1
|
Jin Y, Kim T, Kang H. Forced treadmill running modifies gut microbiota with alleviations of cognitive impairment and Alzheimer's disease pathology in 3xTg-AD mice. Physiol Behav 2023; 264:114145. [PMID: 36889489 DOI: 10.1016/j.physbeh.2023.114145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Physical exercise has been recommended as a non-pharmacologic treatment for delaying the onset or slowing the progression of Alzheimer's disease (AD). The therapeutic potential of exercise training-induced changes in symbiotic gut microbiota against AD neuropathology is not well understood, yet. This study investigated the effects of a 20-week forced treadmill exercise program on the makeup of the gut microbiota, the integrity of the blood-brain barrier (BBB), and the development of AD-like cognitive deficits and neuropathology in triple transgenic AD mice. Our findings show that forced treadmill running causes symbiotic changes in the gut microbiota, such as increased Akkermansia muciniphila and decreased Bacteroides species, as well as increased BBB-related protein expression and reduced AD-like cognitive impairments and neuropathology progression. The current findings of this animal study suggest that the interaction between the gut microbiota and the brain, possibly via the BBB, is responsible for exercise training-induced cognitive benefits and alleviation of AD pathology.
Collapse
Affiliation(s)
- Youngyun Jin
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taewan Kim
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Pandey SN, Singh G, Semwal BC, Gupta G, Alharbi KS, Almalki WH, Albratty M, Najmi A, Meraya AM. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer's disease. J Food Biochem 2022; 46:e14426. [PMID: 36169224 DOI: 10.1111/jfbc.14426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a neurological illness that causes memory loss over time. Currently, available pharmaceutical medicines and products are limited, and they have side effects at a higher price. Researchers and scientists have observed significant effects of nutraceuticals. Various preclinical and clinical studies were investigated for the Anti-Alzheimer's activity of nutraceuticals. The increasing ability of the pathogenesis of AD has led to the analysis of novel therapeutic targets, including the pathophysiological mechanisms and distinct cascades. So, current improvement will show the most adequate and prominent nutraceuticals and suggested concise mechanisms involving autophagy regulation, anti-inflammatory, antioxidant, mitochondrial homeostasis, and others. The effects of nutraceuticals cannot be ignored; it is important to investigate high-quality clinical trials. Given the potential of nutraceuticals to battle AD as multi-targeted therapies, it's vital to evaluate them as viable lead compounds for drug discovery and development. To the best of the authors 'knowledge, modification of blood-brain barrier permeability, bioavailability, and aspects of randomized clinical trials should be considered in prospective investigations. PRACTICAL APPLICATIONS: Advancements in molecular diagnostic and fundamentals have implemented particular usefulness for drug evaluation. An excess of experimental knowledge occurs regarding the effect of nutraceuticals on AD. There are various preclinical and clinical studies that have been done on nutraceuticals. In addition, various substitute inhibit and enhance some pathophysiological levels associated with AD. Nutraceuticals are easily available and have fewer side effects with cost-effective advantages. However, further investigations and clinical trials are required to encourage its effect on disease.
Collapse
Affiliation(s)
- Surya Nath Pandey
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.,Department of Pharmacology, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, India
| | - Gurfateh Singh
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Bhupesh Chander Semwal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, Pourbagher-Shahri AM, Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Rev Neurother 2021; 21:625-642. [PMID: 33910446 DOI: 10.1080/14737175.2021.1923479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanying memory deficits. The available pharmaceutical care has some limitations mostly entailing side effects, shelf-life, and patient's compliance. The momentous implications of nutraceuticals in AD have attracted scientists. Several preclinical studies for the investigation of nutraceuticals have been conducted.Areas covered: This review focuses on the potential use of a nutraceuticals-based therapeutic approach to treat and prevent AD. Increasing knowledge of AD pathogenesis has led to the discovery of new therapeutic targets including pathophysiological mechanisms and various cascades. Hence, the present contribution will attend to the most popular and effective nutraceuticals with proposed brief mechanisms entailing antioxidant, anti-inflammatory, autophagy regulation, mitochondrial homeostasis, and more. Therefore, even though the effectiveness of nutraceuticals cannot be dismissed, it is essential to do further high-quality randomized clinical trials.Expert opinion: According to the potential of nutraceuticals to combat AD as multi-target directed drugs, there is critical importance to assess them as feasible lead compounds for drug discovery and development. To the best of the authors' knowledge, modification of blood-brain barrier permeability, bioavailability, and features of randomized clinical trials should be considered in prospective studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eleni Kakouri
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States.,Food Safety Net Services, San Antonio, Texas, United States
| | - Petros A Tarantilis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Bakker C, Prins S, Liptrot J, Hart EP, Klaassen ES, Brown GA, Brown A, Congreve M, Weir M, Marshall FH, Stevens J, Cross DM, Tasker T, Nathan PJ, Groeneveld GJ. Safety, pharmacokinetics and pharmacodynamics of HTL0009936, a selective muscarinic M 1 -acetylcholine receptor agonist: A randomized cross-over trial. Br J Clin Pharmacol 2021; 87:4439-4449. [PMID: 33891333 PMCID: PMC8596821 DOI: 10.1111/bcp.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022] Open
Abstract
AIMS HTL0009936 is a selective M1 muscarinic receptor agonist in development for cognitive dysfunction in Alzheimer's disease. Safety, tolerability and pharmacokinetics and exploratory pharmacodynamic effects of HTL0009936 administered by continuous IV infusion at steady state were investigated in elderly subjects with below average cognitive functioning (BACF). METHODS Part A was a four-treatment open label sequential study in healthy elderly investigating 10-83 mg HTL0009936 (IV) and a 24 mg HTL0009936 single oral dose. Part B was a five-treatment randomized, double-blind, placebo and physostigmine controlled cross-over study with IV HTL0009936 in elderly subjects with BACF. Pharmacodynamic assessments were performed using neurocognitive and electrophysiological tests. RESULTS Pharmacokinetics of HTL0009936 showed dose-proportional increases in exposure with a mean half-life of 2.4 hours. HTL0009936 was well-tolerated with transient dose-related adverse events (AEs). Small increases in mean systolic blood pressure of 7.12 mmHg (95% CI [3.99-10.24]) and in diastolic of 5.32 mmHg (95% CI [3.18-7.47]) were noted at the highest dose in part B. Overall, there was suggestive, but no definitive, positive or negative pharmacodynamic effects. Statistically significant effects were observed on P300 with HTL0009936 and adaptive tracking with physostigmine. CONCLUSIONS HTL0009936 showed well-characterized pharmacokinetics and single doses were safe and generally well-tolerated in healthy elderly subjects. Due to physostigmine tolerability issues and subject burden, the study design was changed and some pharmacodynamic assessments (neurocognitive) were performed at suboptimal drug exposures. Therefore no clear conclusions can be made on pharmacodynamic effects of HTL0009936, although an effect on P300 is suggestive of central target engagement.
Collapse
Affiliation(s)
- Charlotte Bakker
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Samantha Prins
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | - Fiona H Marshall
- Sosei Heptares, Cambridge, UK.,MSD Research Laboratories (Merck & Co), Kenilworth, New Jersey, USA
| | - Jasper Stevens
- Centre for Human Drug Research, Leiden, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Pradeep J Nathan
- Sosei Heptares, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,School of Psychological Sciences, Monash University, Australia
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Pang R, Wang X, Pei F, Zhang W, Shen J, Gao X, Chang C. Regular Exercise Enhances Cognitive Function and Intracephalic GLUT Expression in Alzheimer's Disease Model Mice. J Alzheimers Dis 2020; 72:83-96. [PMID: 31561359 DOI: 10.3233/jad-190328] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain energy metabolic impairment is one of the main features of Alzheimer's disease (AD) and is considered an underlying factor involved in cognitive impairment. Therefore, brain energy metabolism may represent a new therapeutic target for AD medical interventions. Among nutrients providing energy, glucose, the primary energy source, cannot cross the blood-brain barrier freely without specific glucose transporters (GLUTs), which are essential for the maintenance of cerebral energy metabolism homeostasis. Several converging lines of evidence suggest that GLUT1 deficiency in mice leads to synapse reduction and dysregulation coupled with mitochondrial morphological changes. In this study, the results revealed that regular exercise (RE) decreased the expression of amyloid-β and phosphorylated tau by western blot, and enhanced the spatial learning and exploration ability of AD model mice as assessed by Morris water maze test. Mitochondrial cristae and edges were clear and intact, ATP production in the brain raised, the number of synapses increased, and GLUT1 and GLUT3 expression levels improved in the central nervous system (CNS) in AD model mice after RE. Changes in GLUT1 and GLUT3 expression at the protein level after RE are an important part of energy metabolic adaptation in AD model mice. Learning and memory improvement are highly associated with mitochondrial integrity and sufficient synapses in the CNS. This research suggests that increased brain energy metabolism attributed to RE exhibits promising therapeutic potential for AD.
Collapse
Affiliation(s)
- Ruiqi Pang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaofan Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Feifei Pei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weizhe Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaming Shen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoqun Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Center of Cerebral Palsy Surgical Research and Treatment, Zhengzhou University, Zhengzhou, China.,Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, China
| | - Cheng Chang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Center of Cerebral Palsy Surgical Research and Treatment, Zhengzhou University, Zhengzhou, China.,Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, China
| |
Collapse
|
6
|
Jones EA, Gillespie AK, Yoon SY, Frank LM, Huang Y. Early Hippocampal Sharp-Wave Ripple Deficits Predict Later Learning and Memory Impairments in an Alzheimer's Disease Mouse Model. Cell Rep 2020; 29:2123-2133.e4. [PMID: 31747587 PMCID: PMC7437815 DOI: 10.1016/j.celrep.2019.10.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive memory loss, and there is a pressing need to identify early pathophysiological alterations that predict subsequent memory impairment. Hippocampal sharp-wave ripples (SWRs)—electrophysiological signatures of memory reactivation in the hippocampus—are a compelling candidate for this purpose. Mouse models of AD show reductions in both SWR abundance and associated slow gamma (SG) power during aging, but these alterations have yet to be directly linked to memory impairments. In aged apolipoprotein E4 knockin (apoE4-KI) mice—a model of the major genetic risk factor for AD—we find that reduced SWR abundance and associated CA3 SG power predicted spatial memory impairments measured 1–2 months later. Importantly, SWR-associated CA3 SG power reduction in young apoE4-KI mice also predicted spatial memory deficits measured 10 months later. These results establish features of SWRs as potential functional biomarkers of memory impairment in AD. Currently, there are no functional biomarkers that can predict progression to Alzheimer’s disease before cognitive decline begins. Jones et al. demonstrate that sharp-wave ripple and associated slow gamma deficits predict memory impairments in aged apoE4 mice. Slow gamma deficits in young apoE4 mice predict memory impairment onset 10+ months later.
Collapse
Affiliation(s)
- Emily A Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna K Gillespie
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 547] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Wasai M, Nonaka H, Murata M, Kitamura R, Sato Y, Tachibana H. Long-term dietary supplementation with the green tea cultivar Sunrouge prevents age-related cognitive decline in the senescence-accelerated mouse Prone8. Biosci Biotechnol Biochem 2019; 83:339-347. [DOI: 10.1080/09168451.2018.1530093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
A majority of the potential health benefits of green tea, including the potential to prevent cognitive decline, have been attributed to epigallocatechin gallate (EGCG). Sunrouge is a green tea cultivar that contains EGCG and several other bioactive components such as quercetin, myricetin, cyanidin and delphinidin. We compared the effects of Sunrouge and Yabukita, the most popular Japanese green tea cultivar, on cognitive function in the senescence-accelerated mouse Prone8. These mice were fed an experimental diet containing Sunrouge extract (SRE) or Yabukita extract (YBE). SRE feeding significantly prevented cognitive decline, whereas YBE feeding had little effect. Moreover, SRE feeding prevented elevation of the amyloid-β42 level while improving the gene expression of neprilysin and decreasing beta-site APP-cleaving enzyme 1 in the brain. These preventive effects of SRE against cognitive decline were attributed to the characteristic composition of Sunrouge and strongly suggest that consumption of this cultivar could protect against age-related cognitive decline.
Collapse
Affiliation(s)
- Masafumi Wasai
- Research Laboratory, Nippon Paper Industries Co., Ltd., Tokyo, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Haruna Nonaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motoki Murata
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryo Kitamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuka Sato
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Martinez B, Peplow PV. Amelioration of Alzheimer's disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer's disease. Neural Regen Res 2019; 14:1158-1176. [PMID: 30804241 PMCID: PMC6425849 DOI: 10.4103/1673-5374.251192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The most common age-related neurodegenerative disease is Alzheimer’s disease (AD) characterized by aggregated amyloid-β (Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles, together with loss of cholinergic neurons, synaptic alterations, and chronic inflammation within the brain. These lead to progressive impairment of cognitive function. There is evidence of innate immune activation in AD with microgliosis. Classically-activated microglia (M1 state) secrete inflammatory and neurotoxic mediators, and peripheral immune cells are recruited to inflammation sites in the brain. The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects. Translation of active and passive immunotherapy targeting Aβ in AD animal model trials had limited success in clinical trials. Treatment with immunomodulatory/anti-inflammatory agents early in the disease process, while not preventive, is able to inhibit the inflammatory consequences of both Aβ and tau aggregation. The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD. The majority of the animal studies reviewed had used transgenic models of early-onset AD. More effort needs to be given to creat models of late-onset AD. The effects of a combinational therapy involving two or more of the tested pharmaceutical agents, or one of these agents given in conjunction with one of the cell-based therapies, in an aged animal model of AD would warrant investigation.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, Merced, CA, USA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer's disease: A sound mind in a sound body. EXCLI JOURNAL 2017; 16:959-972. [PMID: 28900376 PMCID: PMC5579405 DOI: 10.17179/excli2017-475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/17/2017] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. Since curative treatment has not been established for AD yet and due to heavy financial and psychological costs of patients' care, special attention has been paid to preventive interventions such as physical activity. Evidence shows that physical activity has protective effects on cognitive function and memory in AD patients. Several pathologic factors are involved in AD-associated cognitive impairment some of which are preventable by physical activity. Also, various experimental and clinical studies are in progress to prove exercise role in the beta-amyloid (Aβ) pathology as a most prevailing hypothesis explaining AD pathogenesis. This study aims to review the role of physical activity in Aβ-related pathophysiology in AD.
Collapse
Affiliation(s)
- Khadije Ebrahimi
- Department of Sports Science and Physical Education, Marand Branch, Islamic Azad University, Marand, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Baghaiee
- Department of Sports Science and Physical Education, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Seyed Hojjat Hosseini
- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. Acta Neuropathol 2016; 131:235-246. [PMID: 26724934 PMCID: PMC4713725 DOI: 10.1007/s00401-015-1527-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/27/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
To successfully treat Alzheimer's disease (AD), pathophysiological events in preclinical stages need to be identified. Preclinical AD refers to the stages that exhibit amyloid deposition in the brain but have normal cognitive function, which are replicated in young adult APPswe/PS1deltaE9 (deltaE9) mice. By long-term in vivo two-photon microscopy, we demonstrate impaired adaptive spine plasticity in these transgenic mice illustrated by their failure to increase dendritic spine density and form novel neural connections when housed in enriched environment (EE). Decrease of amyloid plaques by reducing BACE1 activity restores the gain of spine density upon EE in deltaE9 mice, but not the remodeling of neural networks. On the other hand, anti-inflammatory treatment with pioglitazone or interleukin 1 receptor antagonist in deltaE9 mice successfully rescues the impairments in increasing spine density and remodeling of neural networks during EE. Our data suggest that neuroinflammation disrupts experience-dependent structural plasticity of dendritic spines in preclinical stages of AD.
Collapse
|
12
|
Hird N, Ghosh S, Kitano H. Digital health revolution: perfect storm or perfect opportunity for pharmaceutical R&D? Drug Discov Today 2016; 21:900-11. [PMID: 26821131 DOI: 10.1016/j.drudis.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/04/2016] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
The convergence of technology and medicine has pushed healthcare to the brink of a major disruption that pharma has, until recently, been slow to recognize. Tech players have pioneered the emerging field of digital wellness and health, and pharma is ideally placed to use its expertise in drug development and embrace these technologies to create digital applications that address major medical needs. This review describes digital innovation from a pharma R&D perspective, outlining principal drivers, digital components, opportunities and challenges as well as a sustainable new business model predicated on empowered patients and achieving therapeutic outcomes.
Collapse
Affiliation(s)
- Nick Hird
- Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan.
| | - Samik Ghosh
- The Systems Biology Institute, Tokyo 108-0071, Japan
| | | |
Collapse
|
13
|
Kljajevic V. Overestimating the Effects of Healthy Aging. Front Aging Neurosci 2015; 7:164. [PMID: 26379545 PMCID: PMC4549645 DOI: 10.3389/fnagi.2015.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/10/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Vanja Kljajevic
- University of the Basque Country (UPV/EHU), Vitoria & IKERBASQUE, Basque Foundation for Science , Bilbao , Spain
| |
Collapse
|
14
|
Sousa M, Pereira A, Costa R, Rami L. Initial phase of adaptation of Memory Alteration Test (M@T) in a Portuguese sample. Arch Gerontol Geriatr 2015; 61:103-8. [DOI: 10.1016/j.archger.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
|
15
|
Abstract
Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.
Collapse
Affiliation(s)
- Wim J Riedel
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, The Netherlands,
| | | |
Collapse
|