1
|
Ishioh M, Nozu T, Miyagishi S, Funayama T, Ueno N, Takakusaki K, Okumura T. Carnosine improves colonic hyperpermeability through the brain histamine H1 receptor, basal forebrain cholinergic neurons, adenosine A2B receptors and vagus nerve in rats. Eur J Pharmacol 2025; 1002:177844. [PMID: 40516846 DOI: 10.1016/j.ejphar.2025.177844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/23/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025]
Abstract
Leaky gut is implicated in disorders such as irritable bowel syndrome (IBS) and Alzheimer's disease (AD). Our previous study demonstrated that brain histamine H1 receptor signaling-mediated via basal forebrain cholinergic neurons (BFCNs), adenosine A2B receptors, and the vagus nerve-regulates intestinal barrier function. In this study, we investigated the role of carnosine, a dipeptide composed of beta-alanine and L-histidine, in modulating intestinal barrier integrity. In an LPS-induced leaky gut rat model, intracisternal administration of carnosine improved colonic permeability as determined by the Evans blue dye method. This effect was abolished by brain H1 receptor antagonism, vagotomy, and inhibition of either BFCNs or adenosine A2B signaling, suggesting that carnosine acts via these central pathways. Similarly, high-dose intraperitoneal carnosine alleviated colonic hyperpermeability, with its effect also blocked by the same interventions. Additionally, exercise reduced LPS-induced hyperpermeability-an effect eliminated by brain histamine H1 receptor blockade. These findings indicate that peripheral carnosine, including muscle-derived carnosine, contributes to the central regulation of the intestinal barrier. Enhanced barrier integrity, which reduces visceral hypersensitivity, suggests that carnosine may be an effective therapeutic for IBS. Moreover, the decline in muscle carnosine observed in sarcopenia, coupled with an increased dementia risk, supports its therapeutic potential for AD. Collectively, the present study underscores the promise of carnosine and muscle-derived strategies in managing leaky gut-related disorders.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of General Medicine, Asahikawa Medical University, Japan; Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Japan
| | | |
Collapse
|
2
|
Funayama T, Nozu T, Ishioh M, Sumi C, Saito T, Hatayama M, Yamamoto M, Shindo M, Takahashi S, Okumura T. Brain AMPK signaling improves intestinal barrier function through brain orexin and the vagal pathway in rats. Neurosci Lett 2025; 854:138208. [PMID: 40158792 DOI: 10.1016/j.neulet.2025.138208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Leaky gut, an increased intestinal permeability, has been described in many diseases. We have recently demonstrated that neuropeptides such as orexin in the brain improved leaky gut, suggesting that the brain is involved in maintaining intestinal barrier function. It has been suggested that AMPK in the hypothalamus play a role in food intake. Because the hypothalamus is involved in the regulation of not only feeding behavior but also gut function, the present study was performed to clarify a hypothesis that AMPK in the brain regulate gut barrier function. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue in rats. Intracisternal AICAR, an AMPK activator, could reduce LPS-induced colonic hyperpermeability while peripherally administered AICAR failed to change it. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal but not subcutaneous compound C, AMPK inhibitor, atropine or vagotomy. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal orexin receptor antagonist but not oxytocin or GLP-1 receptor antagonist. Intracisternal compound C prevented brain oxytocin or GLP-1 but not orexin-induced improvement of colonic hyperpermeability. These results suggest that activation of brain AMPK is capable of reducing colonic hyperpermeability through brain orexin signaling and the vagus nerve. In addition, endogenous AMPK in the brain may mediate the oxytocin or GLP-induced improvement of colonic hyperpermeability. We would suggest that improvement of leaky gut by activation of brain AMPK may play a role in leaky gut-related diseases.
Collapse
Affiliation(s)
- Takuya Funayama
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Chihiro Sumi
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takeshi Saito
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Mayumi Hatayama
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Masayo Yamamoto
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Motohiro Shindo
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shuichiro Takahashi
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Hematology, Department of Medicine, Asahikawa Medical University, Japan; Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
3
|
Papa V, Li Pomi F, Di Gioacchino M, Mangifesta R, Borgia F, Gangemi S. Mast Cells and Microbiome in Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:26283. [PMID: 40152378 DOI: 10.31083/fbl26283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
Inter-kingdom communication between human microbiota and mast cells (MCs), as sentinels of innate immunity, is crucial in determining health and disease. This complex signaling hub involves micro-organisms and, more importantly, their metabolic products. Gut microbiota is the host's largest symbiotic ecosystem and, under physiological conditions, it plays a vital role in mediating MCs tolerogenic priming, thus ensuring immune homeostasis across organs. Conversely, intestinal dysbiosis of various etiologies promotes MC-oriented inflammation along major body axes, including gut-skin, gut-lung, gut-liver, and gut-brain. This review of international scientific literature provides a comprehensive overview of the cross-talk under investigation. This process is a key biological event involved in disease development across clinical fields, with significant prognostic and therapeutic implications for future research.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
4
|
Funayama T, Nozu T, Ishioh M, Igarashi S, Tanaka H, Sumi C, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Takahashi S, Okumura T. Splenectomy prevents brain orexin, ghrelin, or oxytocin but not GLP-1-induced improvement of intestinal barrier function in rats. Neurogastroenterol Motil 2025; 37:e14949. [PMID: 39450642 DOI: 10.1111/nmo.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Accumulating evidence has suggested that neuropeptides such as orexin, ghrelin, or oxytocin act centrally in the brain to regulate intestinal barrier function through the vagus nerve. It has been reported that the vagal cholinergic anti-inflammatory pathway was blocked by splenectomy. In the present study, we therefore examined the effect of splenectomy on neuropeptides-induced improvement of increased intestinal permeability. METHODS Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 min spectrophotometrically in rats. RESULTS Splenectomy increased colonic permeability. The increased permeability by splenectomy was significantly blocked by vagal activation induced by carbachol or 2-deoxy-d-glucose which was prevented by atropine, suggesting vagal activation could prevent colonic hyperpermeability in splenectomized rats. In the splenectomized rats, intracisternal injection of orexin, ghrelin, oxytocin, or butyrate failed to inhibit increased colonic permeability while intracisternal glucagon-like peptide-1 (GLP-1) analogue, liraglutide, potently blocked the increased colonic permeability in a dose-dependent manner. The liraglutide-induced improvement of increased colonic permeability was blocked by atropine in splenectomized rats. Intracisternal injection of GLP-1 receptor antagonist attenuated 2-deoxy-d-glucose-induced improvement of colonic hyperpermeability in splenectomized rats. CONCLUSION The present results suggested that the spleen is important in the improvement of intestinal barrier function by brain orexin, ghrelin or oxytocin, and butyrate. On the other hand, GLP-1 acts centrally in the brain to improve colonic hyperpermeability in a spleen-independent manner. All these results suggest that dual mechanisms (spleen dependent or independent) may exist for the brain-gut regulation in intestinal barrier function.
Collapse
Affiliation(s)
- Takuya Funayama
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tsukasa Nozu
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Sho Igarashi
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Tanaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Chihiro Sumi
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Saito
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasumichi Toki
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mayumi Hatayama
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masayo Yamamoto
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Motohiro Shindo
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
5
|
Tursi F, Benedetto E, Spina A, De Ponti I, Amone F, Nobile V. Efficacy of a Food Supplement Containing Lactobacillus acidophilus LA14, Peptides, and a Multivitamin Complex in Improving Gastroesophageal Reflux Disease-Related Outcomes and Quality of Life of Subjects Showing Mild-to-Moderate Gastroesophageal Reflux Disease. Nutrients 2024; 16:1759. [PMID: 38892690 PMCID: PMC11174755 DOI: 10.3390/nu16111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary interventions represent an interesting alternative to pharmacological treatments for improving the quality of life (QoL) of subjects suffering from gastroesophageal reflux disease (GERD). This randomized, double-blind, placebo-controlled study aimed to evaluate the efficacy of a food supplement (FS) containing a probiotic strain, bioactive peptides, and vitamins in relieving heartburn/dyspeptic symptoms in subjects with mild-to-moderate GERD. Fifty-six adult participants were randomly assigned to receive the placebo or the active FS for 28 days. Subjects were asked to record daily the frequency and intensity of heartburn episodes and the intake of over- the-counter (OTC) medications. GERD-QoL and self-assessment questionnaires were also completed every two weeks and at the end of the treatment, respectively. FS was effective in achieving a progressive and significant reduction of heartburn frequency and severity, with an intergroup significant difference at the end of the treatment period. FS group also reported a reduction in the OTC medication intake, whereas placebo administration did not modify the OTC intake. Results from the QoL and self-assessment questionnaires showed that FS administration achieved a progressive and statistically significant intragroup and intergroup improvement in the QoL score and a higher positive response with respect to the placebo treatment.
Collapse
Affiliation(s)
- Francesco Tursi
- Research and Development, Complife Italia S.r.l., 27028 San Martino Siccomario, Italy; (F.T.)
| | - Edoardo Benedetto
- GIGA-CP Italian Association for Primary Care Gastroenterology, 87036 Rende, Italy
| | - Amelia Spina
- Nutratech S.r.l., Spin-Off of University of Calabria, 87036 Rende, Italy
| | - Ileana De Ponti
- Research and Development, Complife Italia S.r.l., 27028 San Martino Siccomario, Italy; (F.T.)
| | - Fabio Amone
- Nutratech S.r.l., Spin-Off of University of Calabria, 87036 Rende, Italy
| | - Vincenzo Nobile
- Research and Development, Complife Italia S.r.l., 27028 San Martino Siccomario, Italy; (F.T.)
| |
Collapse
|
6
|
Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ueno N, Okumura T. Brain histamine improves colonic hyperpermeability through the basal forebrain cholinergic neurons, adenosine A2B receptors and vagus nerve in rats. Biochem Pharmacol 2024; 224:116201. [PMID: 38608783 DOI: 10.1016/j.bcp.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of General Medicine, Asahikawa Medical University, Japan; Department of Regional Medicine and Education, Asahikawa Medical University, Japan; Center for Medical Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Nobuhiro Ueno
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
7
|
Céspedes N, Fellows AM, Donnelly EL, Kaylor HL, Coles TA, Wild R, Dobson M, Schauer J, Van de Water J, Luckhart S. Basophil-Derived IL-4 and IL-13 Protect Intestinal Barrier Integrity and Control Bacterial Translocation during Malaria. Immunohorizons 2024; 8:371-383. [PMID: 38780542 PMCID: PMC11150129 DOI: 10.4049/immunohorizons.2300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1β (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | | | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Taylor A. Coles
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Ryan Wild
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Megan Dobson
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
8
|
Ishioh M, Nozu T, Okumura T. Brain Neuropeptides, Neuroinflammation, and Irritable Bowel Syndrome. Digestion 2023; 105:34-39. [PMID: 37673052 DOI: 10.1159/000533275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal symptoms, but its pathogenesis is not fully understood. SUMMARY We have recently shown in rats that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve the intestinal barrier dysfunction, which is a major pathophysiology of IBS. We have additionally shown that the neuropeptides injected intracisternally induced a visceral antinociceptive action against colonic distension. Since it has been known that intestinal barrier dysfunction causes visceral hypersensitivity, the other main pathophysiology of IBS, the neuropeptides act centrally to reduce leaky gut, followed by improvement of visceral sensation, leading to therapeutic action on IBS. It has been recently reported that there is a bidirectional relationship between neuroinflammation in the brain and the pathophysiology of IBS. For example, activation of microglia in the brain causes visceral hypersensitivity. Accumulating evidence has suggested that orexin, ghrelin, or oxytocin could improve neuroinflammation in the CNS. All these results suggest that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve intestinal barrier function and visceral sensation and also induce a protective action against neuroinflammation in the brain. KEY MESSAGES We therefore speculated that orexin, ghrelin, or oxytocin in the brain possess dual actions, improvement of visceral sensation/leaky gut in the gut, and reduction of neuroinflammation in the brain, thereby inducing a therapeutic effect on IBS in a convergent manner.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
9
|
Wei S, Mai Y, Hu L, Zheng R, Zheng D, Chen W, Cai Y, Wang J. Altered gut microbiota in temporal lobe epilepsy with anxiety disorders. Front Microbiol 2023; 14:1165787. [PMID: 37283931 PMCID: PMC10239838 DOI: 10.3389/fmicb.2023.1165787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Patients with epilepsy are particularly vulnerable to the negative effects of anxiety disorders. In particular, temporal lobe epilepsy with anxiety disorders (TLEA) has attracted more attention in epilepsy research. The link between intestinal dysbiosis and TLEA has not been established yet. To gain deeper insight into the link between gut microbiota dysbiosis and factors affecting TLEA, the composition of the gut microbiome, including bacteria and fungi, has been examined. Methods The gut microbiota from 51 temporal lobe epilepsy patients has been subjected to sequencing targeting 16S rDNA (Illumina MiSeq) and from 45 temporal lobe epilepsy patients targeting the ITS-1 region (through pyrosequencing). A differential analysis has been conducted on the gut microbiota from the phylum to the genus level. Results TLEA patients' gut bacteria and fungal microbiota exhibited distinct characteristics and diversity as evidenced by high-throughput sequencing (HTS). TLEA patients showed higher abundances of Escherichia-Shigella (genus), Enterobacterales (order), Enterobacteriaceae (family), Proteobacteria (phylum), Gammaproteobacteria (class), and lower abundances of Clostridia (class), Firmicutes, Lachnospiraceae (family), Lachnospirales (order), and Ruminococcus (genus). Among fungi, Saccharomycetales fam. incertae sedis (family), Saccharomycetales (order), Saccharomycetes (class), and Ascomycota (phylum) were significantly more abundant in TLEA patients than in patients with temporal lobe epilepsy but without anxiety. Adoption and perception of seizure control significantly affected TLEA bacterial community structure, while yearly hospitalization frequency affected fungal community structures in TLEA patients. Conclusion Here, our study validated the gut microbiota dysbiosis of TLEA. Moreover, the pioneering study of bacterial and fungal microbiota profiles will help in understanding the course of TLEA and drive us toward preventing TLEA gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Shouchao Wei
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yingren Mai
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Zhanjiang, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
| | - Ruxing Zheng
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Dongming Zheng
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Wenrong Chen
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yan Cai
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Junjun Wang
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Funayama T, Nozu T, Ishioh M, Igarashi S, Sumi C, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Tanabe H, Okumura T. Centrally administered GLP-1 analogue improves intestinal barrier function through the brain orexin and the vagal pathway in rats. Brain Res 2023; 1809:148371. [PMID: 37076092 DOI: 10.1016/j.brainres.2023.148371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Leaky gut, an altered intestinal barrier function, has been described in many diseases such as irritable bowel syndrome (IBS). We have recently demonstrated that orexin in the brain blocked leaky gut in rats, suggesting that the brain plays a role in regulation of intestinal barrier function. In the present study, we tried to clarify whether GLP-1 acts centrally in the brain to regulate intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of GLP-1 analogue, liraglutide dose-dependently abolished increased colonic permeability in response to lipopolysaccharide. Either atropine or surgical vagotomy blocked the central GLP-1-induced improvement of colonic hyperpermeability. Intracisternal GLP-1 receptor antagonist, exendin (9-39) prevented the central GLP-1-induced blockade of colonic hyperpermeability. In addition, intracisternal injection of orexin receptor antagonist, SB-334867 blocked the GLP-1-induced improvement of intestinal barrier function. On the other hand, subcutaneous liraglutide also improved leaky gut but larger doses of liraglutide were needed to block it. In addition, neither atropine nor vagotomy blocked subcutaneous liraglutide-induced improvement of leaky gut, suggesting that central or peripheral GLP-1 system works separately to improve leaky gut in a vagal-dependent or independent manner, respectively. These results suggest that GLP-1 acts centrally in the brain to reduce colonic hyperpermeability. Brain orexin signaling and the vagal cholinergic pathway play a vital role in the process. We would therefore suggest that activation of central GLP-1 signaling may be useful for leaky gut-related diseases such as IBS.
Collapse
Affiliation(s)
- Takuya Funayama
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Sho Igarashi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Chihiro Sumi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Takeshi Saito
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Yasumichi Toki
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Mayumi Hatayama
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Masayo Yamamoto
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Motohiro Shindo
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Hiroki Tanabe
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan.
| |
Collapse
|
11
|
Birmann PT, Casaril AM, Pesarico AP, Rodrigues RR, Conceição FR, Sousa FSS, Collares T, Seixas FK, Savegnago L. Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice. Mol Neurobiol 2023; 60:4017-4029. [PMID: 37016046 DOI: 10.1007/s12035-023-03326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 μg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1β in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.
Collapse
Affiliation(s)
- Paloma T Birmann
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Angela M Casaril
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Ana Paula Pesarico
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Rafael R Rodrigues
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
12
|
Moussavi M, Cuskelly A, Jung Y, Hodgson DM, Barouei J. Maternal probiotic intake attenuates ileal Crh receptor gene expression in maternally separated rat offspring. Biosci Biotechnol Biochem 2023; 87:308-313. [PMID: 36477851 DOI: 10.1093/bbb/zbac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Corticotropin-releasing hormone (Crh) and its receptors (Crhr) mediate stress-induced gastrointestinal dysfunctions. Neonatal maternal separation (MS) increased ileal Crhr1 transcript quantities in young rat offspring. Exposure to either MS or adulthood restraint stress increased ileal Crhr1 and Crhr2 transcript quantities only in adult female offspring. Maternal probiotic intervention reversed Crhr overexpression, suggesting a potential early prophylaxis against stress-induced gut dysfunctions.
Collapse
Affiliation(s)
- Mahta Moussavi
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, USA
| | - Annalisa Cuskelly
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Callaghan, NSW, Australia
| | - Yoonsung Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, USA
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Callaghan, NSW, Australia
| | - Javad Barouei
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, USA.,Integrated Food Security Research Center, Prairie View A&M University, Prairie View, TX, USA
| |
Collapse
|
13
|
Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ohhira M, Okumura T. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats. Biochem Pharmacol 2022; 206:115331. [PMID: 36330948 DOI: 10.1016/j.bcp.2022.115331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Intestinal barrier dysfunction, a leaky gut, contributes to the pathophysiology of various diseases such as dementia and irritable bowel syndrome (IBS). We recently clarified that orexin, ghrelin, or adenosine A2B signaling in the brain improved leaky gut through the vagus nerve. The present study was performed to clarify whether basal forebrain cholinergic neurons (BFCNs) are implicated in the central regulation of intestinal barrier function. We activated BFCNs using benzyl quinolone carboxylic acid (BQCA), a positive muscarinic M1 allosteric modulator, and evaluated colonic permeability by quantifying the absorbed Evans blue in rat colonic tissue. Intracisternal (not intraperitoneal) injection of BQCA blocked the increased colonic permeability in response to lipopolysaccharide. Vagotomy blocked BQCA-induced improvement of colonic hyperpermeability. Intracisternally administered pirenzepine, a muscarinic M1 selective antagonist, prevented intestinal barrier function improvement by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Adenosine A2B receptor antagonist but not dopamine or opioid receptor antagonist prevented BQCA-induced blockade of colonic hyperpermeability. Additionally, intracisternal injection of pirenzepine blocked orexin- or butyrate-induced intestinal barrier function improvement. These results suggest that BFCNs improve leaky gut through adenosine A2B signaling and the vagal pathway. Furthermore, BFCNs mediate orexin- or butyrate-induced intestinal barrier function improvement. Since BFCNs play a role in cognitive function and a leaky gut is associated with dementia, the present finding may lead us to speculate that BFCNs are involved in the development of dementia by regulating intestinal barrier function.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan; Center for Medical Education, Asahikawa Medical University, Japan
| |
Collapse
|
14
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Funayama T, Kumei S, Ohhira M. Oxytocin acts centrally in the brain to improve leaky gut through the vagus nerve and a cannabinoid signaling in rats. Physiol Behav 2022; 254:113914. [PMID: 35839845 DOI: 10.1016/j.physbeh.2022.113914] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Brain oxytocin plays a role in gastrointestinal functions. Among them, oxytocin acts centrally to modulate gastrointestinal motility and visceral sensation. Intestinal barrier function, one of important gut functions, is also regulated by the central nervous system. Little is, however, known about a role of central oxytocin in the regulation of intestinal barrier function. The present study was performed to clarify whether brain oxytocin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of oxytocin dose-dependently abolished increased colonic permeability in response to lipopolysaccharide while intraperitoneal injection of oxytocin at the same dose failed to block it. Either atropine or surgical vagotomy blocked the central oxytocin-induced improvement of colonic hyperpermeability. Cannabinoid 1 receptor antagonist but not adenosine or opioid receptor antagonist prevented the central oxytocin-induced blockade of colonic hyperpermeability. In addition, intracisternal injection of oxytocin receptor antagonist blocked the ghrelin- or orexin-induced improvement of intestinal barrier function. These results suggest that oxytocin acts centrally in the brain to reduce colonic hyperpermeability. The vagal cholinergic pathway or cannabinoid 1 receptor signaling plays a vital role in the process. The oxytocin-induced improvement of colonic hyperpermeability mediates the central ghrelin- or orexin-induced improvement of intestinal barrier function. We would therefore suggest that activation of central oxytocin signaling may be useful for leaky gut-related diseases such as irritable bowel syndrome and autism.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Sho Igarashi
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Takuya Funayama
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
15
|
Cuddihey H, Cavin JB, Keenan CM, Wallace LE, Vemuri K, Makriyannis A, MacNaughton WK, Sharkey KA. Role of CB 1 receptors in the acute regulation of small intestinal permeability: effects of high-fat diet. Am J Physiol Gastrointest Liver Physiol 2022; 323:G219-G238. [PMID: 35787179 PMCID: PMC9394780 DOI: 10.1152/ajpgi.00341.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system of the gastrointestinal tract is involved in the control of intestinal barrier function. Whether the cannabinoid 1 (CB1) receptor is expressed on the intestinal epithelium and acutely regulates barrier function has not been determined. Here, we tested the hypothesis that ligands of the CB1 receptor acutely modulate small intestinal permeability and that this is associated with altered distribution of tight junction proteins. We examined the acute effects of CB1 receptor ligands on small intestinal permeability both in chow-fed and 2-wk high-fat diet (HFD)-fed mice using Ussing chambers. We assessed the distribution of CB1 receptor and tight junction proteins using immunofluorescence and the expression of CB1 receptor using PCR. A low level of CB1 expression was found on the intestinal epithelium. CB1 receptor was highly expressed on enteric nerves in the lamina propria. Neither the CB1/CB2 agonist CP55,940 nor the CB1 neutral antagonist AM6545 altered the flux of 4kDa FITC dextran (FD4) across the jejunum or ileum of chow-fed mice. Remarkably, both CP55,940 and AM6545 reduced FD4 flux across the jejunum and ileum in HFD-fed mice that have elevated baseline intestinal permeability. These effects were absent in CB1 knockout mice. CP55,940 reduced the expression of claudin-2, whereas AM6545 had little effect on claudin-2 expression. Neither ligand altered the expression of ZO-1. Our data suggest that CB1 receptor on the intestinal epithelium regulates tight junction protein expression and restores barrier function when it is increased following exposure to a HFD for 2 wk.NEW & NOTEWORTHY The endocannabinoid system of the gastrointestinal tract regulates homeostasis by acting as brake on motility and secretion. Here we show that when exposed to a high fat diet, intestinal permeability is increased and activation of the CB1 receptor on the intestinal epithelium restores barrier function. This work further highlights the role of the endocannabinoid system in regulating intestinal homeostasis when it is perturbed.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Baptiste Cavin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Laurie E Wallace
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Abstract
OBJECTIVES Antibiotics may contribute to the development of functional gastrointestinal disorders (FGIDs). This study aimed to determine whether antibiotics during the first week of life, infantile colic in the first year of life, gut-associated immune markers at 1 year of age, and allergies at 4-6 years of age in term-born children were associated with a higher prevalence of FGIDs at 4-6 years of age. METHODS A prospective observational cohort of 436 term-born infants was followed up at the age of 4-6 years; 151 received broad-spectrum antibiotics (AB+), and 285 healthy controls (AB-). Validated Questionnaire On Pediatric Gastrointestinal Symptoms-Rome III and International Study of Asthma and Allergy in Childhood questionnaires were sent to parents of 418 available children. The independent t-test, chi-squared test or non-parametric test and logistic multivariate regression analyses were used. RESULTS In total, 340 of 418 (81%) questionnaires were completed. Only the presence of functional abdominal pain was significantly higher in AB+ than AB- (4% vs 0.4%, respectively, P = 0.045). Children with food allergy fulfilled significantly more often the criteria for irritable bowel syndrome (IBS) and abdominal migraine (26% vs 9%, P = 0.002 and 7% vs 1%, P = 0.043, respectively) compared to non-allergic children. No differences in FGIDs existed at the age of 4-6 years between children with and without a history of infantile colic. There were significant differences in gut-associated immune markers between children with and without FGIDs. CONCLUSION Antibiotics during the first week of life resulted in a higher risk for functional abdominal pain at 4-6 years. Furthermore, food allergy was associated with IBS and abdominal migraine at 4-6years.
Collapse
|
17
|
Maev IV, Andreev DN, Zaborovsky AV, Lobanova EG. Functional gastrointestinal diseases: mechanisms of development and principles of multitarget therapy. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:8-14. [DOI: 10.21518/2079-701x-2022-16-7-8-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Currently, functional dyspepsia (FD) and irritable bowel syndrome (IBS) are among the most common nosological units in the structure of functional gastrointestinal diseases in adults. An important problem of treatment of these diseases at the current stage of medicine is low efficiency of monotarget drugs, which is determined by multicomponent pathogenesis. Indeed, the currently available methods of drug treatment of FD and IBS have suboptimal efficacy, as illustrated by recent meta-analyses demonstrating high rates of NNT (the average number of patients who need to be treated to achieve a certain favorable outcome). In addition, the frequent “overlap” of these diseases forces clinicians to prescribe several drugs with different pharmacological actions to the patient, which inevitably leads to a decrease in compliance. The optimal strategy for managing patients with FD and IBS is the tactics of multitarget drugs that act on several links in the pathogenesis of these pathologies and have a significant evidence base in the effectiveness and safety of use. STW 5 (Iberogast®), included in the clinical guidelines of the Russian Gastroenterological Association on the diagnosis and treatment of patients with FD, published in 2017, has the above-mentioned characteristics, as well as the clinical guidelines of the Russian Gastroenterological Association in collaboration with the Russian Association of Coloproctologists on the diagnosis and treatment of IBS, published in 2021. The clinical effectiveness of Iberogast in the treatment of FD and IBS has been demonstrated in a number of randomized trials, the results of which showed high efficacy of the drug and its good tolerability.
Collapse
Affiliation(s)
- I. V. Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. N. Andreev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | | | - E. G. Lobanova
- Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
18
|
Struffert M, Maier C, Neid M, Schäfer HL, Tannapfel A, Schmidt-Choudhury A. Duodenal mast cells and eosinophils in children with celiac disease: occurrence and distribution pattern. Scand J Gastroenterol 2022; 57:22-30. [PMID: 34618623 DOI: 10.1080/00365521.2021.1985601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of this study was to characterize duodenal mast cell (MC) and eosinophil (EO) numbers, their distribution within the lamina propria and possible impact on disease severity of paediatric celiac patients compared to children without celiac disease (CD). METHODS We analysed duodenal samples of 215 children (109 CD, 106 controls) who underwent esophagogastroduodenoscopy from 2010 to 2018. After immunohistochemical staining, average MC and EO counts were histologically examined in ten high-power-fields. Additionally, cell-distribution within the lamina propria was analysed. Possible influence of relevant clinical parameters was evaluated. STATISTICS Student's-t-test, Mann-Whitney U-test, Chi-square-test, ANOVA, significance-level <.05. Trial registration-number: DRKS00024669. RESULTS MC-density was higher in CD-patients compared to the control-group (23.7 (±12.1)/HPF versus 19.7 (±9.1)/HPF; p = .008), varying in number interindividually. Eosinophils were also increased in the duodenum of celiac patients (23.3 (±9.3)/HPF versus 12.2 (±6.3)/HPF; p= <.001). MCs were distributed more often homogenously in all parts of CD lamina propria (44 biopsies (40.4%), residing more distant from the intestinal lumen in controls (0 biopsies with homogenous distribution-pattern (0%); p= <.001). Regarding EOs no polarity was observable. Atopic diseases did not occur significantly more often in patients with elevated EO-counts. CONCLUSION MC- and EO-numbers were increased in the duodenum of CD-patients and MCs showed a different distribution-pattern in the lamina propria of celiac patients. These findings support the concept that both cell-types contribute to disease-pathogenesis. However, functional studies highlighting both cell-types' and their mediators' role regarding mucosal alterations during the course of the inflammatory process in celiac patients are needed. TRIAL REGISTRATION NUMBER AND URL DRKS00024669; https://www.drks.de/drks_web/.
Collapse
Affiliation(s)
- Marie Struffert
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| | - Christoph Maier
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| | - Matthias Neid
- Institute of Pathology, Ruhr-University, Bochum, Germany
| | - Hannah-Lena Schäfer
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| | | | - Anjona Schmidt-Choudhury
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| |
Collapse
|
19
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Centrally administered butyrate improves gut barrier function, visceral sensation and septic lethality in rats. J Pharmacol Sci 2021; 146:183-191. [PMID: 34116731 DOI: 10.1016/j.jphs.2021.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Short chain fatty acids readily crosses the gut-blood and blood-brain barrier and acts centrally to influence neuronal signaling. We hypothesized that butyrate, a short-chain fatty acid produced by bacterial fermentation, in the central nervous system may play a role in the regulation of intestinal functions. Colonic permeability and visceral sensation was evaluated in rats. Septic lethality was evaluated in a sepsis model induced by subcutaneous administration of both lipopolysaccharide and colchicine. Intracisternal butyrate dose-dependently improved colonic hyperpermeability and visceral nociception. In contrast, subcutaneous injection of butyrate failed to change it. Intracisternal orexin 1 receptor antagonist or surgical vagotomy blocked the central butyrate-induced improvement of colonic hyperpermeability. The improvement of intestinal hyperpermeability by central butyrate or intracisternal orexin-A was blocked by cannabinoid 1 or 2 receptor antagonist. Intracisternal butyrate significantly improved survival period in septic rats. These results suggest that butyrate acts in the central nervous system to improve gut permeability and visceral nociception through cannabinoid signaling. Endogenous orexin in the brain may mediate the reduction of intestinal hyperpermeability by central butyrate through the vagus nerve. We would suggest that improvement of leaky gut by central butyrate may induce visceral antinociception and protection from septic lethality.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
20
|
Sun H, Ma Y, An S, Wang Z. Altered gene expression signatures by calcitonin gene-related peptide promoted mast cell activity in the colon of stress-induced visceral hyperalgesia mice. Neurogastroenterol Motil 2021; 33:e14073. [PMID: 33382180 DOI: 10.1111/nmo.14073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is possibly involved in recruitment of mucosal mast cells (MCs) in the gut that may be associated with the development of irritable bowel syndrome (IBS), but the role of CGRP on the activation of MCs is still unknown. METHODS Using RNA sequencing (RNA-seq), we examined differentially expressed genes (DEGs) in mouse MCs following CGRP treatment. The expression of key genes in colonic MCs and their relationship with CGRP-containing fibers were examined by immunofluorescence in chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice. KEY RESULTS A total of 29 DEGs were found significantly changed with 28 upregulated and 1 downregulated following treatment of MCs with CGRP. Bioinformatics analysis showed that key higher DEGs included those associated with response to corticotropin-releasing hormone (CRH), regulation of transcription, MC activation, and proliferation. These processes are enriched for genes associated with stress-induced MC activation in IBS. Western blot verified changes in representative DEGs (Nr4a3, Crem, Gpr35, FosB, Sphlk1) and real-time cell analysis (RTCA) verified the MC proliferation. The vast majority of colonic MCs nearly CGRP-containing fibers in WAS mice overexpressed only Nr4a3 with little to no FosB, Gpr35, Sphlk1, or Crem expression. Nr4a3 knockdown may attenuate the promotion effect of CGRP on MC viability. CONCLUSIONS & INFERENCES Our results suggest that CGRP is a critical regulator of key expressed genes in MC activation. Nr4a3 as a novel regulator of MC function may have an effect on stress-induced visceral hyperalgesia, and this may represent the novel target for drug development.
Collapse
Affiliation(s)
- Hanliang Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yanhan Ma
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
21
|
Vera ME, Mariani ML, Aguilera C, Penissi AB. Effect of a Cytoprotective Dose of Dehydroleucodine, Xanthatin, and 3-Benzyloxymethyl-5 H-furan-2-one on Gastric Mucosal Lesions Induced by Mast Cell Activation. Int J Mol Sci 2021; 22:5983. [PMID: 34205991 PMCID: PMC8198283 DOI: 10.3390/ijms22115983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to determine whether the lactones dehydroleucodine, xanthatin and 3-benzyloxymethyl-5H-furan-2-one, would be effective in an animal model of gastric ulcer induced by mast cell activation. Rats were divided into ten groups. Treatments were repeated for four days. The degree of gastric erosion was assessed with a scoring system and histological preparations. Gastric mast cell morphology was analyzed by histological procedures. Serum serotonin levels were determined as markers of mast cell activation. Statistical analyses were done using ANOVA and Tukey-Kramer test. We demonstrated that the repeated administration of compound 48/80 results in extensive mucosal lesions in the gastric mucosa and that such lesions occurred in association with mast cell degranulation and a significant increase of serum serotonin. We showed that these lesions were prevented by dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one and that this effect was similar to that obtained with sodium cromoglycate. In conclusion, the results of the present study indicate that the optimal gastric cytoprotective dose of dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one is efficacious in an animal model of gastric ulcer induced by mast cell activation. Our findings suggest that these lactones could be valuable tools for designing novel therapeutic agents for digestive disorders associated with inappropriate mast cell activation.
Collapse
Affiliation(s)
| | | | | | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina; (M.E.V.); (M.L.M.); (C.A.)
| |
Collapse
|
22
|
Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Takakusaki K, Okumura T. Activation of central adenosine A2B receptors mediate brain ghrelin-induced improvement of intestinal barrier function through the vagus nerve in rats. Exp Neurol 2021; 341:113708. [PMID: 33771554 DOI: 10.1016/j.expneurol.2021.113708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022]
Abstract
Leaky gut that is a condition reflecting intestinal barrier dysfunction has been attracting attention for its relations with many diseases such as irritable bowel syndrome or Alzheimer dementia. We have recently demonstrated that ghrelin acts in the brain to improve leaky gut via the vagus nerve. In the present study, we tried to clarify the precise central mechanisms by which ghrelin improves intestinal barrier function through the vagus nerve. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), blocked the intracisternal ghrelin-induced improvement of intestinal hyperpermeability while dopamine, cannabinoid or opioid receptor antagonist failed to prevent it. Since DPCPX can block adenosine A1 and adenosine A2B receptors, we examined which subtype is involved in the mechanism. Intracisternal injection of adenosine A2B agonist but not adenosine A1 agonist improved colonic hyperpermeability, while peripheral injection of adenosine A2B agonist failed to improve it. Intracisternal adenosine A2B agonist-induced improvement of colonic hyperpermeability was blocked by vagotomy. Adenosine A2B specific antagonist, alloxazine blocked the ghrelin- or central vagal stimulation by 2-deoxy-d-glucose-induced improvement of intestinal hyperpermeability. These results suggest that activation of adenosine A2B receptors in the central nervous system is capable of improving intestinal barrier function through the vagal pathway, and the adenosine A2B receptors may mediate the ghrelin-induced improvement of leaky gut in a vagal dependent fashion. These findings may help us understand the pathophysiology in not only gastrointestinal diseases but also non-gastrointestinal diseases associated with the altered intestinal permeability.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
23
|
Li S, Zheng M, Zhang Z, Peng H, Dai W, Liu J. Galli gigeriae endothelium corneum: its intestinal barrier protective activity in vitro and chemical composition. Chin Med 2021; 16:22. [PMID: 33593395 PMCID: PMC7885590 DOI: 10.1186/s13020-021-00432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Galli gigeriae endothelium corneum (GGEC) has been effectively used for centuries for the treatment of functional dyspepsia (FD) in clinical practice in Asian countries. However, its potential mechanism and chemical composition remains undertermined. Methods In this study, the chemical profile of GGEC ethyl acetate extract (EAE) was evaluated by HPLC-Q-TOF–MS/MS. The effects of EAE on intestinal barrier function and inflammation were investigated in IEC-6 cells and RAW264.7 cells. Results The results showed that 33 compounds were tentatively identified, including 12 soy isoflavones, 7 bile acids for the first time in EAE. EAE significantly reinforced intestinal barrier function via increasing the tight junction protein levels of ZO-1 and Occludin, reducing the mRNA expression levels of interleukin (IL)-1β and IL-6 in tumor necrosis factor alpha (TNF-α)-challenged IEC-6 cells. The scratch wound assay showed that EAE accelerated wound healing of IEC-6 cells. EAE evidently reduced the level of NO in a dose-dependent manner with an IC50 value of 18.12 μg/mL, and the mRNA expression of TNF-α, IL-1β, IL-6, iNOS and COX-2 in LPS-treated RAW264.7 cells. Conclusion This study revealed the intestinal barrier protective effects and chemical profile of GGEC, and the results indicated that GGEC strengthened the intestinal barrier by up-regulating protein expression of tight junctions and limiting inflammatory responses.
Collapse
Affiliation(s)
- Shanshan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Meng Zheng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhentang Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Hengying Peng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
24
|
Mosso E, Bonetto S, Longobardi G, Abenavoli L, Ribaldone DG, Saracco GM, Pellicano R. Management of functional dyspepsia in 2020: a clinical point of view. MINERVA GASTROENTERO 2020; 66:331-342. [PMID: 32623872 DOI: 10.23736/s1121-421x.20.02732-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dyspepsia is a disorder that refers mainly to central upper abdominal pain or discomfort. When a cause of this symptom is not identified the condition is termed functional dyspepsia (FD), that affects a large part of the general population. The relevance of FD is due to its high prevalence, but also to its chronic or intermittent course. This induces a significant burden for each national healthcare system. The pathogenesis of FD is complex and multifactorial, depending on cultural, environmental, and biological factors. Although considered of main importance in the pathophysiology of several gastroduodenal diseases, in the context of FD Helicobacter pylori (H. pylori) infection plays a limited role. The diagnosis of FD requires the exclusion of organic gastroduodenal diseases as well as H. pylori infection. Thus, the diagnostic workup includes a complete anamnesis, biochemical tests, and endoscopy with biopsy (when requested), and the satisfaction of clinic criteria recommended by the Rome IV consensus. The treatment of FD is also challenging, in fact more and more studies focused on a wide range of different therapies, with a multitude of results. The aim of this literature review is to provide an update of the new evidences useful for diagnosis and management of FD.
Collapse
Affiliation(s)
- Elena Mosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Bonetto
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Giorgio M Saracco
- Department of Medical Sciences, University of Turin, Turin, Italy
- Unit of Gastroenterology, Molinette Hospital, Turin, Italy
| | | |
Collapse
|
25
|
Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R, Xu JY. Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol 2020; 26:6141-6162. [PMID: 33177790 PMCID: PMC7596643 DOI: 10.3748/wjg.v26.i40.6141] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The gut-brain axis is a bidirectional information interaction system between the central nervous system (CNS) and the gastrointestinal tract, in which gut microbiota plays a key role. The gut microbiota forms a complex network with the enteric nervous system, the autonomic nervous system, and the neuroendocrine and neuroimmunity of the CNS, which is called the microbiota-gut-brain axis. Due to the close anatomical and functional interaction of the gut-liver axis, the microbiota-gut-liver-brain axis has attracted increased attention in recent years. The microbiota-gut-liver-brain axis mediates the occurrence and development of many diseases, and it offers a direction for the research of disease treatment. In this review, we mainly discuss the role of the gut microbiota in the irritable bowel syndrome, inflammatory bowel disease, functional dyspepsia, non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and hepatic encephalopathy via the gut-liver-brain axis, and the focus is to clarify the potential mechanisms and treatment of digestive diseases based on the further understanding of the microbiota-gut- liver-brain axis.
Collapse
Affiliation(s)
- Jian-Hong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Xiao-Xu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Wei-Xi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Yan-Xia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
26
|
Clinical efficacy and safety of ketotifen in treating irritable bowel syndrome with diarrhea. Eur J Gastroenterol Hepatol 2020; 32:706-712. [PMID: 32317585 DOI: 10.1097/meg.0000000000001737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the clinical efficacy and safety of ketotifen for the treatment of irritable bowel syndrome with diarrhea (IBS-D). METHODS A total of 108 enrolled IBS-D patients were randomly divided into a ketotifen group (n = 55) and a control (placebo) group (n = 53). The patients in the ketotifen group received ketotifen tablets (1 mg, oral) two times daily; patients in the control group received oral placebo for 8 weeks. Before and after 8 weeks of treatment, gastrointestinal symptoms, anorectal sensory function and the number and activity status of mast cells were assessed for both groups. RESULTS (1) The overall effective rate of gastrointestinal symptom improvement in the ketotifen group was significantly higher than that in the control group (76.4 vs. 37.7%, P < 0.001). (2) First sensation, defecation urgency and discomfort/pain threshold in the ketotifen group improved significantly after treatment (P < 0.05); no significant changes were observed in the control group (P > 0.05). (3) In the ketotifen group, the number of mast cells in the terminal ileum decreased, and the percentages of degranulated mast cells in the sigmoid colon, ascending colon and terminal ileum decreased significantly after treatment compared with before treatment; these differences were statistically significant (P < 0.01). In the control group, the number of mast cells and the percentages of degranulated mast cells in various sites did not change significantly before and after treatment (P > 0.05). (4) Six patients (10.9%) in the ketotifen group experienced drowsiness and fatigue, but the symptoms disappeared after 1 week of treatment. CONCLUSION Ketotifen significantly alleviated gastrointestinal symptoms and improved visceral hypersensitivity in patients with IBS-D. The therapeutic effect of ketotifen is related to a reduced number and decreased activity of mast cells in the intestinal mucosa, especially in the terminal ileum.
Collapse
|
27
|
Andreev DN, Dicheva DT. A breach in the intestinal permeability as a factor of etiopathogenesis of functional gastrointestinal diseases. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2020:87-95. [DOI: 10.21518/2079-701x-2020-5-87-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. T. Dicheva
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
28
|
Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Okumura T. Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology 2020; 173:108116. [PMID: 32442542 DOI: 10.1016/j.neuropharm.2020.108116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Abstract
Brain ghrelin plays a role in gastrointestinal functions. Among them, ghrelin acts centrally to stimulate gastrointestinal motility and induce visceral antinociception. Intestinal barrier function, one of important gastrointestinal functions, is also controlled by the central nervous system. Little is, however, known about a role of central ghrelin in regulation of intestinal permeability. The present study was performed to clarify whether brain ghrelin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of ghrelin dose-dependently abolished increased colonic permeability in response to LPS while intraperitoneal injection of ghrelin at the same dose or intracisternal injection of des-acyl-ghrelin failed to block it. Carbachol potently attenuated LPS-induced intestinal hyperpermeability, and atropine or bilateral subdiaphragmatic vagotomy prevented the improvement of intestinal hyperpermeability by central ghrelin. Intracisternal (D-Lys3)-GHRP-6, a selective ghrelin receptor antagonist, significantly blocked improvement of intestinal barrier function by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Intracisternal injection of orexin 1 receptor antagonist, SB-334867 blocked intracisternal ghrelin-induced improvement of colonic hyperpermeability. These results suggest that exogenously administered or endogenously released ghrelin acts centrally to improve a disturbed intestinal barrier function through orexinergic signaling and the vagal cholinergic pathway. Central ghrelin may be involved in the pathophysiology and be a novel therapeutic option in not only gastrointestinal diseases such as irritable bowel syndrome but also non-gastrointestinal diseases associated with the altered intestinal permeability.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
29
|
Cheng J, Ouwehand AC. Gastroesophageal Reflux Disease and Probiotics: A Systematic Review. Nutrients 2020; 12:E132. [PMID: 31906573 PMCID: PMC7019778 DOI: 10.3390/nu12010132] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Probiotic is little known for its benefits on upper gastrointestinal health. The objective of this systematic review was to examine the efficacy of probiotics in alleviating the frequency and severity of symptoms in gastroesophageal reflux disease (GERD) in the general adult population. The PubMed and Web of Science databases were searched for prospective studies on GERD, heartburn, regurgitation, and dyspepsia, without any limitation on sample size. The Jadad scale was used to evaluate the quality of randomized controlled trials. In total, 13 prospective studies that were published in 12 articles were included in the analysis and scored per the Jadad scale as high- (five studies), medium- (two), and low- (six) quality. One article reported on two probiotic groups; thus, 14 comparisons were included in the selected studies, of which 11 (79%) reported positive benefits of probiotics on symptoms of GERD. Five out of 11 positive outcomes (45%) noted benefits on reflux symptoms: three noted reduced regurgitation; improvements in reflux or heartburn were seen in one study; five (45%) saw improvements in dyspepsia symptoms; and nine (81%) saw improvements in other upper gastrointestinal symptoms, such as nausea (three studies), abdominal pain (five), and gas-related symptoms (four), such as belching, gurgling, and burping. In conclusion, probiotic use can be beneficial for GERD symptoms, such as regurgitation and heartburn. However, proper placebo-controlled, randomized, and double-blinded clinical trials with a sufficient number of participants are warranted to confirm its efficacy in alleviating these symptoms. Further, interventions with longer durations and an intermediate analysis of endpoints should be considered to determine the proper therapeutic window.
Collapse
Affiliation(s)
- Jing Cheng
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Danisco Sweeteners Oy, Sokeritehtaantie 20, FI-02460 Kantvik, Finland;
| | | |
Collapse
|
30
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Brain orexin improves intestinal barrier function via the vagal cholinergic pathway. Neurosci Lett 2020; 714:134592. [DOI: 10.1016/j.neulet.2019.134592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023]
|
31
|
Ji R, Wang P, Kou GJ, Zuo XL, Wang X, Li YQ. Impaired gastric mucosal integrity identified by confocal endomicroscopy in Helicobacter pylori-negative functional dyspepsia. Neurogastroenterol Motil 2020; 32:e13719. [PMID: 31574212 DOI: 10.1111/nmo.13719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Low-grade inflammation may be involved in the pathogenesis of functional dyspepsia (FD). We hypothesis that altered gastric permeability is involved in the onset and persistence of this disorder. Therefore, our aim was to evaluate gastric mucosal integrity and mast cell numbers in patients with FD. METHODS We enrolled 58 patients with FD fulfilling the Rome III criteria (H Pylori negative), 20 inflammatory control subjects (H Pylori positive), and 20 healthy controls (H Pylori negative). Probe-based confocal endomicroscopy was performed using intravenous fluorescein to assess the paracellular fluorescein leakage and cell shedding. Mast cells were identified with quantitative immunohistochemistry on mucosal biopsies. KEY RESULTS Endomicroscopic score of paracellular permeability was significantly higher in H pylori-negative FD patients compared with healthy controls (1.45 ± 1.27 vs 3.69 ± 3.18, P = .006). However, FD patients and healthy controls did not show differences in cell shedding score (0.75 ± 0.79 vs 1.29 ± 1.14, P = .069). Mast cell numbers were significantly increased compared with healthy control samples (18.91 ± 5.47 vs 14.1 ± 3.88, P < .001). The magnitude of increase in permeability was positively correlated with mast cell numbers of FD patients (rs = .6588, P < .0001), but not dyspepsia symptom scores. CONCLUSION AND INFERENCES Impaired gastric barrier function is present in FD patients. This might provide a new pathophysiological mechanism and therapeutical target in FD.
Collapse
Affiliation(s)
- Rui Ji
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Guan-Jun Kou
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Wang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
32
|
Wang L, Alammar N, Singh R, Nanavati J, Song Y, Chaudhary R, Mullin GE. Gut Microbial Dysbiosis in the Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Case-Control Studies. J Acad Nutr Diet 2019; 120:565-586. [PMID: 31473156 DOI: 10.1016/j.jand.2019.05.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is the most common functional digestive condition in the industrialized world. The gut microbiota plays a key role in disease pathogenesis. OBJECTIVE A systematic review and meta-analysis on case-control studies was conducted to determine whether there is gut microbial dysbiosis in participants with IBS in comparison with healthy controls and, if so, whether the dysbiosis pattern differs among IBS subtypes and geographic regions. METHODS This review was conducted and reported according to the MOOSE (Meta-Analysis of Observational Studies in Epidemiology) 2000 and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2009 guidelines. Research articles published up to May 9, 2018 were identified through MEDLINE (PubMed), Cochrane Central Register of Controlled Trials (Cochrane Library), ClinicalTrials.gov, EMBASE, and Web of Science. Study quality was assessed using the Newcastle-Ottawa Scale. Case-control studies of participants with IBS who had undergone quantitative gut microbial stool analysis were included. The primary exposure measure of interest is log10 bacterial counts per gram of stool. Meta-analyses were performed to estimate the mean difference (MD) in gut microbiota between participants with IBS and healthy controls using the random-effects model with inverse variance in Revman 5.3 and R 3.5.1. Publication bias was assessed with funnel plots and Egger's test. Between-study heterogeneity was analyzed using Higgins I2 statistic with 95% CIs. RESULTS There were 6,333 unique articles identified; 52 qualified for full-text screening. Of these, 23 studies were included for analysis (n=1,340 participants from North America, Europe, and Asia). Overall, the studies were moderate in quality. Comparing participants with IBS to healthy controls, lower fecal Lactobacillus (MD= -0.57 log10 colony-forming unit [CFU]/g; P<0.01) and Bifidobacterium (MD= -1.04 log10CFU/g; P<0.01), higher Escherichia coli (MD=0.60 log10CFU/g; P<0.01), and marginally higher Enterobacter (MD=0.74 log10CFU/g; P=0.05). No difference was found between participants with IBS and healthy controls in fecal Bacteroides and Enterococcus (P=0.18 and 0.68, respectively). Publication bias was not observed except in Bifidobacterium (P=0.015). Subgroup analyses on participants with diarrhea-predominant and constipation-predominant IBS showed consistent results with the primary results. A subgroup analysis of Chinese studies was consistent with the primary results, except for fecal Bacteroides, which was increased in participants with IBS vs healthy controls (MD=0.29; 95% CI 0.13 to 0.46; P<0.01). Although substantial heterogeneity was detected (I2>75%) in most comparisons, the direction of the effect estimates is relatively consistent across studies. CONCLUSIONS IBS is characterized by gut microbial dysbiosis. Prospective, large-scale studies are needed to delineate how gut microbial profiles can be used to guide targeted therapies in this challenging patient population.
Collapse
|
33
|
Meleine M, Accarie A, Wauters L, Toth J, Gourcerol G, Tack J, Farré R, Vanuytsel T. Colonic hypersensitivity and low-grade inflammation in a spontaneous animal model for functional gastrointestinal disorders. Neurogastroenterol Motil 2019; 31:e13614. [PMID: 31069897 DOI: 10.1111/nmo.13614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND A complex interplay between a failing intestinal barrier and low-grade inflammation leading to sensorimotor disturbances is an often-cited mechanism in the pathogenesis of functional gastrointestinal disorders (FGID). However, the cause-consequence relationship between these features has not been clearly established. We previously described jejunal alterations in the normoglycemic BB-rat (BBDP-N) model proposing this model as a suitable animal model to study FGID pathophysiology. The current study explores colonic permeability, inflammation, and sensitivity of the BB-rat. METHODS Colonic tissue of BBDP-N and control (BBDR) rats at 50, 90, 110, 160, and 220 days (n ≥ 7 per group) was used to assess intestinal permeability in Ussing chambers and inflammation, including infiltration by eosinophils, mast cells, and eosinophil peroxidase (EPO) activity. Anxiety-like symptoms were evaluated at 50, 90, and 220 days and colonic sensitivity at 160 and 220 days by measuring the visceromotor response (VMR) to isobaric colorectal distensions. KEYS RESULTS Lamina propria eosinophil and mast cell infiltration and increased EPO activity were demonstrated from 90 days onward. Increased permeability and myenteric ganglionitis were observed in the oldest BBDP-N rats. At 220 days, the VMR was significantly increased suggesting colonic hypersensitivity. At the same age, increased anxiety-like behavior was observed. CONCLUSION AND INFERENCES We demonstrated a lamina propria eosinophil and mast cell infiltration preceding visceral hypersensitivity in the colon of the BBDP-N rat, reminiscent of patients with FGID. These findings help elucidating pathogenetic pathways in FGID and further validate the BBDP-N rat as an attractive model to study pathophysiology and therapy of FGID.
Collapse
Affiliation(s)
- Mathieu Meleine
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium.,Inserm UMR 1073, Institute for Innovation and Biomedical Research, Rouen University, Rouen, France
| | - Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium
| | - Joran Toth
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium
| | - Guillaume Gourcerol
- Inserm UMR 1073, Institute for Innovation and Biomedical Research, Rouen University, Rouen, France
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (ChroMetA), KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Close association between abnormal expressed enzymes of energy metabolism and diarrhea-predominant irritable bowel syndrome. Chin Med J (Engl) 2019; 132:135-144. [PMID: 30614852 PMCID: PMC6365280 DOI: 10.1097/cm9.0000000000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional intestinal diseases, but its pathogenesis is still unknown. The present study aimed to screen the differentially expressed proteins in the mucosa of colon between IBS with diarrhea (IBS-D) patients and the healthy controls. Methods: Forty-two IBS-D patients meeting the Rome III diagnostic criteria and 40 control subjects from July 2007 to June 2009 in Chinese PLA General Hospital were enrolled in the present study. We examined the protein expression profiles in mucosa of colon corresponding to IBS-D patients (n = 5) and controls (n = 5) using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Secondly, Western blot and immunohistochemical analysis were carried out to validate the screened proteins in 27 IBS-D patients and 27 controls. Thirdly, high-performance liquid chromatography (HPLC) was further carried out to determine ATP concentration in the mucosa of colon between 10 IBS-D patients and 8 controls. Comparisons between 2 groups were performed by Student's t-test or Mann-Whitney U-test. Results: Twelve differentially expressed proteins were screened out. The α-enolase (ENOA) in the sigmoid colon (0.917 ± 0.007 vs. 1.310 ± 0.100, t = 2.643, P = 0.017) and caecum (0.765 ± 0.060 vs. 1.212 ± 0.122, t = 2.225, P = 0.023), Isobutyryl-CoA dehydrogenase (ACAD8) in the sigmoid colon (1.127 ± 0.201 vs. 1.497 ± 0.392, t = 7.093, P = 0.008) of the IBS-D group were significantly lower while acetyl-CoA acetyltransferase (CT) in the caecum (2.453 ± 0.422 vs. 0.931 ± 0.652, t = 8.363, P = 0.015) and ATP synthase subunit d (ATP5H) in the sigmoid (0.843 ± 0.042 vs. 0.631 ± 0.042, t = 8.613,P = 0.007) of the IBS-D group was significantly higher, compared with the controls. The ATP concentration in the mucosa of the sigmoid colon in IBS-D group was significantly lower than that of control group (0.470 [0.180, 1.360] vs. 5.350 [2.230, 7.900], U = 55, P < 0.001). Conclusions: Many proteins related to energy metabolism presented differential expression patterns in the mucosa of colon of the IBS-D patients. The abnormalities in energy metabolism may be involved in the pathogenesis of IBS which deserves more studies to elucidate.
Collapse
|