1
|
Patankar S, Gorde A, Patankar S, Raje R, Devanpally C, Ausekar P, Patil G, Chitale S. A prospective, randomized, open label, parallel group, comparative clinical trial to evaluate the safety and efficacy of combination of herbal oral capsule and rectal medication to improve gut health of type 2 diabetic patients having chronic kidney disease (CKD). J Ayurveda Integr Med 2025; 16:100992. [PMID: 40022890 PMCID: PMC11914997 DOI: 10.1016/j.jaim.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major health concern globally, with more than 850 million people suffering from it. Several studies have been carried out to reduce inflammation in CKD patients; and to study the relationship between gut microbiota and inflammation. OBJECTIVE The effect of herbal formulations to improve the gut flora and reduce inflammation has not been studied earlier. The study aims to evaluate effect of herbal formulation combined with standard of care (SOC) treatment compared to SOC. METHODS A prospective, randomized, parallel group clinical trial was planned on 90 patients split equally into standard of care (SOC) with herbal treatment (IP) and only SOC groups. The change in the abdominal pain score, percent change in the pathogenic and non-pathogenic microbiome were the key endpoints of interest. The safety assessment was in terms of adverse events, changes in hematological and biochemical parameters. RESULTS The demographic and other patient characteristics showed statistically non-significant differences between two groups. On day 90, the median abdominal score in SOC + IP group (2.00) was significantly lower than that of SOC group (3.00) (p = 0.002). The quality of life score improved significantly in SOC + IP group (p < 0.001), unlike SOC group. There was significant reduction in pathogenic microbes in SOC + IP group; however, the reduction in non-pathogenic microbes was non-significant in this group. The adverse events (AEs) were in mild form, and the proportion of patients with AEs differed non-significantly between two groups. CONCLUSION The IP supplementation along with SOC significantly improved the GUT micro flora, and improved the overall quality of life of CKD patients. This treatment combination can be practiced for effective patient management.
Collapse
Affiliation(s)
- Suresh Patankar
- Ace Hospital and Research Centre, ASP Medical Foundation, Pune -411 004 (MS) India; Shripad Medisearch Pvt. Ltd., Pune, India; Dept. of Integrative Medicine - Maharashtra University of Health Sciences, Nashik, India; Aarogya Bharati, India.
| | - Anupama Gorde
- Ace Hospital and Research Centre, ASP Medical Foundation, Pune -411 004 (MS) India; Sinhgad Dental College and Hospital, Pune, India
| | - Sagar Patankar
- Ace Hospital and Research Centre, ASP Medical Foundation, Pune -411 004 (MS) India; Shripad Medisearch Pvt. Ltd., Pune, India
| | - Rajesh Raje
- Ace Hospital and Research Centre, ASP Medical Foundation, Pune -411 004 (MS) India; Shripad Medisearch Pvt. Ltd., Pune, India
| | | | | | | | | |
Collapse
|
2
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
3
|
Rao DMS, Mishra J, Vasudeo Damodar S, Gajendra Bagal J, S VK, Ammu Joseph R, Karra T, Shrivastava R. Uncovering the Role of Indian Medicinal Botanicals in COVID-19 Prevention and Management: A Review. Cureus 2024; 16:e75920. [PMID: 39830533 PMCID: PMC11739816 DOI: 10.7759/cureus.75920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Indian traditional medicine, based on Ayurveda and Siddha, has become one of the global searches for complementary approaches to conventional interventions during the COVID-19 pandemic. This review presents the antiviral, immune-boosting, and anti-inflammatory properties of some medicinal key plants such as Tulsi (Ocimum sanctum), Neem (Azadirachta indica), Ashwagandha (Withania somnifera), Amla (Emblica officinalis), and Giloy (Tinospora cordifolia). Tulsi appears to inhibit viral replication, Neem increases immune cell synthesis, while Ashwagandha regulates inflammation and stress responses. Vitamin C-rich Amla increases immune defense while also providing protection against oxidative stress and Giloy modulates immune response and its activity, acting as an overall resilience against infection. However, the clinical integration of these plants into mainstream healthcare is hindered by the absence of robust clinical trials, standardization of phytochemicals, and the absence of global standard protocols. In order to establish safety and efficacy, substantial research is needed, including large-scale randomized clinical trials and sophisticated bioinformatics techniques. Indian medicinal plants provide innovative, sustainable, and holistic solutions to global health crises, such as the COVID-19 pandemic, by bridging traditional knowledge with modern scientific frameworks.
Collapse
Affiliation(s)
- D Meena S Rao
- Department of Botany, R. K. Talreja College of Arts, Science and Commerce, Thane, IND
| | - Jyotsana Mishra
- College of Forestry, Mahatma Gandhi University of Horticulture and Forestry, Sankra-Patan, IND
| | | | | | - Vinayaka K S
- Department of Botany, Sri Venkataramana Swamy College, Vidyagiri, IND
| | | | - Theresa Karra
- Department of Zoology, St. Joseph's University, Bengaluru, IND
| | | |
Collapse
|
4
|
Ilyas S, Manan A, Choi Y, Lee D. Exploring the therapeutic potential of Emblica officinalis natural compounds against hepatocellular carcinoma (HCC): a computational approach. EXCLI JOURNAL 2024; 23:1440-1458. [PMID: 39790561 PMCID: PMC11713998 DOI: 10.17179/excli2024-7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer related deaths globally. Despite advancements in treatment, drug resistance and adverse side effects have spurred the search for novel therapeutic strategies. This study aimed to investigate how the Emblica officinalis can inhibit key targets involved in HCC progression. Screening of the reported compounds based on ADMET profile and identification of protein targets was done using the literature survey. Protein targets were divided into four major categories including inflammatory, angiogenic, anti-apoptotic as well as proliferative targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the functional roles of genes. The STRING database was used to analyze the protein-protein interactions (PPI) of target genes. Docking was employed to predict the binding affinity of compounds with target proteins. Subsequently, MD simulation was conducted to assess the stability and dynamics of protein-ligand complexes. A total of 22 active compounds with 25 protein targets have been identified. These targets have a major role in controlling biological processes such as apoptosis, signaling and cellular interactions. KEGG pathway analysis showed that cancer, atherosclerosis, PI3K-Akt, EGFR tyrosine kinase inhibitor resistance and MAPK signaling pathways are mainly involved. Molecular docking by Mcule platform demonstrated that emblicanin A, punigluconin, penta-o-galloylglucose and quercetin showed higher binding energy affinities with BCL2, BCL2L1, c-Met, HSP70, EGFR, FGFR1, PTGS2 and TNFα. MD simulation revealed conformational changes, flexibility, interactions and compactness of protein-ligand complex. The stable protein binding interactions suggest the potential of compounds to inhibit the functions of target proteins. These results suggest that compounds derived from E. officinalis may have the therapeutic potential for treating HCC. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yeojin Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| |
Collapse
|
5
|
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin HS, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024; 13:3785. [PMID: 39682858 DOI: 10.3390/foods13233785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body's antioxidant system by consuming the right balance of natural ingredients in the diet.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali 524201, Andhra Pradesh, India
| | - Bellamkonda Ramesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research (A Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
- Department of Biotechnology and Microbiology, School of Natural Sciences, Techno India University, Agartala 799004, Tripura, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
6
|
Akhbari M, Firooz A, Rahimi R, Shirzad M, Esmaealzadeh N, Shirbeigi L. The effect of an oral product containing Amla fruit (Phyllanthus emblica L.) on female androgenetic alopecia: A randomized controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116958. [PMID: 37487962 DOI: 10.1016/j.jep.2023.116958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amla (Phyllanthus emblica) fruit has been emphasized as a hair tonic in Traditional Persian Medicine (TPM) and recommended for hair loss orally and topically. AIM OF THE STUDY This study aimed to investigate the effect of an oral product containing Amla fruit on Female Androgenetic Alopecia (FAGA). MATERIALS AND METHODS This study was a triple-blind, randomized, controlled clinical trial. Sixty women with FAGA were randomly assigned into two groups of thirty. The intervention group received ten cc Amla syrup thrice a day for 12 weeks. The second group received a placebo with the same dose and duration. Hair growth parameters were analyzed using TrichoScan before and after 12 weeks of intervention. Physician and patient satisfaction were assessed using the CGI-I and PGI-I questionnaires, respectively. RESULTS Twenty-seven participants in the intervention group and 25 in the placebo group completed the trial. Based on our findings, the anagen-to-telogen ratio increased significantly in the intervention group compared with the group who received placebo (F = 10.4, P = 0.002). Physician and patient satisfaction increased in the amla group compared with placebo at 12th weeks of intervention (P<0.001), (P<0.001). The formula had no remarkable side effects. Only one case of mild constipation was reported in one of the participants after one month of consuming Amla syrup. CONCLUSION The results of this study demonstrated that Amla syrup could help treat androgenic hair loss in women and increase the anagen phase. Further studies are needed to evaluate this potential treatment for FAGA.
Collapse
Affiliation(s)
- Marzieh Akhbari
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Firooz
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Meysam Shirzad
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Laila Shirbeigi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Nenni M, Karahuseyin S. Medicinal Plants, Secondary Metabolites, and Their Antiallergic Activities. BIOTECHNOLOGY OF MEDICINAL PLANTS WITH ANTIALLERGY PROPERTIES 2024:37-126. [DOI: 10.1007/978-981-97-1467-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
9
|
Brown PDS, Ketter N, Vis-Dunbar M, Sakakibara BM. Clinical effects of Emblica officinalis fruit consumption on cardiovascular disease risk factors: a systematic review and meta-analysis. BMC Complement Med Ther 2023; 23:190. [PMID: 37296402 DOI: 10.1186/s12906-023-03997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/13/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Emblica officinalis (EO) fruit consumption has been found to have a beneficial effect on cardiovascular disease (CVD) physiological risk factors in preliminary clinical intervention trials; however, questions remain regarding the overall effectiveness of EO on CVD risk. The purpose of this systematic review and meta-analysis is to: 1) systematically describe the clinical research examining EO; and 2) quantitatively assess the effects of EO on CVD physiological risk factors. METHODS The Pubmed, Embase, Web of Science, and Google Scholar electronic platforms were searched for relevant randomized controlled trials (RCTs) published until April 7, 2021. Studies were included if they involved adults (age ≥ 18 years) ingesting a form of EO fruit; included blood lipids, blood pressure, and/or inflammatory biomarkers as outcomes; had clearly defined intervention and control treatments with pre- and post-intervention data; were peer-reviewed; and were written in English. Studies were excluded if they compared EO with another risk reduction intervention without a usual care control group. RCTs were assessed for methodological quality using the Cochrane risk-of-bias version 2 (ROB2) tool, qualitatively described, and quantitatively evaluated using random and fixed effect meta-analysis models. RESULTS A total of nine RCTs (n = 535 participants) were included for review. Included studies followed parallel-group (n = 6) and crossover (n = 3) designs, with EO dosage ranging from 500 mg/day to 1500 mg/day, and treatment duration ranging from 14 to 84 days. Meta-analyses revealed EO to have a significant composite effect at lowering low-density lipoprotein cholesterol (LDL-C; Mean difference (MD) = -15.08 mg/dL [95% Confidence interval (CI) = -25.43 to -4.73], I2 = 77%, prediction interval = -48.29 to 18.13), very low-density lipoprotein cholesterol (VLDL-C; MD = -5.43 mg/dL [95% CI = -8.37 to -2.49], I2 = 44%), triglycerides (TG; MD = -22.35 mg/dL [95% CI = -39.71 to -4.99], I2 = 62%, prediction interval = -73.47 to 28.77), and high-sensitivity C-reactive protein (hsCRP; MD = -1.70 mg/L [95% CI = -2.06 to -1.33], I2 = 0%) compared with placebo. CONCLUSIONS Due to statistical and clinical heterogeneity in the limited number of clinical trials to date, the promising effects of EO on physiologic CVD risk factors in this review should be interpreted with caution. Further research is needed to determine if EO offers an efficacious option for primary or secondary prevention of CVD as either monotherapy or adjunct to evidence-based dietary patterns and/or standard pharmacotherapy.
Collapse
Affiliation(s)
- Paul D S Brown
- Southern Medical Program, Faculty of Medicine, University of British Columbia Okanagan Campus, 1088 Discovery Avenue, Kelowna, BC, V1V 1V7, Canada
| | - Nicole Ketter
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia Okanagan Campus, 3187 University Way, ASC 413, Kelowna, BC, V1V 1V7, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia Okanagan Campus, 1088 Discovery Avenue, Kelowna, BC, V1V 1V7, Canada
| | - Mathew Vis-Dunbar
- Southern Medical Program, Faculty of Medicine, University of British Columbia Okanagan Campus, 1088 Discovery Avenue, Kelowna, BC, V1V 1V7, Canada
| | - Brodie M Sakakibara
- Southern Medical Program, Faculty of Medicine, University of British Columbia Okanagan Campus, 1088 Discovery Avenue, Kelowna, BC, V1V 1V7, Canada.
- Centre for Chronic Disease Prevention and Management, University of British Columbia Okanagan Campus, 1088 Discovery Avenue, Kelowna, BC, V1V 1V7, Canada.
- Department of Occupational Science and Occupational Therapy, University of British Columbia, T325 - 2211 , Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
10
|
Vilairat C, Kobtrakul K, Vimolmangkang S. Enhanced Physicochemical Stability of the L-DOPA Extract of Mucuna pruriens Seeds by Adding Phyllanthus emblica. Molecules 2023; 28:molecules28041573. [PMID: 36838562 PMCID: PMC9961372 DOI: 10.3390/molecules28041573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Levodopa (L-DOPA) is an essential drug for the treatment of Parkinson's disease. Currently, L-DOPA can be produced by chemical synthesis and can also be found naturally in many herbs, especially Mucuna Pruriens (MP). According to clinical research, the MP extract containing L-DOPA for the treatment of Parkinson's disease could reduce side effects more than the synthetic one. Unfortunately, MP extracts can be easily degraded. Changes in physical and chemical properties such as the appearance (color, melt, solid lump) and the reduction of L-DOPA content in the extract were commonly observed. Therefore, it is necessary to develop an extraction procedure to stabilize the extract of L-DOPA. This study attempted to enhance the extraction process by modifying the traditional acidification approach using hydrochloric acid, citric acid, or ascorbic acid. According to the stability test results, using Phyllanthus emblica water (PEW) as a solvent improved the preservative properties more than other solvents. The color of the PEW-MP powder changed slightly after 12 months of accelerated storage, but the amount of L-DOPA remained the highest (73.55%). Moreover, L-DOPA was only detected in MP and PEW-MP, but not PEW alone (the HPTLC chromatogram at Rf 0.48 and the HPLC chromatogram at Rt 6.0 min). The chemical profiles of PEW and L-DOPA observed in the chromatograms indicated that they are independently separated. As a result, they can be applied to a quality control process. Therefore, PEW was proven to be a powerful solvent for L-DOPA herbal extract that could be readily used as a raw material for herbal products.
Collapse
Affiliation(s)
- Chayarit Vilairat
- Graduate Program in Pharmaceutical Science and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khwanlada Kobtrakul
- Graduate Program in Pharmaceutical Science and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Center of Excellence in Plant-Produced Pharmaceuticals, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-2188-358
| |
Collapse
|
11
|
Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010064. [PMID: 36671636 PMCID: PMC9854976 DOI: 10.3390/bioengineering10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.
Collapse
|
12
|
Telles S, Sharma SK, Gandharva K, Prasoon K, Balkrishna A. Yoga Practice and Choices of Foods, Physical Activity, and Leisure: A Convenience Sampling Survey from India. Int J Yoga 2023; 16:20-26. [PMID: 37583541 PMCID: PMC10424278 DOI: 10.4103/ijoy.ijoy_195_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 08/17/2023] Open
Abstract
Background Previous surveys from countries other than India reported positive health behaviors in yoga practitioners. The present study aimed to determine with respect to yoga practitioners in India: (i) percentages of yoga practitioners who consumed specific foods, had additional physical activity and leisure activity, (ii) the association between these choices and their yoga practice, and (iii) the association of yoga with adding or avoiding specific foods and with meal timings in a day. Materials and Methods This convenience hybrid-mode sampling survey was conducted on 551 yoga-experienced persons. Results (1) Yoga practitioner respondents ate fruits and vegetables regularly (62.1%), did not consume animal source products (69.2%), alcohol (98.0%), or tobacco (98.4%), had a regular physical activity other than yoga (77.5%) and leisure activities (92.2%). (2) More than 150 min/week of yoga practice and experience of yoga exceeding 60 months was (a) significantly associated with (i) regular consumption of fruits and vegetables, (ii) lower consumption of sugar-sweetened beverages, animal source foods, tobacco, and alcohol (P < 0.05, Chi-square test) and (b) not associated with physical activity or leisure activities (P > 0.05, Chi-square test). (3) Yoga practitioners excluded sugar-sweetened beverages, animal-source foods and fast foods from their diet, whereas they added fruits, vegetables, and plant-based juices to their diet, with earlier first and last meals for the day. Conclusion In India, yoga practitioner respondents' choices for foods, physical activity, and leisure conform to accepted positive health behaviors. The exclusion of animal-source foods emphasizes the need for well-planned and fortified diets among vegan yoga practitioners.
Collapse
Affiliation(s)
- Shirley Telles
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Sachin Kumar Sharma
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Kumar Gandharva
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Yoga, University of Patanjali, Haridwar, Uttarakhand, India
| | - Kumari Prasoon
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Yoga, University of Patanjali, Haridwar, Uttarakhand, India
| | - Acharya Balkrishna
- Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Yoga, University of Patanjali, Haridwar, Uttarakhand, India
| |
Collapse
|
13
|
Wijewardhana U, Jayasinghe M, Wijesekara I, Ranaweera KKDS. Zingiber officinale, Phyllanthus emblica, Cinnamomum verum, and Curcuma longa to Prevent Type 2 Diabetes: An Integrative Review. Curr Diabetes Rev 2023; 19:e241122211183. [PMID: 36424773 DOI: 10.2174/1573399819666221124104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus has become a global pandemic progressively rising and affecting almost every household in all world regions. Diet is a significant root cause of type II diabetes; thus, the significance of dietary interventions in preventing and managing the disease cannot be neglected. Lowering the glycemic impact of diet is an alternative way of managing type II diabetes while improving insulin sensitivity. Medicinal plants are rich in therapeutic phytochemicals which possess hypoglycemic properties. Therefore, it could be speculated that the glycemic impact of diet can be reduced by adding hypoglycemic plant ingredients without altering the sensory properties of food. The main aim of this review is to discuss dietary interventions to manage diabetes and summarize available information on the hypoglycemic properties of four prime herbs of Asian origin. This article collected, tabulated, and summarized groundbreaking reveals from promising studies. This integrative review provides information on the hypoglycemic properties of ginger, Indian gooseberry, cinnamon, and turmeric and discusses the possibility of those herbs reducing the glycemic impact of a diet once incorporated. Further research should be done regarding the incorporation of these herbs successfully into a regular diet.
Collapse
Affiliation(s)
- Uththara Wijewardhana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madhura Jayasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K K D S Ranaweera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
14
|
Functional and Nutraceutical Significance of Amla ( Phyllanthus emblica L.): A Review. Antioxidants (Basel) 2022; 11:antiox11050816. [PMID: 35624683 PMCID: PMC9137578 DOI: 10.3390/antiox11050816] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Phyllanthus emblica L. (also popularly known as amla) is a tree native to the India and Southeast Asia regions that produces fruits rich in bioactive compounds that could be explored as part of the increasing interest in naturally occurring compounds with biological activity. Thus, this review aims to highlight the nutritional aspects, rich phytochemistry and health-promoting effects of amla. Scientific evidence indicates that polyphenols are central components in fruits and other sections of the amla tree, as well as vitamin C. The rich composition of polyphenol and vitamin C imparts an important antioxidant activity along with important in vivo effects that include improved antioxidant status and activity of the endogenous antioxidant defense system. Other potential health benefits are the anti-hyperlipidemia and antidiabetic activities as well as the anticancer, anti-inflammatory, digestive tract and neurological protective activities. The promising results provided by the studies about amla bioactive compounds support their potential role in assisting the promotion of health and prevention of diseases.
Collapse
|
15
|
Edge Detection Aided Geometrical Shape Analysis of Indian Gooseberry (Phyllanthus emblica) for Freshness Classification. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Joshi MB, Kamath A, Nair AS, Yedehali Thimmappa P, Sriranjini SJ, Gangadharan GG, Satyamoorthy K. Modulation of neutrophil (dys)function by Ayurvedic herbs and its potential influence on SARS-CoV-2 infection. J Ayurveda Integr Med 2022; 13:100424. [PMID: 33746457 PMCID: PMC7962552 DOI: 10.1016/j.jaim.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, traditional medicines of Ayurveda have been in use to manage infectious and non-infectious diseases. The key embodiment of traditional medicines is the holistic system of approach in the management of human diseases. SARS-CoV-2 (COVID-19) infection is an ongoing pandemic, which has emerged as the major health threat worldwide and is causing significant stress, morbidity and mortality. Studies from the individuals with SARS-CoV-2 infection have shown significant immune dysregulation and cytokine overproduction. Neutrophilia and neutrophil to lymphocyte ratio has been correlated to poor outcome due to the disease. Neutrophils, component of innate immune system, upon stimulation expel DNA along with histones and granular proteins to form extracellular traps (NETs). Although, these DNA lattices possess beneficial activity in trapping and eliminating pathogens, NETs may also cause adverse effects by inducing immunothrombosis and tissue damage in diseases including Type 2 Diabetes and atherosclerosis. Tissues of SARS-CoV-2 infected subjects showed microthrombi with neutrophil-platelet infiltration and serum showed elevated NETs components, suggesting large involvement and uncontrolled activation of neutrophils leading to pathogenesis and associated organ damage. Hence, traditional Ayurvedic herbs exhibiting anti-inflammatory and antioxidant properties may act in a manner that might prove beneficial in targeting over-functioning of neutrophils and there by promoting normal immune homeostasis. In the present manuscript, we have reviewed and discussed pathological importance of NETs formation in SARS-CoV-2 infections and discuss how various Ayurvedic herbs can be explored to modulate neutrophil function and inhibit NETs formation in the context of a) anti-microbial activity to enhance neutrophil function, b) immunomodulatory effects to maintain neutrophil mediated immune homeostasis and c) to inhibit NETs mediated thrombosis.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana Kamath
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Sitaram J Sriranjini
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - G G Gangadharan
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
17
|
Prabhakar P. Role of Indian fruits in the prevention and management of hypertension. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.4103/jpcs.jpcs_63_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
18
|
Phochantachinda S, Chatchaisak D, Temviriyanukul P, Chansawang A, Pitchakarn P, Chantong B. Ethanolic Fruit Extract of Emblica officinalis Suppresses Neuroinflammation in Microglia and Promotes Neurite Outgrowth in Neuro2a Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6405987. [PMID: 34539802 PMCID: PMC8443350 DOI: 10.1155/2021/6405987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Inhibiting neuroinflammation and modulating neurite outgrowth could be a promising strategy to prevent neurological disorders. Emblica officinalis (EO) may be a potent agent against them. Although EO extract reportedly has anti-inflammatory properties in macrophages, there is limited knowledge about its neuroprotective activity by suppressing microglia-mediated proinflammatory cytokine production and inducing neurite outgrowth. The present study aimed to elucidate the effect of EO fruit extract on the lipopolysaccharide- (LPS-) induced neuroinflammation using microglial (BV2) and neuroblastoma (Neuro2a) cells. The results demonstrated that, in LPS-treated BV2 cells, EO fruit extract reduced nitric oxide, interleukin-6, and tumor necrotic factor-α production. It also enhanced the neurite length of Neuro2a cells, which was linked to the upregulation of TuJ1 and MAP2 expressions. In conclusion, these findings indicate that the ethanolic extract of EO fruits has promising neuroprotective potential to exhibit antineuroinflammation activity and accelerative effect on neurite outgrowth in vitro. Therefore, EO fruit extract can be considered a novel herbal medicine candidate for managing neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
19
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
20
|
Ahmed S, Ding X, Sharma A. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113829. [PMID: 33465446 DOI: 10.1016/j.jep.2021.113829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda remains the classical and comprehensive part of the ancient Indian medicine system for well-being promotive, disease preventive, and revival approach for the human body. Triphala Rasayana is mentioned in Ayurveda, comprising fruits of three plant species viz. Phyllanthus emblica L. (P. emblica), Terminalia chebula Retz (T. chebula), and Terminalia bellirica Roxb (T.bellirica). Triphala Rasayana has been utilized in various traditional medicine systems, viz., Ayurveda, Siddha, and Unani. Traditionally Rasayana based drugs are utilized in different kinds of diseases without pathophysiological associations as indicated by current medication. Various medicinal attributes of Triphala Rasayana include antioxidant, anticancer, antidiabetic, antimicrobial, immunomodulatory, and anticataract and is also considered as a pillar for gastrointestinal treatment, specifically in functional gastrointestinal disorders (FGIDs). Due to Rasayana's accessible mode of administration, availability, and affordability, there is an increase in its global acceptance. AIM OF REVIEW This review article summarizes the scientific validation, traditional uses, bioactive compounds, and ethnopharmacological properties of Triphala Rasayana. It also documents recent data on in vivo and in vitro pharmacological studies and clinical effects of Triphala Rasayana. MATERIAL AND METHOD A literature review is carried out using PubMed, ScienceDirect, Scopus, web of science, Ayush Research Portal, and Clinical Trials Registry-India. In addition to an electronic search, traditional ayurvedic texts and books were used as sources of information. RESULTS Traditionally, "Triphala Rasayana" is classified as a tridoshic rasayana and one of the most well-studied ayurvedic Rasayana. It showed various pharmacological activities such as anticancer, antioxidant, antibacterial, immunomodulatory, cardioprotective, and antidiabetic. Besides this, Rasayana has reported ethnopharmacological activities such as antimicrobial, anticataract, wound healing, and radioprotection. It has shown a good impact on the gastrointestinal tract (GIT) system with the reported pharmacological activities in gastrointestinal disorders such as constipation, gastric ulcer, and inflammatory bowel disease (IBD). Phytochemical studies of Triphala Rasayana revealed chemical constituents like gallic acid, ellagic acid, chebulic acid, chebulinic acid, methyl gallate, emblicanin A, and emblicanin B. Additionally, clinical studies found Triphala Rasayana to be effective against diabetes, constipation, and obesity. CONCLUSION The present review revealed that Triphala Rasayana may treat a diverse range of diseases, especially GIT disorders. Considering the beneficial properties of Triphala Rasayana and it's proven non-toxic nature could be a source of rejuvenation in contemporary healthcare. Nevertheless, its clinical data effectively provided precious signals to correlate ayurvedic biology and modern medicine.
Collapse
Affiliation(s)
- Suhail Ahmed
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Xianting Ding
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Alok Sharma
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
21
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
22
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|