1
|
Goicoechea Serrano E, Blázquez-Bondia C, Jaramillo A. T7 phage-assisted evolution of riboswitches using error-prone replication and dual selection. Sci Rep 2024; 14:2377. [PMID: 38287027 PMCID: PMC10824729 DOI: 10.1038/s41598-024-52049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Leveraging riboswitches, non-coding mRNA fragments pivotal to gene regulation, poses a challenge in effectively selecting and enriching these functional genetic sensors, which can toggle between ON and OFF states in response to their cognate inducers. Here, we show our engineered phage T7, enabling the evolution of a theophylline riboswitch. We have replaced T7's DNA polymerase with a transcription factor controlled by a theophylline riboswitch and have created two types of host environments to propagate the engineered phage. Both types host an error-prone T7 DNA polymerase regulated by a T7 promoter along with another critical gene-either cmk or pifA, depending on the host type. The cmk gene is necessary for T7 replication and is used in the first host type for selection in the riboswitch's ON state. Conversely, the second host type incorporates the pifA gene, leading to abortive T7 infections and used for selection in the riboswitch's OFF state. This dual-selection system, termed T7AE, was then applied to a library of 65,536 engineered T7 phages, each carrying randomized riboswitch variants. Through successive passage in both host types with and without theophylline, we observed an enrichment of phages encoding functional riboswitches that conferred a fitness advantage to the phage in both hosts. The T7AE technique thereby opens new pathways for the evolution and advancement of gene switches, including non-coding RNA-based switches, setting the stage for significant strides in synthetic biology.
Collapse
Affiliation(s)
- Eduardo Goicoechea Serrano
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- London BioFoundry, Imperial College Translation & Innovation Hub, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Carlos Blázquez-Bondia
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- De novo Synthetic Biology Lab, i2sysbio, CSIC-University of Valencia, Parc Científic Universitat de València, Calle Catedrático Agustín Escardino, 9, 46980, Paterna, Spain.
| |
Collapse
|
2
|
Amatsu S, Matsumura T, Zuka M, Fujinaga Y. Molecular engineering of a minimal E-cadherin inhibitor protein derived from Clostridium botulinum hemagglutinin. J Biol Chem 2023; 299:102944. [PMID: 36707052 PMCID: PMC9958082 DOI: 10.1016/j.jbc.2023.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Hemagglutinin (HA), a nontoxic component of the botulinum neurotoxin (BoNT) complex, binds to E-cadherin and inhibits E-cadherin-mediated cell-cell adhesion. HA is a 470 kDa protein complex comprising six HA1, three HA2, and three HA3 subcomponents. Thus, to prepare recombinant full-length HA in vitro, it is necessary to reconstitute the macromolecular complex from purified HA subcomponents, which involves multiple purification steps. In this study, we developed NanoHA, a minimal E-cadherin inhibitor protein derived from Clostridium botulinum HA with a simple purification strategy needed for production. NanoHA, containing HA2 and a truncated mutant of HA3 (amino acids 380-626; termed as HA3mini), is a 47 kDa single polypeptide (one-tenth the molecular weight of full-length HA, 470 kDa) engineered with three types of modifications: (i) a short linker sequence between the C terminus of HA2 and N terminus of HA3; (ii) a chimeric complex composed of HA2 derived from the serotype C BoNT complex and HA3mini from the serotype B BoNT complex; and (iii) three amino acid substitutions from hydrophobic to hydrophilic residues on the protein surface. We demonstrated that NanoHA inhibits E-cadherin-mediated cell-cell adhesion of epithelial cells (e.g., Caco-2 and Madin-Darby canine kidney cells) and disrupts their epithelial barrier. Finally, unlike full-length HA, NanoHA can be transported from the basolateral side to adherens junctions via passive diffusion. Overall, these results indicate that the rational design of NanoHA provides a minimal E-cadherin inhibitor with a wide variety of applications as a lead molecule and for further molecular engineering.
Collapse
Affiliation(s)
- Sho Amatsu
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan; Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masahiko Zuka
- Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
3
|
Dong J, Chen C, Liu Y, Zhu J, Li M, Rao VB, Tao P. Engineering T4 Bacteriophage for In Vivo Display by Type V CRISPR-Cas Genome Editing. ACS Synth Biol 2021; 10:2639-2648. [PMID: 34546037 DOI: 10.1021/acssynbio.1c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophage T4 has enormous potential for biomedical applications due to its large size, capsid architecture, and high payload capability for protein and DNA delivery. However, it is not very easy to genetically engineer its genome heavily modified by cytosine hydroxymethylation and glucosylation. The glucosyl hydroxymethyl cytosine (ghmC) genome of phage is completely resistant to most restriction endonucleases and exhibits various degrees of resistance to CRISPR-Cas systems. Here, we found that the type V CRISPR-Cas12a system, which shows efficient cleavage of ghmC-modified genome when compared to the type II CRISPR-Cas9 system, can be synergistically employed to generate recombinant T4 phages. Focused on surface display, we analyzed the ability of phage T4 outer capsid proteins Hoc (highly antigenic outer capsid protein) and Soc (small outer capsid protein) to tether, in vivo, foreign peptides and proteins to T4 capsid. Our data show that while these could be successfully expressed and displayed during the phage infection, shorter peptides are present at a much higher copy number than full-length proteins. However, the copy number of the latter could be elevated by driving the expression of the transgene using the strong T7 RNA polymerase expression system. This CRISPR-inspired approach has the potential to expand the application of phages to various basic and translational research projects.
Collapse
Affiliation(s)
- Junhua Dong
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Cen Chen
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Yuepeng Liu
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, District of Columbia 20064, United States
| | - Mengling Li
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, District of Columbia 20064, United States
| | - Pan Tao
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| |
Collapse
|
4
|
Abstract
The diversity of advanced genetic engineering techniques that have become available in recent years has enabled a more precise manipulation of genes and genomes. Among these, bacteriophage genomes stand out as an interesting target due to their dependence on a host for replication, which previously complicated their manipulation, and due as well to the many possible fields in which they can be used. In this review, we highlight recent applications for which genetically modified bacteriophages are being employed: as phage therapy in medicine, animal industries and agricultural settings; as a source of new antimicrobials; as biosensors for research, health and environmental purposes; and as genetic engineering tools themselves.
Collapse
Affiliation(s)
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University
| |
Collapse
|
5
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Sinha R, Shukla P. Current Trends in Protein Engineering: Updates and Progress. Curr Protein Pept Sci 2019; 20:398-407. [PMID: 30451109 DOI: 10.2174/1389203720666181119120120] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
Proteins are one of the most important and resourceful biomolecules that find applications in health, industry, medicine, research, and biotechnology. Given its tremendous relevance, protein engineering has emerged as significant biotechnological intervention in this area. Strategic utilization of protein engineering methods and approaches has enabled better enzymatic properties, better stability, increased catalytic activity and most importantly, interesting and wide range applicability of proteins. In fact, the commercialization of engineered proteins have manifested in economically beneficial and viable solutions for industry and healthcare sector. Protein engineering has also evolved to become a powerful tool contributing significantly to the developments in both synthetic biology and metabolic engineering. The present review revisits the current trends in protein engineering approaches such as rational design, directed evolution, de novo design, computational approaches etc. and encompasses the recent progresses made in this field over the last few years. The review also throws light on advanced or futuristic protein engineering aspects, which are being explored for design and development of novel proteins with improved properties or advanced applications.
Collapse
Affiliation(s)
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
7
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
8
|
Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. ACTA ACUST UNITED AC 2019; 43:1-12. [PMID: 30930630 PMCID: PMC6426644 DOI: 10.3906/biy-1809-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their afinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development.
Collapse
Affiliation(s)
- Merve Arslan
- İzmir Biomedicine and Genome Center , İzmir , Turkey.,İzmir Biomedicine and Genome Institute, Dokuz Eylül University , İzmir , Turkey
| | | | | |
Collapse
|
9
|
Abstract
The study of bacteriophages (phages) and prophages has provided key insights into almost every cellular process as well as led to the discovery of unexpected new mechanisms and the development of valuable tools. This is exemplified for RNA-based regulation. For instance, the characterization and exploitation of the antiphage CRISPR (clustered regularly interspaced short palindromic repeat) systems is revolutionizing molecular biology. Phage-encoded proteins such as the RNA-binding MS2 protein, which is broadly used to isolate tagged RNAs, also have been developed as valuable tools. Hfq, the RNA chaperone protein central to the function of many base-pairing small RNAs (sRNAs), was first characterized as a bacterial host factor required for Qβ phage replication. The ongoing studies of RNAs are continuing to reveal regulatory connections between infecting phages, prophages, and bacteria and to provide novel insights. There are bacterial and prophage sRNAs that regulate prophage genes, which impact bacterial virulence as well as bacterial cell killing. Conversely, phage- and prophage-encoded sRNAs modulate the expression of bacterial genes modifying metabolism. An interesting subcategory of the prophage-encoded sRNAs are sponge RNAs that inhibit the activities of bacterial-encoded sRNAs. Phages also affect posttranscriptional regulation in bacteria through proteins that inhibit or alter the activities of key bacterial proteins involved in posttranscriptional regulation. However, what is most exciting about phage and prophage research, given the millions of phage-encoded genes that have not yet been characterized, is the vast potential for discovering new RNA regulators and novel mechanisms and for gaining insight into the evolution of regulatory RNAs.
Collapse
|
10
|
Affiliation(s)
- Mareike Daniela Hoffmann
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Felix Bubeck
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Roland Eils
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Digital Health Center; Berlin Institute of Health (BIH) and Charité-University Medicine Berlin; 10117 Berlin Germany
- Health Data Science Unit; University Hospital Heidelberg; 10117 Heidelberg Germany
| | - Dominik Niopek
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| |
Collapse
|
11
|
Abstract
In its third year of existence, the French Phage Network (Phages.fr) is pursuing its expansion. With more than 25 groups, mostly based in France, working on the various aspects of phage research, the network has increased its visibility, interactivity, and activity. The third meeting of the Phages.fr network, held on November 2017 at the Gif-sur-Yvette Centre National de la Recherche Scientifique (CNRS) campus, was a great opportunity for many young scientists to present their work and interact with more senior scientists, amongst which several were invited from abroad. Here we provide a summary of the work presented at this occasion during the oral presentations and poster sessions.
Collapse
|