1
|
Zhou Z, Yang M, Fang H, Zhang B, Ma Y, Li Y, Liu Y, Cheng Z, Zhao Y, Si Z, Zhu H, Chen P. Tailoring a Functional Synthetic Microbial Community Alleviates Fusobacterium nucleatum-infected Colorectal Cancer via Ecological Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e14232. [PMID: 40433987 DOI: 10.1002/advs.202414232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/13/2025] [Indexed: 05/29/2025]
Abstract
Polymorphic microbiomes play important roles in colorectal cancer (CRC) occurrence and development. In particular, Fusobacterium nucleatum (F. nucleatum) is prevalent in patients with CRC, and eliminating it is beneficial for treatment. Here, multiple metagenomic sequencing cohorts are combined with multiomics to analyze the microbiome and related functional alterations. Furthermore, local human metagenome and metabolomics are used to discover commensal consortia. A synthetic microbial community (SynCom) is then designed by metabolic network reconstruction, and its performance is validated using coculture experiments and an AOM-DSS induced mouse CRC model. The sequencing result shows that F. nucleatum is more abundant in both the feces and tumor tissues of CRC patients. It causes alterations through various pathways, including microbial dysbiosis, lipid metabolism, amino acid metabolism, and bile acid metabolism disorders. The designed SynCom contains seven species with low competition interrelationship. Furthermore, the SynCom successfully inhibits F. nucleatum growth in vitro and achieves colonization in vivo. Additionally, it promotes F. nucleatum decolonization, and enhances tryptophan metabolism and secondary bile acid conversion, leading to reduced lipid accumulation, decreased inflammatory reaction, and enhanced tumor inhibition effect. Overall, the bottom-up designed SynCom is a controllable and promising approach for treating F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Zhongkun Zhou
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Mengyue Yang
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Hong Fang
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Baizhuo Zhang
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Yongyuan Li
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Yingjie Liu
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Zeying Cheng
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Yuanchun Zhao
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Zhenzhen Si
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
2
|
Mukhopadhya I, Louis P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat Rev Microbiol 2025:10.1038/s41579-025-01183-w. [PMID: 40360779 DOI: 10.1038/s41579-025-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Short-chain fatty acids (SCFAs) are a group of organic compounds produced by the fermentation of dietary fibre by the human gut microbiota. They play diverse roles in different physiological processes of the host with implications for human health and disease. This Review provides an overview of the complex microbial metabolism underlying SCFA formation, considering microbial interactions and modulating factors of the gut environment. We explore the multifaceted mechanistic interactions between SCFAs and the host, with a particular focus on the local actions of SCFAs in the gut and their complex interactions with the immune system. We also discuss how these actions influence intestinal and extraintestinal diseases and emerging therapeutic strategies using SCFAs.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Petra Louis
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
3
|
Grilc NK, Stojanov S, Rijavec T, Lapanje A, Berlec A, Zupančič Š. Viability of potential probiotics incorporated into nanofibers: Influence of genera, storage conditions, stabilizers and their solid-state. Int J Pharm 2025; 673:125327. [PMID: 39956409 DOI: 10.1016/j.ijpharm.2025.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/10/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Electrospun nanofibers have emerged as a promising platform for probiotic delivery, with bacterial preservation posing a significant challenge in formulation design. This study examined the preservation of bacteria in various poly(ethylene oxide)-based nanofiber formulations and the solid-state behaviour of the excipients after electrospinning and during 24 weeks of storage under different conditions. Nanofiber formulations were loaded with bacteria from three different genera (oral cavity isolates Staphylococcus 26.3.J and Stenotrophomonas 27.3.S and vaginal Lactobacillus jensenii) and supplemented with 5 different stabilizers (sucrose, trehalose, glucose, mannitol or dextran), some of which also demonstrated nutrient characteristics. Efficacy of the tested stabilizers was species-dependent, with dextran as the most effective stabilizer for Staphylococcus 26.3.J and Stenotrophomonas 27.3.S and sucrose for L. jensenii. Low molecular weight stabilizers underwent complete (trehalose) or partial (sucrose, glucose, mannitol) amorphization during electrospinning in most formulations. Proportions of amorphous fractions of the semi-crystalline stabilizers were significantly influenced by the bacterial species, reaching up to 36% for sucrose and 28% for mannitol. Over 24 weeks, trehalose remained fully amorphous, while semi-crystalline stabilizers demonstrated instability of amorphous fractions, which underwent crystallisation. Notably, for oral isolate probiotics, amorphous stabilizers trehalose and dextran outperformed almost all semi-crystalline alternatives in preserving bacterial viability. In contrast, mannitol and glucose occasionally even reduced survival compared to PEO-only formulations, pointing out potential risks associated with physical instability of excipients. This study highlights the importance of selecting stabilizers tailored to specific bacterial species and understanding the solid-state properties of excipients to enhance probiotic survival in nanofiber-based formulations.
Collapse
Affiliation(s)
| | | | | | | | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Beltrán-Velasco AI, Clemente-Suárez VJ. Harnessing Gut Microbiota for Biomimetic Innovations in Health and Biotechnology. Biomimetics (Basel) 2025; 10:73. [PMID: 39997096 PMCID: PMC11852373 DOI: 10.3390/biomimetics10020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a fundamental role in human health by regulating immunity, metabolism, and the gut-brain axis. Beyond its critical physiological functions, it has emerged as a rich source of inspiration for biomimetic innovations in healthcare and biotechnology. This review explores the transformative potential of microbiota-based biomimetics, focusing on key biological mechanisms such as resilience, self-regulation, and quorum sensing. These mechanisms have inspired the development of innovative applications, including personalized probiotics, synbiotics, artificial microbiomes, bioinspired biosensors, and bioremediation systems. Such technologies aim to emulate and optimize the intricate functions of microbial ecosystems, addressing challenges in healthcare and environmental sustainability. The integration of advanced technologies, such as artificial intelligence, bioengineering, and multi-omics approaches, has further accelerated the potential of microbiota biomimetics. These tools enable the development of precision therapies tailored to individual microbiota profiles, enhance the efficacy of diagnostic systems, and facilitate the design of environmentally sustainable solutions, such as waste-to-energy systems and bioremediation platforms. Emerging areas of innovation, including gut-on-chip models and synthetic biology, offer unprecedented opportunities for studying and applying microbiota principles in controlled environments. Despite these advancements, challenges remain. The replication of microbial complexity in artificial environments, ethical concerns regarding genetically engineered microorganisms, and equitable access to advanced therapies are critical hurdles that must be addressed. This review underscores the importance of interdisciplinary collaboration and public awareness in overcoming these barriers and ensuring the responsible development of microbiota-based solutions. By leveraging the principles of microbial ecosystems, microbiota biomimetics represents a promising frontier in healthcare and sustainability. This approach has the potential to revolutionize therapeutic strategies, redefine diagnostic tools, and address global challenges, paving the way for a more personalized, efficient, and sustainable future in medicine and biotechnology.
Collapse
Affiliation(s)
- Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28248 Madrid, Spain
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
5
|
Mehlferber EC, Arnault G, Joshi B, Partida-Martinez LP, Patras KA, Simonin M, Koskella B. A cross-systems primer for synthetic microbial communities. Nat Microbiol 2024; 9:2765-2773. [PMID: 39478083 PMCID: PMC11660114 DOI: 10.1038/s41564-024-01827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024]
Abstract
The design and use of synthetic communities, or SynComs, is one of the most promising strategies for disentangling the complex interactions within microbial communities, and between these communities and their hosts. Compared to natural communities, these simplified consortia provide the opportunity to study ecological interactions at tractable scales, as well as facilitating reproducibility and fostering interdisciplinary science. However, the effective implementation of the SynCom approach requires several important considerations regarding the development and application of these model systems. There are also emerging ethical considerations when both designing and deploying SynComs in clinical, agricultural or environmental settings. Here we outline current best practices in developing, implementing and evaluating SynComs across different systems, including a focus on important ethical considerations for SynCom research.
Collapse
Affiliation(s)
- Elijah C Mehlferber
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Laila P Partida-Martinez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, México
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- San Francisco Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Wu Z, Yu X, Chen P, Pan M, Liu J, Sahandi J, Zhou W, Mai K, Zhang W. Dietary Clostridium autoethanogenum protein has dose-dependent influence on the gut microbiota, immunity, inflammation and disease resistance of abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109737. [PMID: 38960106 DOI: 10.1016/j.fsi.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0 % (control), 4.10 % (CAP4.10) and 16.25 % (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1 % of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as β-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10 % of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25 % of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.
Collapse
Affiliation(s)
- Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Javad Sahandi
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
9
|
Roux AE, Langella P, Martin R. Overview on biotics development. Curr Opin Biotechnol 2024; 86:103073. [PMID: 38335705 DOI: 10.1016/j.copbio.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Although probiotics have been used in food products and supplements for decades, there has been a considerable increase in their use more recently. Recent technological advances have thus led to major advances in knowledge of the gut microbiota, enabling a significant development of biotics. In this review, we discuss the uses of traditional probiotics but also the discovery of next-generation probiotics that could be used as live biotherapeutics. These novel preventive and therapeutic strategies hold promise for the treatment of numerous diseases such as inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Probiotic bacteria can be consumed alone, or in combination with prebiotics as synbiotics, or mixed with other probiotic strains to form a consortium for enhanced effects. We also discuss the benefits of using postbiotics.
Collapse
Affiliation(s)
- Anne-Emmanuelle Roux
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Rebeca Martin
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
10
|
Zhou SP, Ke X, Jin LQ, Xue YP, Zheng YG. Sustainable management and valorization of biomass wastes using synthetic microbial consortia. BIORESOURCE TECHNOLOGY 2024; 395:130391. [PMID: 38307483 DOI: 10.1016/j.biortech.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
In response to the persistent expansion of global resource demands, considerable attention has been directed toward the synthetic microbial consortia (SMC) within the domain of microbial engineering, aiming to address the sustainable management and valorization of biomass wastes. This comprehensive review systematically encapsulates the most recent advancements in research and technological applications concerning the utilization of SMC for biomass waste treatment. The construction strategies of SMC are briefly outlined, and the diverse applications of SMC in biomass wastes treatment are explored, with particular emphasis on its potential advantages in waste degradation, hazardous substances control, and high value-added products conversion. Finally, recommendations for the future development of SMC technology are proposed, and prospects for its sustainable application are discussed.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Zeng M, Sarker B, Rondthaler SN, Vu V, Andrews LB. Identifying LasR Quorum Sensors with Improved Signal Specificity by Mapping the Sequence-Function Landscape. ACS Synth Biol 2024; 13:568-589. [PMID: 38206199 DOI: 10.1021/acssynbio.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Programmable intercellular signaling using components of naturally occurring quorum sensing can allow for coordinated functions to be engineered in microbial consortia. LuxR-type transcriptional regulators are widely used for this purpose and are activated by homoserine lactone (HSL) signals. However, they often suffer from imperfect molecular discrimination of structurally similar HSLs, causing misregulation within engineered consortia containing multiple HSL signals. Here, we studied one such example, the regulator LasR from Pseudomonas aeruginosa. We elucidated its sequence-function relationship for ligand specificity using targeted protein engineering and multiplexed high-throughput biosensor screening. A pooled combinatorial saturation mutagenesis library (9,486 LasR DNA sequences) was created by mutating six residues in LasR's β5 sheet with single, double, or triple amino acid substitutions. Sort-seq assays were performed in parallel using cognate and noncognate HSLs to quantify each corresponding sensor's response to each HSL signal, which identified hundreds of highly specific variants. Sensor variants identified were individually assayed and exhibited up to 60.6-fold (p = 0.0013) improved relative activation by the cognate signal compared to the wildtype. Interestingly, we uncovered prevalent mutational epistasis and previously unidentified residues contributing to signal specificity. The resulting sensors with negligible signal crosstalk could be broadly applied to engineer bacteria consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Stephen N Rondthaler
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Vanessa Vu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Huang G, Khan R, Zheng Y, Lee PC, Li Q, Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Front Microbiol 2023; 14:1274925. [PMID: 38098666 PMCID: PMC10720646 DOI: 10.3389/fmicb.2023.1274925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood-brain barrier to treat Parkinson's disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients' GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host's GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- Department of Pharmacy, Shantou Central Hospital, Shantou, China
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
13
|
Li P, Roos S, Luo H, Ji B, Nielsen J. Metabolic engineering of human gut microbiome: Recent developments and future perspectives. Metab Eng 2023; 79:1-13. [PMID: 37364774 DOI: 10.1016/j.ymben.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Many studies have demonstrated that the gut microbiota is associated with human health and disease. Manipulation of the gut microbiota, e.g. supplementation of probiotics, has been suggested to be feasible, but subject to limited therapeutic efficacy. To develop efficient microbiota-targeted diagnostic and therapeutic strategies, metabolic engineering has been applied to construct genetically modified probiotics and synthetic microbial consortia. This review mainly discusses commonly adopted strategies for metabolic engineering in the human gut microbiome, including the use of in silico, in vitro, or in vivo approaches for iterative design and construction of engineered probiotics or microbial consortia. Especially, we highlight how genome-scale metabolic models can be applied to advance our understanding of the gut microbiota. Also, we review the recent applications of metabolic engineering in gut microbiome studies as well as discuss important challenges and opportunities.
Collapse
Affiliation(s)
- Peishun Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Del Barrio M, Lavín L, Santos-Laso Á, Arias-Loste MT, Odriozola A, Rodriguez-Duque JC, Rivas C, Iruzubieta P, Crespo J. Faecal Microbiota Transplantation, Paving the Way to Treat Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24076123. [PMID: 37047094 PMCID: PMC10094628 DOI: 10.3390/ijms24076123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase in intestinal permeability seem to be key in the development and progression of NAFLD. Therefore, the manipulation of microbiota seems to provide a promising therapeutic strategy. One way to do so is through faecal microbiota transplantation (FMT). Here, we summarize the key aspects of FMT, detail its current indications and highlight the most recent advances in NAFLD.
Collapse
Affiliation(s)
- María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Lucía Lavín
- Clinical Trial Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria, Spain
| | - Álvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodriguez-Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
15
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Multi-dimensional experimental and computational exploration of metabolism pinpoints complex probiotic interactions. Metab Eng 2023; 76:120-132. [PMID: 36720400 DOI: 10.1016/j.ymben.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Multi-strain probiotics are widely regarded as effective products for improving gut microbiota stability and host health, providing advantages over single-strain probiotics. However, in general, it is unclear to what extent different strains would cooperate or compete for resources, and how the establishment of a common biofilm microenvironment could influence their interactions. In this work, we develop an integrative experimental and computational approach to comprehensively assess the metabolic functionality and interactions of probiotics across growth conditions. Our approach combines co-culture assays with genome-scale modelling of metabolism and multivariate data analysis, thus exploiting complementary data- and knowledge-driven systems biology techniques. To show the advantages of the proposed approach, we apply it to the study of the interactions between two widely used probiotic strains of Lactobacillus reuteri and Saccharomyces boulardii, characterising their production potential for compounds that can be beneficial to human health. Our results show that these strains can establish a mixed cooperative-antagonistic interaction best explained by competition for shared resources, with an increased individual exchange but an often decreased net production of amino acids and short-chain fatty acids. Overall, our work provides a strategy that can be used to explore microbial metabolic fingerprints of biotechnological interest, capable of capturing multifaceted equilibria even in simple microbial consortia.
Collapse
|
17
|
Lee KW, Shin JS, Lee CM, Han HY, O Y, Kim HW, Cho TJ. Gut-on-a-Chip for the Analysis of Bacteria-Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet-Microbiota Relationship? Nutrients 2023; 15:nu15051131. [PMID: 36904133 PMCID: PMC10005057 DOI: 10.3390/nu15051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Bacterial co-culture studies using synthetic gut microbiomes have reported novel research designs to understand the underlying role of bacterial interaction in the metabolism of dietary resources and community assembly of complex microflora. Since lab-on-a-chip mimicking the gut (hereafter "gut-on-a-chip") is one of the most advanced platforms for the simulative research regarding the correlation between host health and microbiota, the co-culture of the synthetic bacterial community in gut-on-a-chip is expected to reveal the diet-microbiota relationship. This critical review analyzed recent research on bacterial co-culture with perspectives on the ecological niche of commensals, probiotics, and pathogens to categorize the experimental approaches for diet-mediated management of gut health as the compositional and/or metabolic modulation of the microbiota and the control of pathogens. Meanwhile, the aim of previous research on bacterial culture in gut-on-a-chip has been mainly limited to the maintenance of the viability of host cells. Thus, the integration of study designs established for the co-culture of synthetic gut consortia with various nutritional resources into gut-on-a-chip is expected to reveal bacterial interspecies interactions related to specific dietary patterns. This critical review suggests novel research topics for co-culturing bacterial communities in gut-on-a-chip to realize an ideal experimental platform mimicking a complex intestinal environment.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Song Shin
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Chan Min Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hea Yeon Han
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Yun O
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hye Won Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Correspondence: ; Tel.: +82-44-860-1433
| |
Collapse
|
18
|
Hamamah S, Gheorghita R, Lobiuc A, Sirbu IO, Covasa M. Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Front Med (Lausanne) 2022; 9:1060581. [PMID: 36569149 PMCID: PMC9773399 DOI: 10.3389/fmed.2022.1060581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplant (FMT) is a therapeutic method that aims to restore normal gut microbial composition in recipients. Currently, FMT is approved in the USA to treat recurrent and refractory Clostridioides difficile infection and has been shown to have great efficacy. As such, significant research has been directed toward understanding the potential role of FMT in other conditions associated with gut microbiota dysbiosis such as obesity, type 2 diabetes mellitus, metabolic syndrome, neuropsychiatric disorders, inflammatory bowel disease, irritable bowel syndrome, decompensated cirrhosis, cancers and graft-versus-host disease. This review examines current updates and efficacy of FMT in treating conditions other than Clostridioides difficile infection. Further, protocols for administration of FMT are also discussed including storage of fecal samples in stool banks, inclusion/exclusion criteria for donors, fecal sample preparation and methods of treatment administration. Overall, understanding the mechanisms by which FMT can manipulate gut microbiota to provide therapeutic benefit as well as identifying potential adverse effects is an important step in clarifying its long-term safety and efficacy in treating multiple conditions in the future.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Gheorghita
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania,Center for Complex Network Science, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States,Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,*Correspondence: Mihai Covasa,
| |
Collapse
|
19
|
Khan R, Shah MD, Shah L, Lee PC, Khan I. Bacterial polysaccharides-A big source for prebiotics and therapeutics. Front Nutr 2022; 9:1031935. [PMID: 36407542 PMCID: PMC9671505 DOI: 10.3389/fnut.2022.1031935] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 07/29/2023] Open
Abstract
Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.
Collapse
Affiliation(s)
- Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Luqman Shah
- Department of Biochemistry, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
20
|
Biclot A, Huys GRB, Bacigalupe R, D’hoe K, Vandeputte D, Falony G, Tito RY, Raes J. Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. MICROBIOME 2022; 10:80. [PMID: 35644616 PMCID: PMC9150342 DOI: 10.1186/s40168-022-01267-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Novel strategies for anaerobic bacterial isolations from human faecal samples and various initiatives to generate culture collections of gut-derived bacteria have instigated considerable interest for the development of novel microbiota-based treatments. Early in the process of building a culture collection, optimal faecal sample preservation is essential to safeguard the viability of the broadest taxonomic diversity range possible. In contrast to the much more established faecal storage conditions for meta-omics applications, the impact of stool sample preservation conditions on bacterial growth recovery and isolation remains largely unexplored. In this study, aliquoted faecal samples from eleven healthy human volunteers selected based on a range of physicochemical and microbiological gradients were cryopreserved at - 80 °C either without the addition of any medium (dry condition) or in different Cary-Blair medium conditions with or without a cryoprotectant, i.e. 20% (v/v) glycerol or 5% (v/v) DMSO. Faecal aliquots were subjected to bulk 16S rRNA gene sequencing as well as dilution plating on modified Gifu Anaerobic Medium after preservation for culturable fraction profiling and generation of bacterial culture collections. RESULTS Analyses of compositional variation showed that cryopreservation medium conditions affected quantitative recovery but not the overall community composition of cultured fractions. Post-preservation sample dilution and richness of the uncultured source samples were the major drivers of the cultured fraction richness at genus level. However, preservation conditions differentially affected recovery of specific genera. Presence-absence analysis indicated that twenty-two of the 45 most abundant common genera (>0.01% abundance, dilution 10-4) were recovered in cultured fractions from all preservation conditions, while nine genera were only detected in fractions from a single preservation condition. Overall, the highest number of common genera (i.e. 35/45) in cultured fractions were recovered from sample aliquots preserved without medium and in the presence of Cary-Blair medium containing 5% (v/v) DMSO. Also, in the culture collection generated from the cultured fractions, these two preservation conditions yielded the highest species richness (72 and 66, respectively). CONCLUSION Our results demonstrate that preservation methods partly determine richness and taxonomic diversity of gut anaerobes recovered from faecal samples. Complementing the current standard practice of cryopreserving stool samples in dry conditions with other preservation conditions, such as Cary-Blair medium with DMSO, could increase the species diversity of gut-associated culture collections. Video abstract.
Collapse
Affiliation(s)
- Anaïs Biclot
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Geert R. B. Huys
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Rodrigo Bacigalupe
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Kevin D’hoe
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Doris Vandeputte
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Present address: Meinig School of Biomedical Engineering, Cornell, USA
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Raul Y. Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
21
|
Alberdi A, Andersen SB, Limborg MT, Dunn RR, Gilbert MTP. Disentangling host-microbiota complexity through hologenomics. Nat Rev Genet 2022; 23:281-297. [PMID: 34675394 DOI: 10.1038/s41576-021-00421-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.
Collapse
Affiliation(s)
- Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
22
|
Hernández-Mendoza A, González-Córdova AF, Martínez-Porchas M. Influence of Probiotics on the Animal Gut Microbiota and Their Impact on the Bioavailability of Toxic Agents: An Opinion Paper. Front Nutr 2022; 9:870162. [PMID: 35520280 PMCID: PMC9063094 DOI: 10.3389/fnut.2022.870162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
|
23
|
Fecal Microbiota Transplants for Inflammatory Bowel Disease Treatment: Synthetic- and Engineered Communities-Based Microbiota Transplants Are the Future. Gastroenterol Res Pract 2022; 2022:9999925. [PMID: 35140783 PMCID: PMC8820897 DOI: 10.1155/2022/9999925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
The human intestine harbors a huge number of diverse microorganisms where a variety of complex interactions take place between the microbes as well as the host and gut microbiota. Significant long-term variations in the gut microbiota (dysbiosis) have been associated with a variety of health conditions including inflammatory bowel disease (IBD). Conventional fecal microbiota transplantations (FMTs) have been utilized to treat IBD and have been proved promising. However, various limitations such as transient results, pathogen transfer, storage, and reproducibility render conventional FMT less safe and less sustainable. Defined synthetic microbial communities (SynCom) have been used to dissect the host-microbiota-associated functions using gnotobiotic animals or in vitro cell models. This review focuses on the potential use of SynCom in IBD and its advantages and relative safety over conventional FMT. Additionally, this review reinforces how various technological advances could be combined with SynCom to have a better understanding of the complex microbial interactions in various gut inflammatory diseases including IBD. Some technological advances including the availability of a gut-on-a-chip system, intestinal organoids, ex vivo intestinal cultures, AI-based refining of the microbiome structural and functional data, and multiomic approaches may help in making more practical in vitro models of the human host. Additionally, an increase in the cultured diversity from gut microbiota and the availability of their genomic information would further make the design and utilization of SynCom more feasible. Taken together, the combined use of the available knowledge of the gut microbiota in health and disease and recent technological advances and the development of defined SynCom seem to be a promising, safe, and sustainable alternative to conventional FMT in treating IBD.
Collapse
|
24
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
25
|
Mataigne V, Vannier N, Vandenkoornhuyse P, Hacquard S. Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes. Front Microbiol 2021; 12:780469. [PMID: 34987488 PMCID: PMC8721230 DOI: 10.3389/fmicb.2021.780469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding how microorganism-microorganism interactions shape microbial assemblages is a key to deciphering the evolution of dependencies and co-existence in complex microbiomes. Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially determine microbial community composition. To parry the complexity and experimental limitations caused by the large number of possible interactions, new concepts from systems biology aim to decipher how the components of a system interact with each other. The idea that cross-feeding does impact microbiome assemblages has developed both theoretically and empirically, following a systems biology framework applied to microbial communities, formalized as microbial systems ecology (MSE) and relying on integrated-omics data. This framework merges cellular and community scales and offers new avenues to untangle microbial coexistence primarily by metabolic modeling, one of the main approaches used for mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-feeding. We then discuss how MSE can enable progress in microbial research. Finally, we provide an overview of a MSE framework mostly based on genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches to assess the molecular mechanisms of deterministic processes of microbial community assembly that is particularly suitable for use in synthetic biology and microbiome engineering.
Collapse
Affiliation(s)
- Victor Mataigne
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nathan Vannier
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
| | | | | |
Collapse
|
26
|
Barone M, D'Amico F, Fabbrini M, Rampelli S, Brigidi P, Turroni S. Over-feeding the gut microbiome: A scoping review on health implications and therapeutic perspectives. World J Gastroenterol 2021; 27:7041-7064. [PMID: 34887627 PMCID: PMC8613651 DOI: 10.3748/wjg.v27.i41.7041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
The human gut microbiome has gained increasing attention over the past two decades. Several findings have shown that this complex and dynamic microbial ecosystem can contribute to the maintenance of host health or, when subject to imbalances, to the pathogenesis of various enteric and non-enteric diseases. This scoping review summarizes the current knowledge on how the gut microbiota and microbially-derived compounds affect host metabolism, especially in the context of obesity and related disorders. Examples of microbiome-based targeted intervention strategies that aim to restore and maintain an eubiotic layout are then discussed. Adjuvant therapeutic interventions to alleviate obesity and associated comorbidities are traditionally based on diet modulation and the supplementation of prebiotics, probiotics and synbiotics. However, these approaches have shown only moderate ability to induce sustained changes in the gut microbial ecosystem, making the development of innovative and tailored microbiome-based intervention strategies of utmost importance in clinical practice. In this regard, the administration of next-generation probiotics and engineered microbiomes has shown promising results, together with more radical intervention strategies based on the replacement of the dysbiotic ecosystem by means of fecal microbiota transplantation from healthy donors or with the introduction of synthetic communities specifically designed to achieve the desired therapeutic outcome. Finally, we provide a perspective for future translational investigations through the implementation of bioinformatics approaches, including machine and deep learning, to predict health risks and therapeutic outcomes.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
27
|
Ansari AF, Reddy YBS, Raut J, Dixit NM. An efficient and scalable top-down method for predicting structures of microbial communities. NATURE COMPUTATIONAL SCIENCE 2021; 1:619-628. [PMID: 38217133 DOI: 10.1038/s43588-021-00131-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2024]
Abstract
Modern applications involving multispecies microbial communities rely on the ability to predict structures of such communities in defined environments. The structures depend on pairwise and high-order interactions between species. To unravel these interactions, classical bottom-up approaches examine all possible species subcommunities. Such approaches are not scalable as the number of subcommunities grows exponentially with the number of species, n. Here we present a top-down method wherein the number of subcommunities to be examined grows linearly with n, drastically reducing experimental effort. The method uses steady-state data from leave-one-out subcommunities and mathematical modeling to infer effective pairwise interactions and predict community structures. The accuracy of the method increases with n, making it suitable for large communities. We established the method in silico and validated it against a five-species community from literature and an eight-species community cultured in vitro. Our method offers an efficient and scalable tool for predicting microbial community structures.
Collapse
Affiliation(s)
- Aamir Faisal Ansari
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
28
|
Lalwani MA, Kawabe H, Mays RL, Hoffman SM, Avalos JL. Optogenetic Control of Microbial Consortia Populations for Chemical Production. ACS Synth Biol 2021; 10:2015-2029. [PMID: 34351122 DOI: 10.1021/acssynbio.1c00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial co-culture fermentations can improve chemical production from complex biosynthetic pathways over monocultures by distributing enzymes across multiple strains, thereby reducing metabolic burden, overcoming endogenous regulatory mechanisms, or exploiting natural traits of different microbial species. However, stabilizing and optimizing microbial subpopulations for maximal chemical production remains a major obstacle in the field. In this study, we demonstrate that optogenetics is an effective strategy to dynamically control populations in microbial co-cultures. Using a new optogenetic circuit we call OptoTA, we regulate an endogenous toxin-antitoxin system, enabling tunability of Escherichia coli growth using only blue light. With this system we can control the population composition of co-cultures of E. coli and Saccharomyces cerevisiae. When introducing in each strain different metabolic modules of biosynthetic pathways for isobutyl acetate or naringenin, we found that the productivity of co-cultures increases by adjusting the population ratios with specific light duty cycles. This study shows the feasibility of using optogenetics to control microbial consortia populations and the advantages of using light to control their chemical production.
Collapse
Affiliation(s)
- Makoto A. Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hinako Kawabe
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Rebecca L. Mays
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Shannon M. Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L. Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
30
|
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021; 10:602. [PMID: 33809159 PMCID: PMC8000492 DOI: 10.3390/foods10030602] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral populations, among which lactic acid bacteria (LAB) are majority components with a prominent role during manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors. Cooperative and competitive interactions between distinct members of the microbiota may occur, with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic details of these interactions, and their functional consequences, are largely unknown. Acquiring such knowledge is important if we are to predict when fermentations will be successful and understand the causes of technological failures. The experimental use of "synthetic" microbial communities might help throw light on the dynamics of different cheese microbiota components and the interplay between them. Although synthetic communities cannot reproduce entirely the natural microbial diversity in cheese, they could help reveal basic principles governing the interactions between microbial types and perhaps allow multi-species microbial communities to be developed as functional starters. By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might be expected to be more resilient and efficient than conventional starters in the development of unique sensorial properties.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.R.); (L.V.); (A.B.F.)
| | | | | | | |
Collapse
|
31
|
Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D, Holscher HD, Hunter K, Manurung S, Obis D, Petrova MI, Steinert RE, Swanson KS, van Sinderen D, Vulevic J, Gibson GR. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol 2021; 29:667-685. [PMID: 33551269 DOI: 10.1016/j.tim.2021.01.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Recent and ongoing developments in microbiome science are enabling new frontiers of research for probiotics and prebiotics. Novel types, mechanisms, and applications currently under study have the potential to change scientific understanding as well as nutritional and healthcare applications of these interventions. The expansion of related fields of microbiome-targeted interventions, and an evolving landscape for implementation across regulatory, policy, prescriber, and consumer spheres, portends an era of significant change. In this review we examine recent, emerging, and anticipated trends in probiotic and prebiotic science, and create a vision for broad areas of developing influence in the field.
Collapse
Affiliation(s)
- Marla Cunningham
- Department of Science and Innovation, Metagenics, PO Box 675, Virginia BC, QLD, 4014, Australia.
| | - M Andrea Azcarate-Peril
- UNC Departments of Medicine and Nutrition, Microbiome Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | | | - Valerie Benoit
- Bell Institute of Health and Nutrition, General Mills, Minneapolis, MN, USA
| | | | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kirsty Hunter
- Department of Sport Science, Nottingham Trent University, UK
| | - Sarmauli Manurung
- Emerging Sciences Research, Reckitt Benckiser, Nijmegen, The Netherlands
| | - David Obis
- Danone Nutricia Research, Palaiseau Cedex, France
| | | | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Switzerland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douwe van Sinderen
- Microbiology BioSciences Institute, University College Cork, Cork, Ireland
| | - Jelena Vulevic
- veMico Ltd, Reading, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
32
|
Rosero-Chasoy G, Rodríguez-Jasso RM, Aguilar CN, Buitrón G, Chairez I, Ruiz HA. Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation - an overview. BIORESOURCE TECHNOLOGY 2021; 321:124458. [PMID: 33338739 DOI: 10.1016/j.biortech.2020.124458] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The microbial co-cultures or consortia are a natural set of microorganisms formed from different species or the same species but different strains, in which members can interact with each other. The co-culture systems have wide variety of technological applications such as the production of foods, treatment of wastewater, removal of toxic substances, environmental recovery, and all these without the need to work in sterile conditions. Therefore, the need of understanding communication mechanisms between cell-to-cell within co-culture will allow to construct and to program their biological behavior from the use of complex substrates to produce biocompounds. The technology of co-culture systems enables the development of biorefinery platforms to obtain biofuels, and high value compounds through biomass transformation by sustainable process. This review focuses on understanding the roles of consortia microbial to design and built co-culture systems to produce high value compounds in terms a sustainable biorefinery.
Collapse
Affiliation(s)
- Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - Cristóbal N Aguilar
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Queretaro 76230, Mexico
| | - Isaac Chairez
- Unidad Profesional Interdisciplinaria de Biotecnología, UPIBI, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
33
|
Altamirano Á, Saa PA, Garrido D. Inferring composition and function of the human gut microbiome in time and space: A review of genome-scale metabolic modelling tools. Comput Struct Biotechnol J 2020; 18:3897-3904. [PMID: 33335687 PMCID: PMC7719866 DOI: 10.1016/j.csbj.2020.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The human gut hosts a complex community of microorganisms that directly influences gastrointestinal physiology, playing a central role in human health. Because of its importance, the metabolic interplay between the gut microbiome and host metabolism has gained special interest. While there has been great progress in the field driven by metagenomics and experimental studies, the mechanisms underpinning microbial composition and interactions in the microbiome remain poorly understood. Genome-scale metabolic models are mathematical structures capable of describing the metabolic potential of microbial cells. They are thus suitable tools for probing the metabolic properties of microbial communities. In this review, we discuss the most recent and relevant genome-scale metabolic modelling tools for inferring the composition, interactions, and ultimately, biological function of the constituent species of a microbial community with special emphasis in the gut microbiota. Particular attention is given to constraint-based metabolic modelling methods as well as hybrid agent-based methods for capturing the interactions and behavior of the community in time and space. Finally, we discuss the challenges hindering comprehensive modelling of complex microbial communities and its application for the in-silico design of microbial consortia with therapeutic functions.
Collapse
|
34
|
|
35
|
Wu J, Zhao Y, Wang X, Kong L, Johnston LJ, Lu L, Ma X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2020; 62:783-797. [PMID: 33043708 DOI: 10.1080/10408398.2020.1828813] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianmin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lingchang Kong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Centre, University of Minnesota, Morris, Minnesota, USA
| | - Lin Lu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
37
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
38
|
Evrensel A, Ceylan ME. Editorial overview: The gut microbiome: Its role in disorders of the GI tract and metabolic homeostasis. Curr Opin Pharmacol 2019; 49:iii-v. [PMID: 31606301 DOI: 10.1016/j.coph.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, NP Brain Hospital, Istanbul, Turkey; Department of Psychology, Faculty of Human and Social Sciences, Uskudar University, Istanbul, Turkey.
| | - Mehmet Emin Ceylan
- Department of Psychiatry, Uskudar University, NP Brain Hospital, Istanbul, Turkey; Department of Psychology, Faculty of Human and Social Sciences, Uskudar University, Istanbul, Turkey.
| |
Collapse
|