1
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
2
|
Badjakov I, Dincheva I, Vrancheva R, Georgiev V, Pavlov A. Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:17-49. [PMID: 38319391 DOI: 10.1007/10_2023_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.
Collapse
Affiliation(s)
| | | | - Radka Vrancheva
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, Plovdiv, Bulgaria
| | - Vasil Georgiev
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Atanas Pavlov
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, Plovdiv, Bulgaria
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|
3
|
Wang Y, Wei W, Du W, Cai J, Liao Y, Lu H, Kong B, Zhang Z. Deep-Learning-Based Mixture Identification for Nuclear Magnetic Resonance Spectroscopy Applied to Plant Flavors. Molecules 2023; 28:7380. [PMID: 37959799 PMCID: PMC10648966 DOI: 10.3390/molecules28217380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Nuclear magnetic resonance (NMR) is a crucial technique for analyzing mixtures consisting of small molecules, providing non-destructive, fast, reproducible, and unbiased benefits. However, it is challenging to perform mixture identification because of the offset of chemical shifts and peak overlaps that often exist in mixtures such as plant flavors. Here, we propose a deep-learning-based mixture identification method (DeepMID) that can be used to identify plant flavors (mixtures) in a formulated flavor (mixture consisting of several plant flavors) without the need to know the specific components in the plant flavors. A pseudo-Siamese convolutional neural network (pSCNN) and a spatial pyramid pooling (SPP) layer were used to solve the problems due to their high accuracy and robustness. The DeepMID model is trained, validated, and tested on an augmented data set containing 50,000 pairs of formulated and plant flavors. We demonstrate that DeepMID can achieve excellent prediction results in the augmented test set: ACC = 99.58%, TPR = 99.48%, FPR = 0.32%; and two experimentally obtained data sets: one shows ACC = 97.60%, TPR = 92.81%, FPR = 0.78% and the other shows ACC = 92.31%, TPR = 80.00%, FPR = 0.00%. In conclusion, DeepMID is a reliable method for identifying plant flavors in formulated flavors based on NMR spectroscopy, which can assist researchers in accelerating the design of flavor formulations.
Collapse
Affiliation(s)
- Yufei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.W.); (Y.L.); (H.L.)
| | - Weiwei Wei
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China; (W.W.); (W.D.); (J.C.)
| | - Wen Du
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China; (W.W.); (W.D.); (J.C.)
| | - Jiaxiao Cai
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China; (W.W.); (W.D.); (J.C.)
| | - Yuxuan Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.W.); (Y.L.); (H.L.)
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.W.); (Y.L.); (H.L.)
| | - Bo Kong
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China; (W.W.); (W.D.); (J.C.)
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.W.); (Y.L.); (H.L.)
| |
Collapse
|
4
|
Fierascu RC, Fierascu I, Ortan A, Georgiev MI, Sieniawska E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020; 25:E309. [PMID: 31940923 PMCID: PMC7024203 DOI: 10.3390/molecules25020309] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Continuously growing demand for plant derived therapeutic molecules obtained in a sustainable and eco-friendly manner favors biotechnological production and development of innovative extraction techniques to obtain phytoconstituents. What is more, improving and optimization of alternative techniques for the isolation of high value natural compounds are issues having both social and economic importance. In this critical review, the aspects regarding plant biotechnology and green downstream processing, leading to the production and extraction of increased levels of fine chemicals from both plant cell, tissue, and organ culture or fresh plant materials and the remaining by-products, are discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- National Institute for Research & Development in Chemistry and Petrochemistry, ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Alina Ortan
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
| | - Milen I. Georgiev
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (A.O.); (M.I.G.)
- Group of Plant Cell Biotechnology and Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland;
| |
Collapse
|
5
|
Gerasymenko I, Sheludko Y, Fräbel S, Staniek A, Warzecha H. Combinatorial biosynthesis of small molecules in plants: Engineering strategies and tools. Methods Enzymol 2019; 617:413-442. [PMID: 30784411 DOI: 10.1016/bs.mie.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosynthetic capacity of plants, rooted in a near inexhaustible supply of photosynthetic energy and founded upon an intricate matrix of metabolic networks, makes them versatile chemists producing myriad specialized compounds. Along with tremendous success in elucidation of several plant biosynthetic routes, their reestablishment in heterologous hosts has been a hallmark of recent bioengineering endeavors. However, current efforts in the field are, in the main, aimed at grafting the pathways to fermentable recipient organisms, like bacteria or yeast. Conversely, while harboring orthologous metabolic trails, select plant species now emerge as viable vehicles for mobilization and engineering of complex biosynthetic pathways. Their distinctive features, like intricate cell compartmentalization and formation of specialized production and storage structures on tissue and organ level, make plants an especially promising chassis for the manufacture of considerable amounts of high-value natural small molecules. Inspired by the fundamental tenets of synthetic biology, capitalizing on the versatility of the transient plant transformation system, and drawing on the unique compartmentation of plant cells, we explore combinatorial approaches affording production of natural and new-to-nature, bespoke chemicals of potential importance. Here, we focus on the transient engineering of P450 monooxygenases, alone or in concert with other orthogonal catalysts, like tryptophan halogenases.
Collapse
Affiliation(s)
- Iryna Gerasymenko
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Yuriy Sheludko
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sabine Fräbel
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Agata Staniek
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
6
|
Liu J, Yang L, Dong Y, Zhang B, Ma X. Echinacoside, an Inestimable Natural Product in Treatment of Neurological and other Disorders. Molecules 2018; 23:E1213. [PMID: 29783690 PMCID: PMC6100060 DOI: 10.3390/molecules23051213] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023] Open
Abstract
Echinacoside (ECH), a natural phenylethanoid glycoside, was first isolated from Echinacea angustifolia DC. (Compositae) sixty years ago. It was found to possess numerous pharmacologically beneficial activities for human health, especially the neuroprotective and cardiovascular effects. Although ECH showed promising potential for treatment of Parkinson's and Alzheimer's diseases, some important issues arose. These included the identification of active metabolites as having poor bioavailability in prototype form, the definite molecular signal pathways or targets of ECH with the above effects, and limited reliable clinical trials. Thus, it remains unresolved as to whether scientific research can reasonably make use of this natural compound. A systematic summary and knowledge of future prospects are necessary to facilitate further studies for this natural product. The present review generalizes and analyzes the current knowledge on ECH, including its broad distribution, different preparation technologies, poor pharmacokinetics and kinds of therapeutic uses, and the future perspectives of its potential application.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Yanhong Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| |
Collapse
|
7
|
John R, Shajitha PP, Devassy A, Mathew L. Effect of elicitation and precursor feeding on accumulation of 20-hydroxyecdysone in Achyranthes aspera Linn. cell suspension cultures. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:275-284. [PMID: 29515321 PMCID: PMC5834991 DOI: 10.1007/s12298-018-0506-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 06/01/2023]
Abstract
20-Hydroxyecdysone is one of the most common ecdysteroids in plants with potential therapeutic applications. In this study, cell suspension cultures of Achyranthes aspera were raised in shake flasks to investigate the production of 20-hydroxyecdysone. The quantification and characterization of 20-hydroxyecdysone in the cultures were done by High performance liquid chromatography (HPLC) and Liquid Chromatography-quadrupole time-of- flight mass spectrometry (LC-Q-TOF) analyses. For raising the suspension, calli initiated from in vitro grown leaf explants were cultured in liquid Murashige and Skoog (MS) medium augmented with combinations of 2, 4-dichlorophenoxyacetic acid (1 mg L-1) and α-naphthaleneacetic acid (1 mg L-1). Maximum growth index of the cell suspension was 9.9, which was achieved during 20th day of culture (final phase of exponential growth). At this stage, the biomass accumulated was 1.09 ± 0.09 g dry weight (DW) and the 20-hydroxyecdysone concentration was 0.24 mg g-1 DW. Eliciting the cultures with 0.6 mM Methyl jasmonate for 6 days; enhanced the production of 20-hydroxyecdysone production to 0.35 mg g-1 DW. By augmenting the cultures with the precursors namely cholesterol (10 mg L-1) and 7-dehydrocholesterol (10 mg L-1), production of 20-hydroxyecdysone was boosted to 0.31 mg g-1 DW and 0.28 mg g-1 DW respectively.
Collapse
Affiliation(s)
- Reshma John
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560 India
| | - P. P. Shajitha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560 India
| | - Aneesha Devassy
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560 India
| | - Linu Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686 560 India
| |
Collapse
|
8
|
Thakore D, Srivastava AK. Production of biopesticide azadirachtin using plant cell and hairy root cultures. Eng Life Sci 2017; 17:997-1005. [PMID: 32624850 DOI: 10.1002/elsc.201700012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 11/07/2022] Open
Abstract
The extensive use of nondegradable chemical pesticides for pest management has developed serious environmental hazards. This has necessitated the urgent need to switch over to an alternative mode of biopesticide development for mass agriculture and field crop protection. Azadirachta indica A. Juss (commonly known as neem) houses a plethora of bioactive secondary metabolites with azadirachtin being the most active constituent explored in the sector of ecofriendly and biodegradable biopesticides characterized by low toxicity toward nontarget organisms. It has been reported that the highest content of azadirachtin and related limonoids is present in the seeds, available once in a year. Moreover, the inconsistent content and purity of the metabolites in whole plant makes it imperative to tap the potential of in vitro plant tissue culture applications, which would allow for several controlled manipulations for better yield and productivities. This review gives a summarized literature of the applied research and achievements in plant cell/hairy cultures of A. indica A. Juss mainly in context with the biopesticide azadirachtin and applications thereof.
Collapse
Affiliation(s)
- Dhara Thakore
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas New Delhi India
| | - Ashok K Srivastava
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas New Delhi India
| |
Collapse
|
9
|
Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation. Biomolecules 2017; 7:biom7020040. [PMID: 28498360 PMCID: PMC5485729 DOI: 10.3390/biom7020040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics.
Collapse
|
10
|
Johansson E, Prade T, Angelidaki I, Svensson SE, Newson WR, Gunnarsson IB, Hovmalm HP. Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int J Mol Sci 2015; 16:8997-9016. [PMID: 25913379 PMCID: PMC4425120 DOI: 10.3390/ijms16048997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
Biorefinery applications are receiving growing interest due to climatic and waste disposal issues and lack of petroleum resources. Jerusalem artichoke (Helianthus tuberosus L.) is suitable for biorefinery applications due to high biomass production and limited cultivation requirements. This paper focuses on the potential of Jerusalem artichoke as a biorefinery crop and the most viable products in such a case. The carbohydrates in the tubers were found to have potential for production of platform chemicals, e.g., succinic acid. However, economic analysis showed that production of platform chemicals as a single product was too expensive to be competitive with petrochemically produced sugars. Therefore, production of several products from the same crop is a must. Additional products are protein based ones from tubers and leaves and biogas from residues, although both are of low value and amount. High bioactive activity was found in the young leaves of the crop, and the sesquiterpene lactones are of specific interest, as other compounds from this group have shown inhibitory effects on several human diseases. Thus, future focus should be on understanding the usefulness of small molecules, to develop methods for their extraction and purification and to further develop sustainable and viable methods for the production of platform chemicals.
Collapse
Affiliation(s)
- Eva Johansson
- Department of Plant Breeding, the Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden.
| | - Thomas Prade
- Environmental and Energy Systems Studies, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark.
| | - Sven-Erik Svensson
- Department of Biosystems and Technology, the Swedish University of Agricultural Sciences, Box 103, SE-230 53 Alnarp, Sweden.
| | - William R Newson
- Department of Plant Breeding, the Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden.
| | - Ingólfur Bragi Gunnarsson
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark.
| | - Helena Persson Hovmalm
- Department of Plant Breeding, the Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden.
| |
Collapse
|
11
|
Alipieva K, Korkina L, Orhan IE, Georgiev MI. Verbascoside--a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv 2014; 32:1065-76. [PMID: 25048704 DOI: 10.1016/j.biotechadv.2014.07.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/17/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023]
Abstract
Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological properties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first isolated from mullein but is also found in several other plant species. It has also been produced by in vitro plant culture systems, including genetically transformed roots (so-called 'hairy roots'). Verbascoside is hydrophilic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside are summarised in this review. We also discuss its prominent pharmacological properties and outline future perspectives for its potential application.
Collapse
Affiliation(s)
- Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Liudmila Korkina
- Molecular Pathology Laboratory, Russian Research Medical University, Ostrovityanova St. 1A, Moscow 117449, Russia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Milen I Georgiev
- Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
| |
Collapse
|
12
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
13
|
Lassen LM, Nielsen AZ, Ziersen B, Gnanasekaran T, Møller BL, Jensen PE. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol 2014; 3:1-12. [PMID: 24328185 DOI: 10.1021/sb400136f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Photosynthesis in plants, green algae, and cyanobacteria converts solar energy into chemical energy in the form of ATP and NADPH, both of which are used in primary metabolism. However, often more reducing power is generated by the photosystems than what is needed for primary metabolism. In this review, we discuss the development in the research field, focusing on how the photosystems can be used as synthetic biology building blocks to channel excess reducing power into light-driven production of alternative products. Plants synthesize a large number of high-value bioactive natural compounds. Some of the key enzymes catalyzing their biosynthesis are the cytochrome P450s situated in the endoplasmic reticulum. However, bioactive compounds are often synthesized in low quantities in the plants and are difficult to produce by chemical synthesis due to their often complex structures. Through a synthetic biology approach, enzymes with a requirement for reducing equivalents as cofactors, such as the cytochrome P450s, can be coupled directly to the photosynthetic energy output to obtain environmentally friendly production of complex chemical compounds. By relocating cytochrome P450s to the chloroplasts, reducing power can be diverted toward the reactions catalyzed by the cytochrome P450s. This provides a sustainable production method for high-value compounds that potentially can solve the problem of NADPH regeneration, which currently limits the biotechnological uses of cytochrome P450s. We describe the approaches that have been taken to couple enzymes to photosynthesis in vivo and to photosystem I in vitro and the challenges associated with this approach to develop new green production platforms.
Collapse
Affiliation(s)
- Lærke Münter Lassen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Agnieszka Zygadlo Nielsen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Bibi Ziersen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Poul Erik Jensen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
14
|
Moses T, Pollier J, Thevelein JM, Goossens A. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. THE NEW PHYTOLOGIST 2013; 200:27-43. [PMID: 23668256 DOI: 10.1111/nph.12325] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 05/19/2023]
Abstract
Terpenoids constitute a large and diverse class of natural products that serve many functions in nature. Most of the tens of thousands of the discovered terpenoids are synthesized by plants, where they function as primary metabolites involved in growth and development, or as secondary metabolites that optimize the interaction between the plant and its environment. Several plant terpenoids are economically important molecules that serve many applications as pharmaceuticals, pesticides, etc. Major challenges for the commercialization of plant-derived terpenoids include their low production levels in planta and the continuous demand of industry for novel molecules with new or superior biological activities. Here, we highlight several synthetic biology methods to enhance and diversify the production of plant terpenoids, with a foresight towards triterpenoid engineering, the least engineered class of bioactive terpenoids. Increased or cheaper production of valuable triterpenoids may be obtained by 'classic' metabolic engineering of plants or by heterologous production of the compounds in other plants or microbes. Novel triterpenoid structures can be generated through combinatorial biosynthesis or directed enzyme evolution approaches. In its ultimate form, synthetic biology may lead to the production of large amounts of plant triterpenoids in in vitro systems or custom-designed artificial biological systems.
Collapse
Affiliation(s)
- Tessa Moses
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Johan M Thevelein
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
15
|
Changes in primary and secondary metabolite levels in response to gene targeting-mediated site-directed mutagenesis of the anthranilate synthase gene in rice. Metabolites 2012; 2:1123-38. [PMID: 24957777 PMCID: PMC3901229 DOI: 10.3390/metabo2041123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 11/17/2022] Open
Abstract
Gene targeting (GT) via homologous recombination allows precise modification of a target gene of interest. In a previous study, we successfully used GT to produce rice plants accumulating high levels of free tryptophan (Trp) in mature seeds and young leaves via targeted modification of a gene encoding anthranilate synthase-a key enzyme of Trp biosynthesis. Here, we performed metabolome analysis in the leaves and mature seeds of GT plants. Of 72 metabolites detected in both organs, a total of 13, including Trp, involved in amino acid metabolism, accumulated to levels >1.5-fold higher than controls in both leaves and mature seeds of GT plants. Surprisingly, the contents of certain metabolites valuable for both humans and livestock, such as γ-aminobutyric acid and vitamin B, were significantly increased in mature seeds of GT plants. Moreover, untargeted analysis using LC-MS revealed that secondary metabolites, including an indole alkaloid, 2-[2-hydroxy-3-β-d-glucopyranosyloxy-1-(1H-indol-3-yl)propyl] tryptophan, also accumulate to higher levels in GT plants. Some of these metabolite changes in plants produced via GT are similar to those observed in plants over expressing mutated genes, thus demonstrating that in vivo protein engineering via GT can be an effective approach to metabolic engineering in crops.
Collapse
|