1
|
Guan Y, Zhang M, Song J, Negrete M, Adcock T, Kandel R, Racioppi L, Gerecht S. CaMKK2 Regulates Macrophage Polarization Induced by Matrix Stiffness: Implications for Shaping the Immune Response in Stiffened Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417778. [PMID: 40036145 PMCID: PMC12021110 DOI: 10.1002/advs.202417778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Indexed: 03/06/2025]
Abstract
Macrophages are essential for immune responses and maintaining tissue homeostasis, exhibiting a wide range of phenotypes depending on their microenvironment. The extracellular matrix (ECM) is a vital component that provides structural support and organization to tissues, with matrix stiffness acting as a key regulator of macrophage behavior. Using physiologically relevant 3D stiffening hydrogel models, it is found that increased matrix stiffness alone promoted macrophage polarization toward a pro-regenerative phenotype, mimicking the effect of interleukin-4(IL-4) in softer matrices. Blocking Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) selectively inhibited stiffness-induced macrophage polarization without affecting IL-4-driven pro-regenerative pathways. In functional studies, CaMKK2 deletion prevented M2-like/pro-tumoral polarization caused by matrix stiffening, which in turn hindered tumor growth. In a murine wound healing model, loss of CaMKK2 impaired matrix stiffness-mediated macrophage accumulation, ultimately disrupting vascularization. These findings highlight the critical role of CaMKK2 in the macrophage mechanosensitive fate determination and gene expression program, positioning this kinase as a promising therapeutic target to selectively modulate macrophage responses in pathologically stiff tissues.
Collapse
Affiliation(s)
- Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Min Zhang
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Marcos Negrete
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Tyler Adcock
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Reeva Kandel
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
| | - Luigi Racioppi
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
2
|
Su Y, Yin X. The Molecular Mechanism of Macrophages in Response to Mechanical Stress. Ann Biomed Eng 2025; 53:318-330. [PMID: 39354279 DOI: 10.1007/s10439-024-03616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Macrophages, a type of functionally diversified immune cell involved in the progression of many physiologies and pathologies, could be mechanically activated. The physical properties of biomaterials including stiffness and topography have been recognized as exerting a considerable influence on macrophage behaviors, such as adhesion, migration, proliferation, and polarization. Recent articles and reviews on the physical and mechanical cues that regulate the macrophage's behavior are available; however, the underlying mechanism still deserves further investigation. Here, we summarized the molecular mechanism of macrophage behavior through three parts, as follows: (1) mechanosensing on the cell membrane, (2) mechanotransmission by the cytoskeleton, (3) mechanotransduction in the nucleus. Finally, the present challenges in understanding the mechanism were also noted. In this review, we clarified the associated mechanism of the macrophage mechanotransduction pathway which could provide mechanistic insights into the development of treatment for diseases like bone-related diseases as molecular targets become possible.
Collapse
Affiliation(s)
- Yuntong Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Parihar K, Nukpezah J, Iwamoto DV, Janmey PA, Radhakrishnan R. Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness. iScience 2022; 25:104721. [PMID: 35865140 PMCID: PMC9293776 DOI: 10.1016/j.isci.2022.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Biomechanical signals from remodeled extracellular matrix (ECM) promote tumor progression. Here, we show that cell-matrix and cell-cell communication may be inherently linked and tuned through mechanisms of mechanosensitive biogenesis of trafficking vesicles. Pan-cancer analysis of cancer cells' mechanical properties (focusing primarily on cell stiffness) on substrates of varied stiffness and composition elucidated a heterogeneous cellular response to mechanical stimuli. Through machine learning, we identified a fingerprint of cytoskeleton-related proteins that accurately characterize cell stiffness in different ECM conditions. Expression of their respective genes correlates with patient prognosis across different tumor types. The levels of selected cytoskeleton proteins indicated that cortical tension mirrors the increase (or decrease) in cell stiffness with a change in ECM stiffness. A mechanistic biophysical model shows that the tendency for curvature generation by curvature-inducing proteins has an ultrasensitive dependence on cortical tension. This study thus highlights the effect of ECM stiffness, mediated by cortical tension, in modulating vesicle biogenesis.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel V. Iwamoto
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Li Z, Bratlie KM. Macrophage Phenotypic Changes on FN-Coated Physical Gradient Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:6758-6768. [PMID: 35006977 DOI: 10.1021/acsabm.1c00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemical and physical properties are two crucial cues when designing tissue engineering scaffold to mimic living tissue. Macrophages, the major players in the immune response, react rapidly to microenvironmental signals, including gradients of physical or chemical cues. Spatiotemporal gradients can modulate cell behavior, such as polarization, proliferation, and adhesion. Here, we studied macrophage phenotypic changes on untreated and fibronectin (FN)-coated methacrylated gellan gum with varying stiffnesses. The compressive moduli of hydrogel with different stiffnesses ranged from ∼5 to 30 kPa. Fibronectin was chemically attached to the substrate to facilitate macrophage proliferation, adhesion, and polarization. Classically (M1) and alternatively (M2) activated macrophages were cultured on both untreated and FN-coated gels. FN-coated substrates elevated cell numbers and enhanced macrophage spreading. The urea/nitrite ratio indicated that untreated rigid substrates shifted both polarizations toward a more proinflammatory phenotype. FN-coated substrates had no impact on M1 polarization. In contrast, FN-coated stiffer gels polarized M2 cells toward an anti-proinflammatory state based on arginine activity and CD206 expression. In addition, macrophage polarization on the softer gel was not influenced by the neighboring cells cultured on the stiffer side of the gel. Using mechanical gradients to control macrophage polarization can be a useful tool in ensuring a proper healing response and for tissue engineering.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States.,Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Li Z, Bratlie KM. Effect of RGD functionalization and stiffness of gellan gum hydrogels on macrophage polarization and function. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112303. [PMID: 34474854 DOI: 10.1016/j.msec.2021.112303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Macrophages, the primary effector cells in the immune response, respond rapidly to the physical or chemical properties of biomaterial implants. Balanced macrophage polarization, phagocytosis, and migration would be beneficial for implant success and tissue regeneration. Here, we investigated macrophage phenotypic changes, phagocytosis, and migration in response to RGD functionalized surfaces and changes in stiffness of gellan gum hydrogels. We also inhibited the RhoA pathway. The compressive moduli ranged from ~5 to 30 kPa. Cell population and cell spreading area of classically activated macrophages (M(LPS)) and alternatively activated macrophages (M(IL-4)) are promoted on RGD modified hydrogel. ROCK inhibitor induced the opposite effect on the cell spreading of both M(LPS) and M(IL-4) macrophages on RGD modified hydrogels. Macrophage polarization was found to be stiffness-driven and regulated by the RGD motif and blocked by the RhoA pathway. RGD functionalized hydrogel shifted M(IL-4) cells toward a more pro-inflammatory phenotype, while ROCK inhibition shifted M(LPS) cells to a more anti-inflammatory phenotype. Both M(LPS) and M(IL-4) cells on untreated hydrogels shifted to a more pro-inflammatory phenotype in the presence of aminated-PS particles. The RGD motif had a significant impact on cellular uptake, whereas cellular uptake was stiffness driven on untreated hydrogels. Cell migration of M(LPS) and M(IL-4) cells had ROCK-dependent migration. The stiffness of gellan gum hydrogels had no influence on macrophage migration rate. Collectively, our results showed that gellan gum hydrogels can be used to direct immune response, macrophage infiltration, and phagocytosis.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Mechanical and Immunological Regulation in Wound Healing and Skin Reconstruction. Int J Mol Sci 2021; 22:ijms22115474. [PMID: 34067386 PMCID: PMC8197020 DOI: 10.3390/ijms22115474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, a new frontier in scarless wound healing has arisen because of significant advances in the field of wound healing realised by incorporating emerging concepts from mechanobiology and immunology. The complete integumentary organ system (IOS) regeneration and scarless wound healing mechanism, which occurs in specific species, body sites and developmental stages, clearly shows that mechanical stress signals and immune responses play important roles in determining the wound healing mode. Advances in tissue engineering technology have led to the production of novel human skin equivalents and organoids that reproduce cell–cell interactions with tissue-scale tensional homeostasis, and enable us to evaluate skin tissue morphology, functionality, drug response and wound healing. This breakthrough in tissue engineering has the potential to accelerate the understanding of wound healing control mechanisms through complex mechanobiological and immunological interactions. In this review, we present an overview of recent studies of biomechanical and immunological wound healing and tissue remodelling mechanisms through comparisons of species- and developmental stage-dependent wound healing mechanisms. We also discuss the possibility of elucidating the control mechanism of wound healing involving mechanobiological and immunological interaction by using next-generation human skin equivalents.
Collapse
|
7
|
Liu Y, Segura T. Biomaterials-Mediated Regulation of Macrophage Cell Fate. Front Bioeng Biotechnol 2020; 8:609297. [PMID: 33363135 PMCID: PMC7759630 DOI: 10.3389/fbioe.2020.609297] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023] Open
Abstract
Endogenous regeneration aims to rebuild and reinstate tissue function through enlisting natural self-repairing processes. Promoting endogenous regeneration by reducing tissue-damaging inflammatory responses while reinforcing self-resolving inflammatory processes is gaining popularity. In this approach, the immune system is recruited as the principal player to deposit a pro-reparative matrix and secrete pro-regenerative cytokines and growth factors. The natural wound healing cascade involves many immune system players (neutrophils, macrophages, T cells, B cells, etc.) that are likely to play important and indispensable roles in endogenous regeneration. These cells support both the innate and adaptive arms of the immune system and collectively orchestrate host responses to tissue damage. As the early responders during the innate immune response, macrophages have been studied for decades in the context of inflammatory and foreign body responses and were often considered a cell type to be avoided. The view on macrophages has evolved and it is now understood that macrophages should be directly engaged, and their phenotype modulated, to guide the timely transition of the immune response and reparative environment. One way to achieve this is to design immunomodulating biomaterials that can be placed where endogenous regeneration is desired and actively direct macrophage polarization. Upon encountering these biomaterials, macrophages are trained to perform more pro-regenerative roles and generate the appropriate environment for later stages of regeneration since they bridge the innate immune response and the adaptive immune response. This new design paradigm necessitates the understanding of how material design elicits differential macrophage phenotype activation. This review is focused on the macrophage-material interaction and how to engineer biomaterials to steer macrophage phenotypes for better tissue regeneration.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Department of Dermatology, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Directionality of Macrophages Movement in Tumour Invasion: A Multiscale Moving-Boundary Approach. Bull Math Biol 2020; 82:148. [PMID: 33211193 PMCID: PMC7677171 DOI: 10.1007/s11538-020-00819-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Invasion of the surrounding tissue is one of the recognised hallmarks of cancer (Hanahan and Weinberg in Cell 100: 57–70, 2000. 10.1016/S0092-8674(00)81683-9), which is accomplished through a complex heterotypic multiscale dynamics involving tissue-scale random and directed movement of the population of both cancer cells and other accompanying cells (including here, the family of tumour-associated macrophages) as well as the emerging cell-scale activity of both the matrix-degrading enzymes and the rearrangement of the cell-scale constituents of the extracellular matrix (ECM) fibres. The involved processes include not only the presence of cell proliferation and cell adhesion (to other cells and to the extracellular matrix), but also the secretion of matrix-degrading enzymes. This is as a result of cancer cells as well as macrophages, which are one of the most abundant types of immune cells in the tumour micro-environment. In large tumours, these tumour-associated macrophages (TAMs) have a tumour-promoting phenotype, contributing to tumour proliferation and spread. In this paper, we extend a previous multiscale moving-boundary mathematical model for cancer invasion, by considering also the multiscale effects of TAMs, with special focus on the influence that their directional movement exerts on the overall tumour progression. Numerical investigation of this new model shows the importance of the interactions between pro-tumour TAMs and the fibrous ECM, highlighting the impact of the fibres on the spatial structure of solid tumour.
Collapse
|
9
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Simon LR, Masters KS. Disease-inspired tissue engineering: Investigation of cardiovascular pathologies. ACS Biomater Sci Eng 2019; 6:2518-2532. [PMID: 32974421 DOI: 10.1021/acsbiomaterials.9b01067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused exclusively on the creation of tissues to repair or replace diseased or damaged organs, the field of tissue engineering has undergone an important evolution in recent years. Namely, tissue engineering techniques are increasingly being applied to intentionally generate pathological conditions. Motivated in part by the wide gap between 2D cultures and animal models in the current disease modeling continuum, disease-inspired tissue-engineered platforms have numerous potential applications, and may serve to advance our understanding and clinical treatment of various diseases. This review will focus on recent progress toward generating tissue-engineered models of cardiovascular diseases, including cardiac hypertrophy, fibrosis, and ischemia reperfusion injury, atherosclerosis, and calcific aortic valve disease, with an emphasis on how these disease-inspired platforms can be used to decipher disease etiology. Each pathology is discussed in the context of generating both disease-specific cells as well as disease-specific extracellular environments, with an eye toward future opportunities to integrate different tools to yield more complex and physiologically relevant culture platforms. Ultimately, the development of effective disease treatments relies upon our ability to develop appropriate experimental models; as cardiovascular diseases are the leading cause of death worldwide, the insights yielded by improved in vitro disease modeling could have substantial ramifications for public health and clinical care.
Collapse
Affiliation(s)
- LaTonya R Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705.,Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
11
|
Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:1850. [PMID: 31015429 PMCID: PMC6478854 DOI: 10.1038/s41467-019-09709-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophage (Mϕ)-fibroblast interactions coordinate tissue repair after injury whereas miscommunications can result in pathological healing and fibrosis. We show that contracting fibroblasts generate deformation fields in fibrillar collagen matrix that provide far-reaching physical cues for Mϕ. Within collagen deformation fields created by fibroblasts or actuated microneedles, Mϕ migrate towards the force source from several hundreds of micrometers away. The presence of a dynamic force source in the matrix is critical to initiate and direct Mϕ migration. In contrast, collagen condensation and fiber alignment resulting from fibroblast remodelling activities or chemotactic signals are neither required nor sufficient to guide Mϕ migration. Binding of α2β1 integrin and stretch-activated channels mediate Mϕ migration and mechanosensing in fibrillar collagen ECM. We propose that Mϕ mechanosense the velocity of local displacements of their substrate, allowing contractile fibroblasts to attract Mϕ over distances that exceed the range of chemotactic gradients. Macrophages play an important role in wound healing but the guidance cues driving macrophages to sites of repair are still not clear. Here the authors discover that macrophages are attracted to contracting fibroblasts by responding to locally sensed displacements of collagen fibres.
Collapse
|
12
|
3D type I collagen environment leads up to a reassessment of the classification of human macrophage polarizations. Biomaterials 2019; 208:98-109. [PMID: 31005702 DOI: 10.1016/j.biomaterials.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Macrophages have multiple roles in development, tissue homeostasis and repair and present a high degree of phenotypic plasticity embodied in the concept of polarization. One goal of macrophage biology field is to characterize these polarizations at the molecular level. To achieve this task, it is necessary to integrate how physical environment signals are interpreted by macrophages under immune stimulation. In this work, we study how a 3D scaffold obtained from polymerized fibrillar rat type I collagen modulates the polarizations of human macrophages and reveal that some traditionally used markers should be reassessed. We demonstrate that integrin β2 is a regulator of STAT1 phosphorylation in response to IFNγ/LPS as well as responsible for the inhibition of ALOX15 expression in response to IL-4/IL-13 in 3D. Meanwhile, we also find that the CCL19/CCL20 ratio is reverted in 3D under IFNγ/LPS stimulation. 3D also induces the priming of the NLRP3 inflammasome resulting in an increased IL-1β and IL-6 secretion. These results give the molecular basis for assessing collagen induced immunomodulation of human macrophages in various physiological and pathological contexts such as cancer.
Collapse
|
13
|
Zeng Q, Jewell CM. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Curr Opin Biotechnol 2019; 60:138-145. [PMID: 30831487 DOI: 10.1016/j.copbio.2019.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/06/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
A key challenge facing immunotherapy is poor infiltration of T cells into tumors, along with suppression of cells reaching these sites. However, macrophages make up a majority of immune cell infiltrates into tumors, creating natural targets for immunotherapies able to direct macrophages away from tumor-supportive functions and toward anti-tumor phenotypes. Recent studies demonstrate that toll-like receptors (TLRs) - pathways that quickly trigger early immune responses - play an important role in polarizing macrophages. Here, we present emerging ways in which TLR signaling is being manipulated in macrophages to create new opportunities for cancer immunotherapy. In particular, we discuss approaches to deliver TLR agonists, to leverage biomaterials in these therapies, and to couple TLR-based approaches with other frontline treatments as combination cancer therapies.
Collapse
Affiliation(s)
- Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Maryland VA Health Care System, 10 North Greene Street, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36:1928-1945. [DOI: 10.1016/j.biotechadv.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
|
15
|
Wu S, Yue H, Wu J, Zhang W, Jiang M, Ma G. The interacting role of physical stiffness and tumor cells on the macrophages polarization. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Pakshir P, Hinz B. The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 2018; 68-69:81-93. [DOI: 10.1016/j.matbio.2018.01.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
|
17
|
Chim LK, Mikos AG. Biomechanical forces in tissue engineered tumor models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:42-50. [PMID: 30276358 PMCID: PMC6162057 DOI: 10.1016/j.cobme.2018.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors are complex three-dimensional (3D) networks of cancer and stromal cells within a dynamic extracellular matrix. Monolayer cultures fail to recapitulate the native microenvironment and therefore are poor candidates for pre-clinical drug studies and studying pathways in cancer. The tissue engineering toolkit allows us to make models that better recapitulate the 3D architecture present in tumors. Moreover, the role of the mechanical microenvironment, including matrix stiffness and shear stress from fluid flow, is known to contribute to cancer progression and drug resistance. We review recent developments in tissue engineered tumor models with a focus on the role of the biomechanical forces and propose future considerations to implement to improve physiological relevance of such models.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Covell AD, Zeng Z, Mabe T, Wei J, Adamson A, LaJeunesse DR. Alternative SiO 2 Surface Direct MDCK Epithelial Behavior. ACS Biomater Sci Eng 2017; 3:3307-3317. [PMID: 33445372 DOI: 10.1021/acsbiomaterials.7b00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanical interactions of cells are mediated through adhesive interactions. In this study, we examined the growth, cellular behavior, and adhesion of MDCK epithelial cells on three different SiO2 substrates: amorphous glass coverslips and the silicon oxide layers that grow on ⟨111⟩ and ⟨100⟩ wafers. While compositionally all three substrates are almost similar, differences in surface energy result in dramatic differences in epithelial cell morphology, cell-cell adhesion, cell-substrate adhesion, actin organization, and extracellular matrix (ECM) protein expression. We also observe striking differences in ECM protein binding to the various substrates due to the hydrogen bond interactions. Our results demonstrate that MDCK cells have a robust response to differences in substrates that is not obviated by nanotopography or surface composition and that a cell's response may manifest through subtle differences in surface energies of the materials. This work strongly suggests that other properties of a material other than composition and topology should be considered when interpreting and controlling interactions of cells with a substrate, whether it is synthetic or natural.
Collapse
Affiliation(s)
- Alan D Covell
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, The University of North Carolina at Greensboro, 2907 East Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, The University of North Carolina at Greensboro, 2907 East Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Taylor Mabe
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, The University of North Carolina at Greensboro, 2907 East Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, The University of North Carolina at Greensboro, 2907 East Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Amy Adamson
- Department of Biology, The University of North Carolina at Greensboro, 201 Eberhart Building, Greensboro, North Carolina 27402, United States
| | - Dennis R LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, The University of North Carolina at Greensboro, 2907 East Gate City Blvd., Greensboro, North Carolina 27401, United States
| |
Collapse
|
19
|
Zhang S, Che D, Yang F, Chi C, Meng H, Shen J, Qi L, Liu F, Lv L, Li Y, Meng Q, Liu J, Shang L, Yu Y. Tumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget 2017; 8:99801-99815. [PMID: 29245941 PMCID: PMC5725132 DOI: 10.18632/oncotarget.21068] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
Tumor-associated macrophages (TAMs), most of which display the immunosuppressive M2 phenotype, affect the tumor microenvironment and promote progression and metastasis in lung carcinoma. In this study, we analyzed clinical non-small cell lung cancer (NSCLC) samples and found that high densities of TAMs were associated with a poor prognosis in NSCLC patients. Moreover, the number of TAMs present correlated positively with expression of sex determining region Y (SRY)-related high mobility group box 9 (SOX9) in NSCLC tissues. TAMs secreted TGF-β, which increased SOX9 expression and promoted epithelial-to-mesenchymal transition (EMT) in lung cancer cells, thereby promoting tumor proliferation, migration, and invasion. SOX9 knockdown inhibited EMT, indicating that TGF-β-mediated EMT is SOX9-dependent. TGF-β induced SOX9 expression by upregulating the C-jun/SMAD3 pathway. These results indicate that TGF-β secreted by TAMs promotes SOX9 expression via the C-jun/SMAD3 pathway, thereby promoting tumor metastasis. The TGF-β/SOX9 axis may therefore be an effective target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dehai Che
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Yang
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunling Chi
- 2 Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Meng
- 3 Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Shen
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Qi
- 4 Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Liu
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liyan Lv
- 5 Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Li
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qingwei Meng
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junning Liu
- 6 Department of Oncology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lihua Shang
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- 1 The Sixth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
20
|
Seager RJ, Hajal C, Spill F, Kamm RD, Zaman MH. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017; 3. [PMID: 30079253 DOI: 10.1088/2057-1739/aa7e86] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the tumour microenvironment, cancer cells directly interact with both the immune system and the stroma. It is firmly established that the immune system, historically believed to be a major part of the body's defence against tumour progression, can be reprogrammed by tumour cells to be ineffective, inactivated, or even acquire tumour promoting phenotypes. Likewise, stromal cells and extracellular matrix can also have pro-and anti-tumour properties. However, there is strong evidence that the stroma and immune system also directly interact, therefore creating a tripartite interaction that exists between cancer cells, immune cells and tumour stroma. This interaction contributes to the maintenance of a chronically inflamed tumour microenvironment with pro-tumorigenic immune phenotypes and facilitated metastatic dissemination. A comprehensive understanding of cancer in the context of dynamical interactions of the immune system and the tumour stroma is therefore required to truly understand the progression toward and past malignancy.
Collapse
Affiliation(s)
- R J Seager
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215.,Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215.,Howard Hughes Medical Institute, Boston University, Boston, MA 02215
| |
Collapse
|
21
|
Brown BN, Haschak MJ, Lopresti ST, Stahl EC. Effects of age-related shifts in cellular function and local microenvironment upon the innate immune response to implants. Semin Immunol 2017; 29:24-32. [PMID: 28539184 DOI: 10.1016/j.smim.2017.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
The host macrophage response is now well recognized as a predictor of the success or failure of biomaterial implants following placement. More specifically, shifts from an "M1" pro-inflammatory towards a more "M2-like" anti-inflammatory macrophage polarization profile have been shown to result in enhanced material integration and/or tissue regeneration downstream. As a result, a number of biomaterials-based approaches to controlling macrophage polarization have been developed. However, the ability to promote such activity is predicated upon an in-depth, context-dependent understanding of the host response to biomaterials. Recent work has shown the impacts of both tissue location and tissue status (i.e. underlying pathology) upon the host innate immune response to implants, representing a departure from a focus upon implant material composition and form. Thus, the ideas of "biocompatibility," the host macrophage reaction, and ideal material requirements and modification strategies may need to be revisited on a patient, tissue, and disease basis. Immunosenescence, dysregulation of macrophage function, and delayed resolution of immune responses in aged individuals have all been demonstrated, suggesting that the host response to biomaterials in aged individuals should differ from that in younger individuals. However, despite the increasing usage of implantable medical devices in aged patients, few studies examining the effects of aging upon the host response to biomaterials and the implications of this response for long-term integration and function have been performed. The objective of the present manuscript is to review the putative effects of aging upon the host response to implanted materials and to advance the hypothesis that age-related changes in the local microenvrionement, with emphasis on the extracellular matrix, play a previously unrecognized role in determining the host response to implants.
Collapse
Affiliation(s)
- Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA 15213, United States.
| | - Martin J Haschak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, United States
| | - Samuel T Lopresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, United States
| | - Elizabeth C Stahl
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15261, United States
| |
Collapse
|
22
|
Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother 2017; 66:1037-1048. [PMID: 28451791 DOI: 10.1007/s00262-017-2003-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Tumor-associated fibrosis is characterized by unchecked pro-fibrotic and pro-inflammatory signaling. The components of fibrosis including significant numbers of cancer-associated fibroblasts, dense collagen deposition, and extracellular matrix stiffness, are well appreciated regulators of tumor progression but may also be critical regulators of immune surveillance. While this suggests that the efficacy of immunotherapy may be limited in highly fibrotic cancers like pancreas, it also suggests a therapeutic opportunity to target fibrosis in these tumor types to reawaken anti-tumor immunity. This review discusses the mechanisms by which fibrosis might subvert tumor immunity and how to overcome these mechanisms.
Collapse
|
23
|
Pinto M, Rios E, Silva A, Neves S, Caires H, Pinto A, Durães C, Carvalho F, Cardoso A, Santos N, Barrias C, Nascimento D, Pinto-do-Ó P, Barbosa M, Carneiro F, Oliveira M. Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials 2017; 124:211-224. [DOI: 10.1016/j.biomaterials.2017.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
|