axonal APs ensure consistent digital signals for each synapse within axons of same types.
Collapse
Affiliation(s)
- János Brunner
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | | | - Gergely Tarcsay
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - János Szabadics
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
9
|
Ziesel D, Nowakowska M, Scheruebel S, Kornmueller K, Schäfer U, Schindl R, Baumgartner C, Üçal M, Rienmüller T. Electrical stimulation methods and protocols for the treatment of traumatic brain injury: a critical review of preclinical research. J Neuroeng Rehabil 2023; 20:51. [PMID: 37098582 PMCID: PMC10131365 DOI: 10.1186/s12984-023-01159-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of disabilities resulting from cognitive and neurological deficits, as well as psychological disorders. Only recently, preclinical research on electrical stimulation methods as a potential treatment of TBI sequelae has gained more traction. However, the underlying mechanisms of the anticipated improvements induced by these methods are still not fully understood. It remains unclear in which stage after TBI they are best applied to optimize the therapeutic outcome, preferably with persisting effects. Studies with animal models address these questions and investigate beneficial long- and short-term changes mediated by these novel modalities. METHODS In this review, we present the state-of-the-art in preclinical research on electrical stimulation methods used to treat TBI sequelae. We analyze publications on the most commonly used electrical stimulation methods, namely transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS) and vagus nerve stimulation (VNS), that aim to treat disabilities caused by TBI. We discuss applied stimulation parameters, such as the amplitude, frequency, and length of stimulation, as well as stimulation time frames, specifically the onset of stimulation, how often stimulation sessions were repeated and the total length of the treatment. These parameters are then analyzed in the context of injury severity, the disability under investigation and the stimulated location, and the resulting therapeutic effects are compared. We provide a comprehensive and critical review and discuss directions for future research. RESULTS AND CONCLUSION: We find that the parameters used in studies on each of these stimulation methods vary widely, making it difficult to draw direct comparisons between stimulation protocols and therapeutic outcome. Persisting beneficial effects and adverse consequences of electrical simulation are rarely investigated, leaving many questions about their suitability for clinical applications. Nevertheless, we conclude that the stimulation methods discussed here show promising results that could be further supported by additional research in this field.
Collapse
Affiliation(s)
- D Ziesel
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - M Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - S Scheruebel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - K Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - U Schäfer
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - R Schindl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - C Baumgartner
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - M Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - T Rienmüller
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
10
|
Gao YQ, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE. Ricca's factors as mobile proteinaceous effectors of electrical signaling. Cell 2023; 186:1337-1351.e20. [PMID: 36870332 PMCID: PMC10098372 DOI: 10.1016/j.cell.2023.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as β-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jing Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Tang F, Fan J, Zhang X, Zou Z, Xiao D, Li X. The Role of Vti1a in Biological Functions and Its Possible Role in Nervous System Disorders. Front Mol Neurosci 2022; 15:918664. [PMID: 35711736 PMCID: PMC9197314 DOI: 10.3389/fnmol.2022.918664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Vesicle transport through interaction with t-SNAREs 1A (Vti1a), a member of the N-ethylmaleimide-sensitive factor attachment protein receptor protein family, is involved in cell signaling as a vesicular protein and mediates vesicle trafficking. Vti1a appears to have specific roles in neurons, primarily by regulating upstream neurosecretory events that mediate exocytotic proteins and the availability of secretory organelles, as well as regulating spontaneous synaptic transmission and postsynaptic efficacy to control neurosecretion. Vti1a also has essential roles in neural development, autophagy, and unconventional extracellular transport of neurons. Studies have shown that Vti1a dysfunction plays critical roles in pathological mechanisms of Hepatic encephalopathy by influencing spontaneous neurotransmission. It also may have an unknown role in amyotrophic lateral sclerosis. A VTI1A variant is associated with the risk of glioma, and the fusion product of the VTI1A gene and the adjacent TCF7L2 gene is involved in glioma development. This review summarizes Vti1a functions in neurons and highlights the role of Vti1a in the several nervous system disorders.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Dongqiong Xiao,
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xihong Li,
| |
Collapse
|
12
|
Cholvin T, Hainmueller T, Bartos M. The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron 2021; 109:3135-3148.e7. [PMID: 34619088 PMCID: PMC8516433 DOI: 10.1016/j.neuron.2021.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The medial entorhinal cortex (MEC)-hippocampal network plays a key role in the processing, storage, and recall of spatial information. However, how the spatial code provided by MEC inputs relates to spatial representations generated by principal cell assemblies within hippocampal subfields remains enigmatic. To investigate this coding relationship, we employed two-photon calcium imaging in mice navigating through dissimilar virtual environments. Imaging large MEC bouton populations revealed spatially tuned activity patterns. MEC inputs drastically changed their preferred spatial field locations between environments, whereas hippocampal cells showed lower levels of place field reconfiguration. Decoding analysis indicated that higher place field reliability and larger context-dependent activity-rate differences allow low numbers of principal cells, particularly in the DG and CA1, to provide information about location and context more accurately and rapidly than MEC inputs. Thus, conversion of dynamic MEC inputs into stable spatial hippocampal maps may enable fast encoding and efficient recall of spatio-contextual information. MEC inputs to the DG, CA3, and CA1 show different spatial coding properties MEC inputs remap even more strongly than hippocampal principal cells Hippocampal principal cell activity is more reliable and stable than their MEC inputs Hippocampal principal cells allow improved spatial and contextual readout
Collapse
Affiliation(s)
- Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany
| | - Thomas Hainmueller
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY 10016, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany.
| |
Collapse
|
13
|
Winlow W, Johnson AS. Nerve Impulses Have Three Interdependent Functions: Communication, Modulation, and Computation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| | - Andrew S. Johnson
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italia
| |
Collapse
|
14
|
Gonzalez Sabater V, Rigby M, Burrone J. Voltage-Gated Potassium Channels Ensure Action Potential Shape Fidelity in Distal Axons. J Neurosci 2021; 41:5372-5385. [PMID: 34001627 PMCID: PMC8221596 DOI: 10.1523/jneurosci.2765-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
The initiation and propagation of the action potential (AP) along an axon allows neurons to convey information rapidly and across distant sites. Although AP properties have typically been characterized at the soma and proximal axon, knowledge of the propagation of APs toward distal axonal domains of mammalian CNS neurons remains limited. We used genetically encoded voltage indicators (GEVIs) to image APs with submillisecond temporal resolution simultaneously at different locations along the long axons of dissociated hippocampal neurons from rat embryos of either sex. We found that APs became sharper and showed remarkable fidelity as they traveled toward distal axons, even during a high-frequency train. Blocking voltage-gated potassium channels (Kv) with 4-AP resulted in an increase in AP width in all compartments, which was stronger at distal locations and exacerbated during AP trains. We conclude that the higher levels of Kv channel activity in distal axons serve to sustain AP fidelity, conveying a reliable digital signal to presynaptic boutons.SIGNIFICANCE STATEMENT The AP represents the electrical signal carried along axons toward distant presynaptic boutons where it culminates in the release of neurotransmitters. The nonlinearities involved in this process are such that small changes in AP shape can result in large changes in neurotransmitter release. Since axons are remarkably long structures, any distortions that APs suffer along the way have the potential to translate into a significant modulation of synaptic transmission, particularly in distal domains. To avoid these issues, distal axons have ensured that signals are kept remarkably constant and insensitive to modulation during a train, despite the long distances traveled. Here, we uncover the mechanisms that allow distal axonal domains to provide a reliable and faithful digital signal to presynaptic terminals.
Collapse
Affiliation(s)
- Victoria Gonzalez Sabater
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Mark Rigby
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
15
|
Ding Q, Jia Y. Effects of temperature and ion channel blocks on propagation of action potential in myelinated axons. CHAOS (WOODBURY, N.Y.) 2021; 31:053102. [PMID: 34240929 DOI: 10.1063/5.0044874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Potassium ion and sodium ion channels play important roles in the propagation of action potentials along a myelinated axon. The random opening and closing of ion channels can cause the fluctuation of action potentials. In this paper, an improved Hodgkin-Huxley chain network model is proposed to study the effects of ion channel blocks, temperature, and ion channel noise on the propagation of action potentials along the myelinated axon. It is found that the chain network has minimum coupling intensity threshold and maximum tolerance temperature threshold that allow the action potentials to pass along the whole axon, and the blockage of ion channels can change these two thresholds. A striking result is that the simulated value of the optimum membrane size (inversely proportional to noise intensity) coincides with the area range of feline thalamocortical relay cells in biological experiments.
Collapse
Affiliation(s)
- Qianming Ding
- Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Ya Jia
- Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
16
|
Pease-Raissi SE, Chan JR. Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination. Neuron 2021; 109:1258-1273. [PMID: 33621477 PMCID: PMC8068592 DOI: 10.1016/j.neuron.2021.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022]
Abstract
Myelin, multilayered lipid-rich membrane extensions formed by oligodendrocytes around neuronal axons, is essential for fast and efficient action potential propagation in the central nervous system. Initially thought to be a static and immutable process, myelination is now appreciated to be a dynamic process capable of responding to and modulating neuronal function throughout life. While the importance of this type of plasticity, called adaptive myelination, is now well accepted, we are only beginning to understand the underlying cellular and molecular mechanisms by which neurons communicate experience-driven circuit activation to oligodendroglia and precisely how changes in oligodendrocytes and their myelin refine neuronal function. Here, we review recent findings addressing this reciprocal relationship in which neurons alter oligodendroglial form and oligodendrocytes conversely modulate neuronal function.
Collapse
Affiliation(s)
- Sarah E Pease-Raissi
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Johnson AS, Winlow W. Does the Brain Function as a Quantum Phase Computer Using Phase Ternary Computation? Front Physiol 2021; 12:572041. [PMID: 33959034 PMCID: PMC8093521 DOI: 10.3389/fphys.2021.572041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Here we provide evidence that the fundamental basis of nervous communication is derived from a pressure pulse/soliton capable of computation with sufficient temporal precision to overcome any processing errors. Signalling and computing within the nervous system are complex and different phenomena. Action potentials are plastic and this makes the action potential peak an inappropriate fixed point for neural computation, but the action potential threshold is suitable for this purpose. Furthermore, neural models timed by spiking neurons operate below the rate necessary to overcome processing error. Using retinal processing as our example, we demonstrate that the contemporary theory of nerve conduction based on cable theory is inappropriate to account for the short computational time necessary for the full functioning of the retina and by implication the rest of the brain. Moreover, cable theory cannot be instrumental in the propagation of the action potential because at the activation-threshold there is insufficient charge at the activation site for successive ion channels to be electrostatically opened. Deconstruction of the brain neural network suggests that it is a member of a group of Quantum phase computers of which the Turing machine is the simplest: the brain is another based upon phase ternary computation. However, attempts to use Turing based mechanisms cannot resolve the coding of the retina or the computation of intelligence, as the technology of Turing based computers is fundamentally different. We demonstrate that that coding in the brain neural network is quantum based, where the quanta have a temporal variable and a phase-base variable enabling phase ternary computation as previously demonstrated in the retina.
Collapse
Affiliation(s)
- Andrew S. Johnson
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italy
| | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Xiao Y, Yang J, Ji W, He Q, Mao L, Shu Y. A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology 2021; 185:108399. [PMID: 33400937 DOI: 10.1016/j.neuropharm.2020.108399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Midbrain dopamine neurons (DANs) regulate various brain functions such as motor control and motivation. Alteration of spiking activities of these neurons could contribute to severe brain disorders including Parkinson's disease and depression. Previous studies showed important roles of somatodendritic voltage-gated K+ channels (Kv) of DANs in governing neuronal excitability and dopamine release. However, it remains largely unclear about the biophysical properties and the function of Kv channels distributed at DAN axons. We performed whole-cell recordings from the axons of DANs in acute mouse midbrain and striatal slices. We detected both rapidly activating/inactivating Kv current (i.e. A-current) and rapidly activating but slowly inactivating current (i.e. D-current) in DAN axons. Pharmacological experiments with channel blockers revealed that these currents are predominantly mediated by Kv1.4 and Kv1.2 subunits, respectively. Blocking these currents could substantially prolong axonal action potentials (APs) via a reduction of their repolarization slope. Together, our results show that Kv channels mediating A- and D-currents shape AP waveforms in midbrain DAN axons, through this regulation they may control dopamine release at the axonal terminals. Therefore, these axonal Kv channels could be drug targets for brain disorders with abnormal dopamine release.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
20
|
Kamiya H, Debanne D. Editorial: Axon Neurobiology: Fine-Scale Dynamics of Microstructure and Function. Front Cell Neurosci 2020; 14:594361. [PMID: 33173470 PMCID: PMC7538658 DOI: 10.3389/fncel.2020.594361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Haruyuki Kamiya
- Department of Neurobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Dominique Debanne
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, UMR1072, INSERM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
21
|
Benamer N, Vidal M, Balia M, Angulo MC. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nat Commun 2020; 11:5151. [PMID: 33051462 PMCID: PMC7555533 DOI: 10.1038/s41467-020-18984-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine‐tuning of intracortical networks is unknown. Here we demonstrate that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits. The disruption of GABAergic synaptic signaling of oligodendrocyte precursor cells prior to myelination onset resulted in severe FSI myelination defects characterized by longer internodes and nodes, aberrant myelination of branch points and proximal axon malformation. Consequently, high-frequency FSI discharges as well as FSI-dependent postsynaptic latencies and strengths of excitatory neurons were reduced. These dysfunctions generated a strong excitation-inhibition imbalance that correlated with whisker-dependent texture discrimination impairments. FSI myelination is therefore critical for the function of mature cortical inhibitory circuits. Myelination optimizes conduction speed of excitatory neurons. However, whether myelination of interneurons (INs) refines cortical networks is unclear. Here, the authors show that INs myelination shapes feedforward inhibition of mouse cortical sensory circuits and impacts whisker-mediated behaviour.
Collapse
Affiliation(s)
- Najate Benamer
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France.
| | - Marie Vidal
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France
| | - Maddalena Balia
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France.,Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, F-33076, Bordeaux, France
| | - María Cecilia Angulo
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France. .,GHU PARIS psychiatrie & neurosciences, F-75014, Paris, France.
| |
Collapse
|
22
|
Lubetzki C, Sol-Foulon N, Desmazières A. Nodes of Ranvier during development and repair in the CNS. Nat Rev Neurol 2020; 16:426-439. [DOI: 10.1038/s41582-020-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
|
23
|
Dynamical mechanism for conduction failure behavior of action potentials related to pain information transmission. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Daur N, Zhang Y, Nadim F, Bucher D. Mutual Suppression of Proximal and Distal Axonal Spike Initiation Determines the Output Patterns of a Motor Neuron. Front Cell Neurosci 2019; 13:477. [PMID: 31708748 PMCID: PMC6819512 DOI: 10.3389/fncel.2019.00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal spike initiation at sites far from somatodendritic integration occurs in a range of systems, but its contribution to neuronal output activity is not well understood. We studied the interactions of distal and proximal spike initiation in an unmyelinated motor axon of the stomatogastric nervous system in the lobster, Homarus americanus. The peripheral axons of the pyloric dilator (PD) neurons generate tonic spiking in response to dopamine application. Centrally generated bursting activity and peripheral spike initiation had mutually suppressive effects. The two PD neurons and the electrically coupled oscillatory anterior burster (AB) neuron form the pacemaker ensemble of the pyloric central pattern generator, and antidromic invasion of central compartments by peripherally generated spikes caused spikelets in AB. Antidromic spikes suppressed burst generation in an activity-dependent manner: slower rhythms were diminished or completely disrupted, while fast rhythmic activity remained robust. Suppression of bursting was based on interference with the underlying slow wave oscillations in AB and PD, rather than a direct effect on spike initiation. A simplified multi-compartment circuit model of the pacemaker ensemble replicated this behavior. Antidromic activity disrupted slow wave oscillations by resetting the inward and outward current trajectories in each spike interval. Centrally generated bursting activity in turn suppressed peripheral spike initiation in an activity-dependent manner. Fast bursting eliminated peripheral spike initiation, while slower bursting allowed peripheral spike initiation to continue during the intervals between bursts. The suppression of peripheral spike initiation was associated with a small after-hyperpolarization in the sub-millivolt range. A realistic model of the PD axon replicated this behavior and showed that a sub-millivolt cumulative after-hyperpolarization across bursts was sufficient to eliminate peripheral spike initiation. This effect was based on the dynamic interaction between slow activity-dependent hyperpolarization caused by the Na+/K+-pump and inward rectification through the hyperpolarization-activated inward current, I h . These results demonstrate that interactions between different spike initiation sites based on spike propagation can shift the relative contributions of different types of activity in an activity-dependent manner. Therefore, distal axonal spike initiation can play an important role in shaping neural output, conditional on the relative level of centrally generated activity.
Collapse
Affiliation(s)
- Nelly Daur
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| | - Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
25
|
Byczkowicz N, Eshra A, Montanaro J, Trevisiol A, Hirrlinger J, Kole MHP, Shigemoto R, Hallermann S. HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. eLife 2019; 8:e42766. [PMID: 31496517 PMCID: PMC6733576 DOI: 10.7554/elife.42766] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical rhythmicity and excitability in the heart and brain, but the function of HCN channels at the subcellular level in axons remains poorly understood. Here, we show that the action potential conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels ensure reliable high-frequency firing and are strongly modulated by cAMP (EC50 40 µM; estimated endogenous cAMP concentration 13 µM). In addition, immunogold-electron microscopy revealed HCN2 as the dominating subunit in cerebellar mossy fibers. Computational modeling indicated that HCN2 channels control conduction velocity primarily by altering the resting membrane potential and are associated with significant metabolic costs. These results suggest that the cAMP-HCN pathway provides neuromodulators with an opportunity to finely tune energy consumption and temporal delays across axons in the brain.
Collapse
Affiliation(s)
- Niklas Byczkowicz
- Carl-Ludwig-Institute for Physiology, Medical FacultyUniversity LeipzigLeipzigGermany
| | - Abdelmoneim Eshra
- Carl-Ludwig-Institute for Physiology, Medical FacultyUniversity LeipzigLeipzigGermany
| | | | - Andrea Trevisiol
- Department of NeurogeneticsMax-Planck-Institute for Experimental MedicineGöttingenGermany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical FacultyUniversity LeipzigLeipzigGermany
- Department of NeurogeneticsMax-Planck-Institute for Experimental MedicineGöttingenGermany
| | - Maarten HP Kole
- Department of Axonal Signaling, Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdamNetherlands
- Cell Biology, Faculty of ScienceUniversity of UtrechtPadualaanNetherlands
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical FacultyUniversity LeipzigLeipzigGermany
| |
Collapse
|
26
|
Bullmann T, Radivojevic M, Huber ST, Deligkaris K, Hierlemann A, Frey U. Large-Scale Mapping of Axonal Arbors Using High-Density Microelectrode Arrays. Front Cell Neurosci 2019; 13:404. [PMID: 31555099 PMCID: PMC6742744 DOI: 10.3389/fncel.2019.00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Understanding the role of axons in neuronal information processing is a fundamental task in neuroscience. Over the last years, sophisticated patch-clamp investigations have provided unexpected and exciting data on axonal phenomena and functioning, but there is still a need for methods to investigate full axonal arbors at sufficient throughput. Here, we present a new method for the simultaneous mapping of the axonal arbors of a large number of individual neurons, which relies on their extracellular signals that have been recorded with high-density microelectrode arrays (HD-MEAs). The segmentation of axons was performed based on the local correlation of extracellular signals. Comparison of the results with both, ground truth and receiver operator characteristics, shows that the new segmentation method outperforms previously used methods. Using a standard HD-MEA, we mapped the axonal arbors of 68 neurons in <6 h. The fully automated method can be extended to new generations of HD-MEAs with larger data output and is estimated to provide data of axonal arbors of thousands of neurons within recording sessions of a few hours.
Collapse
Affiliation(s)
- Torsten Bullmann
- RIKEN Quantitative Biology Center, RIKEN, Kobe, Japan.,Graduate School of Informatics, Kyoto University, Kyoto, Japan.,Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Milos Radivojevic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Kosmas Deligkaris
- RIKEN Quantitative Biology Center, RIKEN, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Urs Frey
- RIKEN Quantitative Biology Center, RIKEN, Kobe, Japan.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,MaxWell Biosystems AG, Basel, Switzerland
| |
Collapse
|
27
|
Song X, Wang H, Chen Y, Lai YC. Emergence of an optimal temperature in action-potential propagation through myelinated axons. Phys Rev E 2019; 100:032416. [PMID: 31639929 DOI: 10.1103/physreve.100.032416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 06/10/2023]
Abstract
In biological organisms, an optimal temperature exists at which the system functioning is maximized or is most effective. To obtain a general and quantitative understanding of the emergence of the optimal temperature is a challenging task. We aim to gain insights into this significant problem in biological physics by addressing the problem of propagation of action potential in myelinated axons. In particular, we construct a Hodgkin-Huxley type of cortical, compartmental model to describe the nodes of Ranvier with coupling between a pair of neighboring compartments characterized by internodal conductance and investigate the effect of temperature on the propagation of the action potential. We conduct direct numerical simulations and develop a physical analysis by taking advantage of the spatially continuous approximation. We find that increasing the temperature requires a larger value of the critical internodal conductance for successful propagation. The striking finding is the spontaneous emergence of an optimal temperature in the sense that, for the propagation of a single action potential at a fixed value of the internodal conductance, the minimum average passage time for one node of Ranvier occurs at this temperature value. A remarkable phenomenon is that the value of the optimal temperature is similar to those of living biological systems observed in experiments.
Collapse
Affiliation(s)
- Xinlin Song
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Hengtong Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yong Chen
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Ying-Cheng Lai
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
28
|
Burke KJ, Bender KJ. Modulation of Ion Channels in the Axon: Mechanisms and Function. Front Cell Neurosci 2019; 13:221. [PMID: 31156397 PMCID: PMC6533529 DOI: 10.3389/fncel.2019.00221] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
The axon is responsible for integrating synaptic signals, generating action potentials (APs), propagating those APs to downstream synapses and converting them into patterns of neurotransmitter vesicle release. This process is mediated by a rich assortment of voltage-gated ion channels whose function can be affected on short and long time scales by activity. Moreover, neuromodulators control the activity of these proteins through G-protein coupled receptor signaling cascades. Here, we review cellular mechanisms and signaling pathways involved in axonal ion channel modulation and examine how changes to ion channel function affect AP initiation, AP propagation, and the release of neurotransmitter. We then examine how these mechanisms could modulate synaptic function by focusing on three key features of synaptic information transmission: synaptic strength, synaptic variability, and short-term plasticity. Viewing these cellular mechanisms of neuromodulation from a functional perspective may assist in extending these findings to theories of neural circuit function and its neuromodulation.
Collapse
Affiliation(s)
| | - Kevin J. Bender
- Neuroscience Graduate Program and Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Emmenegger V, Obien MEJ, Franke F, Hierlemann A. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs. Front Cell Neurosci 2019; 13:159. [PMID: 31118887 PMCID: PMC6504789 DOI: 10.3389/fncel.2019.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marie Engelene J. Obien
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Basel, Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
30
|
Panzera LC, Hoppa MB. Genetically Encoded Voltage Indicators Are Illuminating Subcellular Physiology of the Axon. Front Cell Neurosci 2019; 13:52. [PMID: 30881287 PMCID: PMC6406964 DOI: 10.3389/fncel.2019.00052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Everything we see and do is regulated by electrical signals in our nerves and muscle. Ion channels are crucial for sensing and generating electrical signals. Two voltage-dependent conductances, Na+ and K+, form the bedrock of the electrical impulse in the brain known as the action potential. Several classes of mammalian neurons express combinations of nearly 100 different varieties of these two voltage-dependent channels and their subunits. Not surprisingly, this variability orchestrates a diversity of action potential shapes and firing patterns that have been studied in detail at neural somata. A remarkably understudied phenomena exists in subcellular compartments of the axon, where action potentials initiate synaptic transmission. Ion channel research was catalyzed by the invention of glass electrodes to measure electrical signals in cell membranes, however, progress in the field of neurobiology has been stymied by the fact that most axons in the mammalian CNS are far too small and delicate for measuring ion channel function with electrodes. These quantitative measurements of membrane voltage can be achieved within the axon using light. A revolution of optical voltage sensors has enabled exploring important questions of how ion channels regulate axon physiology and synaptic transmission. In this review we will consider advantages and disadvantages of different fluorescent voltage indicators and discuss particularly relevant questions that these indicators can elucidate for understanding the crucial relationship between action potentials and synaptic transmission.
Collapse
Affiliation(s)
| | - Michael B. Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
31
|
Alpizar SA, Cho IH, Hoppa MB. Subcellular control of membrane excitability in the axon. Curr Opin Neurobiol 2019; 57:117-125. [PMID: 30784979 DOI: 10.1016/j.conb.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Ion channels are microscopic pore proteins in the membrane that open and close in response to chemical and electrical stimuli. This simple concept underlies rapid electrical signaling in the brain as well as several important aspects of neural plasticity. Although the soma accounts for less than 1% of many neurons by membrane area, it has been the major site of measuring ion channel function. However, the axon is one of the longest processes found in cellular biology and hosts a multitude of critical signaling functions in the brain. Not only does the axon initiate and rapidly propagate action potentials (APs) across the brain but it also forms the presynaptic terminals that convert these electrical inputs into chemical outputs. Here, we review recent advances in the physiological role of ion channels within the diverse landscape of the axon and presynaptic terminals.
Collapse
Affiliation(s)
- Scott A Alpizar
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States
| | - In Ha Cho
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States
| | - Michael B Hoppa
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States.
| |
Collapse
|
32
|
Abstract
Multiple mechanisms have been identified as relevant to plasticity, functional stability, and reliable processing across brain states. In the context of stability under "ever-changing conditions" (this Topic), the role of axons has been relatively under-investigated. The highly branched topologies of many axons, however, seem well designed to differentially recruit and regulate distributed postsynaptic groups, possibly in a state-dependent fashion. In this Perspective, I briefly discuss several examples of axon collateralization, and then some of the branch-specific features that might subserve differential recruitment and whole brain activation. An emerging principle is that the number of collaterals and number of target structures are not stereotyped. Rather, axons originating from one defined source typically send branches to diversified subsets of target areas. This could achieve heterogeneous inputs, with different degrees of synchronicity. Variability of neuronal responses has been suggested as inversely proportional to the degree of temporally correlated input. Increased input homogeneity, driven by sensory stimulation or behavioral conditions, is reported to reduce neuronal variability, with axon collateralization potentially having an important role.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
33
|
Bączyk M, Jankowska E. Long-term effects of direct current are reproduced by intermittent depolarization of myelinated nerve fibers. J Neurophysiol 2018; 120:1173-1185. [PMID: 29924713 DOI: 10.1152/jn.00236.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direct current (DC) potently increases the excitability of myelinated afferent fibers in the dorsal columns, both during DC polarization of these fibers and during a considerable (>1 h) postpolarization period. The aim of the present study was to investigate whether similarly long-lasting changes in the excitability of myelinated nerve fibers in the dorsal columns may be evoked by field potentials following stimulation of peripheral afferents and by subthreshold epidurally applied current pulses. The experiments were performed in deeply anesthetized rats. The effects were monitored by changes in nerve volleys evoked in epidurally stimulated hindlimb afferents and in the synaptic actions of these afferents. Both were found to be facilitated during as well as following stimulation of a skin nerve and during as well as following epidurally applied current pulses of 5- to 10-ms duration. The facilitation occurring ≤2 min after skin nerve stimulation could be linked to both primary afferent depolarization and large dorsal horn field potentials, whereas the subsequent changes (up to 1 h) were attributable to effects of the field potentials. The findings lead to the conclusion that the modulation of spinal activity evoked by DC does not require long-lasting polarization and that relatively short current pulses and intrinsic field potentials may contribute to plasticity in spinal activity. These results suggest the possibility of enhancing the effects of epidural stimulation in human subjects by combining it with polarizing current pulses and peripheral afferent stimulation and not only with continuous DC. NEW & NOTEWORTHY The aim of this study was to define conditions under which a long-term increase is evoked in the excitability of myelinated nerve fibers. The results demonstrate that a potent and long-lasting increase in the excitability of afferent fibers traversing the dorsal columns may be induced by synaptically evoked intrinsic field as well as by epidurally applied intermittent current pulses. They thus provide a new means for the facilitation of the effects of epidural stimulation.
Collapse
Affiliation(s)
- M Bączyk
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - E Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|