1
|
Seeberg AB, Matthews TE, Højlund A, Vuust P, Petersen B. Beyond syncopation: The number of rhythmic layers shapes the pleasurable urge to move to music. Cognition 2025; 262:106178. [PMID: 40373735 DOI: 10.1016/j.cognition.2025.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/17/2025]
Abstract
People experience the strongest pleasurable urge to move to music (PLUMM) with rhythms of medium complexity, showing an inverted U-shaped relationship. Rhythmic complexity is typically defined by syncopation but likely interacts with the number and instrumentation of rhythmic layers (e.g., snare only vs snare and bass drum) in affecting PLUMM. This study investigated this interaction by comparing PLUMM ratings of rhythms with varying rhythmic layers and syncopation degrees. Two online studies (study 1, n = 108; study 2, n = 46) were conducted asking participants to rate how much they wanted to move and the pleasure they felt while listening to rhythms. Each study used 12 rhythms in four versions: 1) snare only (SN) in study I and bass drum only (BD) in study II; 2) snare and hi-hat (SN + HH) in study I and bass drum and hi-hat (BD + HH) in study II; 3) snare and bass drum (SN + BD) and 4) the original with snare, bass drum, and hi-hat (SN + BD + HH) in both studies, totaling 48 stimuli per study. We tested for linear and quadratic effects of syncopation and rhythmic layers on PLUMM ratings. Study I showed a significant interaction between syncopation and rhythmic layers. The SN + BD + HH versions exhibited the strongest inverted U as an effect of syncopation, followed by SN + BD and SN + HH, while SN showed a near-flat pattern of ratings as an effect of syncopation. Study II had similar findings, but differences between versions were smaller, and the interaction was mainly driven by differences between BD and BD + HH and between SN + BD and SN + BD + HH, especially at moderate syncopation levels. These findings suggest that the PLUMM response is shaped by the number of rhythmic layers, the roles that the different instruments play, and the way that they interact with each other and with syncopation, thus extending our understanding of the rhythmic features that drive the motor and hedonic responses to music.
Collapse
Affiliation(s)
- Alberte B Seeberg
- Center for Music in the Brain, dpt. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - Tomas E Matthews
- Center for Music in the Brain, dpt. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - Andreas Højlund
- Department of Linguistics and Cognitive Science, Aarhus University, Aarhus, Denmark.
| | - Peter Vuust
- Center for Music in the Brain, dpt. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Bjørn Petersen
- Center for Music in the Brain, dpt. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| |
Collapse
|
2
|
Qela B, Damiani S, De Santis S, Groppi F, Pichiecchio A, Asteggiano C, Brondino N, Monteleone AM, Grassi L, Politi P, Fusar-Poli P, Fusar-Poli L. Predictive coding in neuropsychiatric disorders: A systematic transdiagnostic review. Neurosci Biobehav Rev 2025; 169:106020. [PMID: 39828236 DOI: 10.1016/j.neubiorev.2025.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The predictive coding framework postulates that the human brain continuously generates predictions about the environment, maximizing successes and minimizing failures based on prior experiences and beliefs. This PRISMA-compliant systematic review aims to comprehensively and transdiagnostically examine the differences in predictive coding between individuals with neuropsychiatric disorders and healthy controls. We included 72 articles including case-control studies investigating predictive coding as the primary outcome and reporting behavioral, neuroimaging, or electrophysiological findings. Thirty-three studies investigated predictive coding in the schizophrenia spectrum, 33 in neurodevelopmental disorders, 5 in mood disorders, 4 in neurocognitive disorders, 1 in post-traumatic stress disorder, and 1 in substance use disorders. Oddball and oddball-like paradigms were most frequently used to quantify predictive coding performance. Evidence showed heterogeneous impairments in the predictive coding abilities of the brain across neuropsychiatric disorders, particularly in schizophrenia and autism. Patients within the schizophrenia spectrum showed a consistent pattern of impaired non-social predictive coding. Conversely, predictive coding deficits were more selective for social cues in the autism spectrum. Predictive coding impairments were correlated with clinical symptom severity. These findings underscore the potential utility of predictive coding as a framework for understanding cognitive dysfunctions in the neuropsychiatric population, even though more evidence is needed on underexplored conditions, also considering potential confounders such as medication use and sex/gender. The potential role of predictive coding as a determinant of treatment response may also be considered to tailor personalized interventions.
Collapse
Affiliation(s)
- Brendon Qela
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Samanta De Santis
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Carlo Asteggiano
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, United Kingdom; Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| |
Collapse
|
3
|
Matthews TE, Lumaca M, Witek MAG, Penhune VB, Vuust P. Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians. Brain Struct Funct 2024; 229:2299-2313. [PMID: 39052097 PMCID: PMC11611946 DOI: 10.1007/s00429-024-02836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
There are pronounced differences in the degree to which individuals experience music-induced pleasure which are linked to variations in structural connectivity between auditory and reward areas. However, previous studies exploring the link between white matter structure and music reward sensitivity (MRS) have relied on standard diffusion tensor imaging methods, which present challenges in terms of anatomical accuracy and interpretability. Further, the link between MRS and connectivity in regions outside of auditory-reward networks, as well as the role of musical training, have yet to be investigated. Therefore, we investigated the relation between MRS and structural connectivity in a large number of directly segmented and anatomically verified white matter tracts in musicians (n = 24) and non-musicians (n = 23) using state-of-the-art tract reconstruction and fixel-based analysis. Using a manual tract-of-interest approach, we additionally tested MRS-white matter associations in auditory-reward networks seen in previous studies. Within the musician group, there was a significant positive relation between MRS and fiber density and cross section in the right middle longitudinal fascicle connecting auditory and inferior parietal cortices. There were also positive relations between MRS and fiber-bundle cross-section in tracts connecting the left thalamus to the ventral precentral gyrus and connecting the right thalamus to the right supplementary motor area, however, these did not survive FDR correction. These results suggest that, within musicians, dorsal auditory and motor networks are crucial to MRS, possibly via their roles in top-down predictive processing and auditory-motor transformations.
Collapse
Affiliation(s)
- Tomas E Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark.
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
| | - Maria A G Witek
- Department of Music School of Languages, Art History and Music, University of Birmingham, Cultures, Birmingham, B15 2TT, UK
| | - Virginia B Penhune
- Department of Psychology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, Aarhus C, DK-8000, Denmark
| |
Collapse
|
4
|
Senn O, Hoesl F, Bechtold TA, Kilchenmann L, Jerjen R, Witek M. Null effect of perceived drum pattern complexity on the experience of groove. PLoS One 2024; 19:e0311877. [PMID: 39546498 PMCID: PMC11567550 DOI: 10.1371/journal.pone.0311877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
There is a broad consensus in groove research that the experience of groove, understood as a pleasurable urge to move in response to music, is to some extent related to the complexity of the rhythm. Specifically, music with medium rhythmic complexity has been found to motivate greater urge to move compared to low or high complexity music (inverted-U hypothesis). Studies that confirmed the inverted-U hypothesis usually based their measure of complexity on the rhythmic phenomenon of syncopation, where rhythms with more and/or stronger syncopation are considered to be more complex than less syncopated rhythms. However, syncopation is not the same as complexity and represents only one rhythmic device that makes music complex. This study attempts the verification of the inverted-U hypothesis independently from syncopation. It uses a new stimulus set of forty idiomatic popular music drum patterns whose perceptual complexity was measured experimentally in a previous study. The current study reports the results of a listening experiment with n = 179 participants, in which the inverted-U hypothesis was not confirmed. Complexity did not have any significant effect on listeners' urge to move (p = 834). Results are discussed in the context of the psychological model of musical groove, which offers a nuance to this null result: simple drum patterns motivate listeners to dance because they convey metric clarity; complex patterns invite dancing because they are interesting. Yet, overall, the urge to move does not seem to depend on complexity, at least in the case of idiomatic drum patterns that are typically encountered in the Western popular music repertoire.
Collapse
Affiliation(s)
- Olivier Senn
- School of Music, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Florian Hoesl
- School of Music, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Toni Amadeus Bechtold
- School of Music, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
- Department of Music, University of Birmingham, Birmingham, United Kingdom
| | - Lorenz Kilchenmann
- School of Music, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Rafael Jerjen
- School of Music, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Maria Witek
- Department of Music, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Löser AS, Dalla Bella S, Keller PE, Villringer A, Obrig H, Engel A. Inhibitory control and working memory predict rhythm production abilities in patients with neurocognitive deficits. Neuropsychologia 2024; 204:109009. [PMID: 39374857 DOI: 10.1016/j.neuropsychologia.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Deficits in rhythm perception and production have been reported in a variety of psychiatric, neurodevelopmental and neurologic disorders. Since correlations between rhythmic abilities and cognitive functions have been demonstrated in neurotypical individuals, we here investigate whether and how rhythmic abilities are associated with cognitive functions in 35 participants with neurocognitive deficits due to acquired brain lesions. We systematically assessed a diverse set of rhythm perception and production abilities including time and beat perception and finger-tapping tasks. Neuropsychological tests were applied to assess separable cognitive functions. Using multiple regression analyses we show that lower variability in aligning movements to a pacing sequence was predicted by better inhibitory control and better working memory performance. Working memory performance also predicted lower variability of rhythmic movements in the absence of an external pacing sequence and better anticipatory timing to sequences with gradual tempo changes. Importantly, these predictors remained significant for all regression models when controlling for other cognitive variables (i.e., cognitive flexibility, information processing speed, and verbal learning ability) and potential confounders (i.e., age, symptom strength of depression, manual dexterity, duration of illness, severity of cognitive impairment, and musical experience). Thus, all rhythm production abilities were significantly predicted by measures of executive functions. In contrast, rhythm perception abilities (time perception/beat perception) were not predicted by executive functions in this study. Our results, enhancing the understanding of cognitive underpinnings of rhythmic abilities in individuals with neurocognitive deficits, may be a first mandatory step to further potential therapeutic implications of rhythm-based interventions in neuropsychological rehabilitation.
Collapse
Affiliation(s)
- Alina S Löser
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada; University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour & Development, Western Sydney University, Penrith, NSW, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Arno Villringer
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Annerose Engel
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| |
Collapse
|
6
|
Ishida K, Nittono H. Different plasticity patterns of schematic and dynamic expectations in musical pitch prediction. Neuropsychologia 2024; 204:109012. [PMID: 39389293 DOI: 10.1016/j.neuropsychologia.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Kai Ishida
- Graduate School of Human Sciences, Osaka University, Osaka, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Lazzari G, Sacheli LM, Benoit CE, Lega C, van Vugt FT. Pleasantness makes a good time: musical consonance shapes interpersonal synchronization in dyadic joint action. Front Hum Neurosci 2024; 18:1472632. [PMID: 39502786 PMCID: PMC11534602 DOI: 10.3389/fnhum.2024.1472632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Music making is a process by which humans across cultures come together to create patterns of sounds that are aesthetically pleasing. What remains unclear is how this aesthetic outcome affects the sensorimotor interaction between participants. Method Here we approach this question using an interpersonal sensorimotor synchronization paradigm to test whether the quality of a jointly created chord (consonant vs. dissonant) affects movement coordination. We recruited non-musician participants in dyads to perform a dyadic synchronization-continuation task (dSCT): on each trial, participants first synchronized their movements to a metronome (synchronization phase) and then continued tapping together at the same tempo without the metronome (continuation phase). Each tap yielded a note and participants heard both their own and that of their partner, thus creating a chord that was varied to be either consonant (Perf5 or Maj6) or dissonant (Min2 or Maj2). For each trial, participants also rated the pleasure they felt in creating the sounds together. Additionally, they completed questionnaires about social closeness to the other participant, musical reward sensitivity and musical training. Results Results showed that participants' taps were closer in time when they jointly created consonant (high pleasure) vs. dissonant (low pleasure) chords, and that pleasure experienced by the dyad in each trial predicted interpersonal synchronization. However, consonance did not affect individual synchronization with the metronome or individual tapping when the metronome was discontinued. The effect of consonance on synchronization was greater in dyads who reported feeling less close prior to the task. Discussion Together, these results highlight the role of consonance in shaping the temporal coordination of our actions with others. More broadly, this work shows that the aesthetic outcome of what we create together affects joint behaviors.
Collapse
Affiliation(s)
- Giorgio Lazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Charles-Etienne Benoit
- Inter-University Laboratory of Human Movement Biology, Univ Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Carlotta Lega
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Floris T. van Vugt
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, QC, Canada
- Psychology Department, University of Montreal, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada
| |
Collapse
|
8
|
Morucci P, Nara S, Lizarazu M, Martin C, Molinaro N. Language experience shapes predictive coding of rhythmic sound sequences. eLife 2024; 12:RP91636. [PMID: 39268817 PMCID: PMC11398862 DOI: 10.7554/elife.91636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Perceptual systems heavily rely on prior knowledge and predictions to make sense of the environment. Predictions can originate from multiple sources of information, including contextual short-term priors, based on isolated temporal situations, and context-independent long-term priors, arising from extended exposure to statistical regularities. While the effects of short-term predictions on auditory perception have been well-documented, how long-term predictions shape early auditory processing is poorly understood. To address this, we recorded magnetoencephalography data from native speakers of two languages with different word orders (Spanish: functor-initial vs Basque: functor-final) listening to simple sequences of binary sounds alternating in duration with occasional omissions. We hypothesized that, together with contextual transition probabilities, the auditory system uses the characteristic prosodic cues (duration) associated with the native language's word order as an internal model to generate long-term predictions about incoming non-linguistic sounds. Consistent with our hypothesis, we found that the amplitude of the mismatch negativity elicited by sound omissions varied orthogonally depending on the speaker's linguistic background and was most pronounced in the left auditory cortex. Importantly, listening to binary sounds alternating in pitch instead of duration did not yield group differences, confirming that the above results were driven by the hypothesized long-term 'duration' prior. These findings show that experience with a given language can shape a fundamental aspect of human perception - the neural processing of rhythmic sounds - and provides direct evidence for a long-term predictive coding system in the auditory cortex that uses auditory schemes learned over a lifetime to process incoming sound sequences.
Collapse
Affiliation(s)
- Piermatteo Morucci
- Department of Fundamental Neurosciences, University of GenevaGenevaSwitzerland
- Basque Center on Cognition, Brain and LanguageDonostia-San SebastianSpain
| | - Sanjeev Nara
- Basque Center on Cognition, Brain and LanguageDonostia-San SebastianSpain
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Liebig-Universität GießenGießenGermany
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and LanguageDonostia-San SebastianSpain
| | - Clara Martin
- Basque Center on Cognition, Brain and LanguageDonostia-San SebastianSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Nicola Molinaro
- Basque Center on Cognition, Brain and LanguageDonostia-San SebastianSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
9
|
Burunat I, Levitin DJ, Toiviainen P. Breaking (musical) boundaries by investigating brain dynamics of event segmentation during real-life music-listening. Proc Natl Acad Sci U S A 2024; 121:e2319459121. [PMID: 39186645 PMCID: PMC11388323 DOI: 10.1073/pnas.2319459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
The perception of musical phrase boundaries is a critical aspect of human musical experience: It allows us to organize, understand, derive pleasure from, and remember music. Identifying boundaries is a prerequisite for segmenting music into meaningful chunks, facilitating efficient processing and storage while providing an enjoyable, fulfilling listening experience through the anticipation of upcoming musical events. Expanding on Sridharan et al.'s [Neuron 55, 521-532 (2007)] work on coarse musical boundaries between symphonic movements, we examined finer-grained boundaries. We measured the fMRI responses of 18 musicians and 18 nonmusicians during music listening. Using general linear model, independent component analysis, and Granger causality, we observed heightened auditory integration in anticipation to musical boundaries, and an extensive decrease within the fronto-temporal-parietal network during and immediately following boundaries. Notably, responses were modulated by musicianship. Findings uncover the intricate interplay between musical structure, expertise, and cognitive processing, advancing our knowledge of how the brain makes sense of music.
Collapse
Affiliation(s)
- Iballa Burunat
- Centre of Excellence in Music, Mind, Body and Brain, Department of Music, Arts and Culture Studies, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Daniel J Levitin
- School of Social Sciences, Minerva University, San Francisco, CA 94103
- Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada
| | - Petri Toiviainen
- Centre of Excellence in Music, Mind, Body and Brain, Department of Music, Arts and Culture Studies, University of Jyväskylä, Jyväskylä 40014, Finland
| |
Collapse
|
10
|
Rhodes D, Bridgewater T, Ayache J, Riemer M. Rapid calibration to dynamic temporal contexts. Q J Exp Psychol (Hove) 2024; 77:1923-1935. [PMID: 38017605 PMCID: PMC11373159 DOI: 10.1177/17470218231219507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The prediction of future events and the preparation of appropriate behavioural reactions rely on an accurate perception of temporal regularities. In dynamic environments, temporal regularities are subject to slow and sudden changes, and adaptation to these changes is an important requirement for efficient behaviour. Bayesian models have proven a useful tool to understand the processing of temporal regularities in humans; yet an open question pertains to the degree of flexibility of the prior that is required for optimal modelling of behaviour. Here we directly compare dynamic models (with continuously changing prior expectations) and static models (a stable prior for each experimental session) with their ability to describe regression effects in interval timing. Our results show that dynamic Bayesian models are superior when describing the responses to slow, continuous environmental changes, whereas static models are more suitable to describe responses to sudden changes. In time perception research, these results will be informative for the choice of adequate computational models and enhance our understanding of the neuronal computations underlying human timing behaviour.
Collapse
Affiliation(s)
| | - Tyler Bridgewater
- NTU Psychology, Nottingham Trent University, Nottingham, UK
- School of Psychology, Cardiff University, UK
| | - Julia Ayache
- NTU Psychology, Nottingham Trent University, Nottingham, UK
| | - Martin Riemer
- Biological Psychology and Neuroergonomics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
11
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
12
|
Teng X, Larrouy-Maestri P, Poeppel D. Segmenting and Predicting Musical Phrase Structure Exploits Neural Gain Modulation and Phase Precession. J Neurosci 2024; 44:e1331232024. [PMID: 38926087 PMCID: PMC11270514 DOI: 10.1523/jneurosci.1331-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Music, like spoken language, is often characterized by hierarchically organized structure. Previous experiments have shown neural tracking of notes and beats, but little work touches on the more abstract question: how does the brain establish high-level musical structures in real time? We presented Bach chorales to participants (20 females and 9 males) undergoing electroencephalogram (EEG) recording to investigate how the brain tracks musical phrases. We removed the main temporal cues to phrasal structures, so that listeners could only rely on harmonic information to parse a continuous musical stream. Phrasal structures were disrupted by locally or globally reversing the harmonic progression, so that our observations on the original music could be controlled and compared. We first replicated the findings on neural tracking of musical notes and beats, substantiating the positive correlation between musical training and neural tracking. Critically, we discovered a neural signature in the frequency range ∼0.1 Hz (modulations of EEG power) that reliably tracks musical phrasal structure. Next, we developed an approach to quantify the phrasal phase precession of the EEG power, revealing that phrase tracking is indeed an operation of active segmentation involving predictive processes. We demonstrate that the brain establishes complex musical structures online over long timescales (>5 s) and actively segments continuous music streams in a manner comparable to language processing. These two neural signatures, phrase tracking and phrasal phase precession, provide new conceptual and technical tools to study the processes underpinning high-level structure building using noninvasive recording techniques.
Collapse
Affiliation(s)
- Xiangbin Teng
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pauline Larrouy-Maestri
- Music Department, Max-Planck-Institute for Empirical Aesthetics, Frankfurt 60322, Germany
- Center for Language, Music, and Emotion (CLaME), New York, New York 10003
| | - David Poeppel
- Center for Language, Music, and Emotion (CLaME), New York, New York 10003
- Department of Psychology, New York University, New York, New York 10003
- Ernst Struengmann Institute for Neuroscience, Frankfurt 60528, Germany
- Music and Audio Research Laboratory (MARL), New York, New York 11201
| |
Collapse
|
13
|
Ishida K, Ishida T, Nittono H. Decoding predicted musical notes from omitted stimulus potentials. Sci Rep 2024; 14:11164. [PMID: 38750185 PMCID: PMC11096333 DOI: 10.1038/s41598-024-61989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Electrophysiological studies have investigated predictive processing in music by examining event-related potentials (ERPs) elicited by the violation of musical expectations. While several studies have reported that the predictability of stimuli can modulate the amplitude of ERPs, it is unclear how specific the representation of the expected note is. The present study addressed this issue by recording the omitted stimulus potentials (OSPs) to avoid contamination of bottom-up sensory processing with top-down predictive processing. Decoding of the omitted content was attempted using a support vector machine, which is a type of machine learning. ERP responses to the omission of four target notes (E, F, A, and C) at the same position in familiar and unfamiliar melodies were recorded from 25 participants. The results showed that the omission N1 were larger in the familiar melody condition than in the unfamiliar melody condition. The decoding accuracy of the four omitted notes was significantly higher in the familiar melody condition than in the unfamiliar melody condition. These results suggest that the OSPs contain discriminable predictive information, and the higher the predictability, the more the specific representation of the expected note is generated.
Collapse
Affiliation(s)
- Kai Ishida
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Tomomi Ishida
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Etani T, Miura A, Kawase S, Fujii S, Keller PE, Vuust P, Kudo K. A review of psychological and neuroscientific research on musical groove. Neurosci Biobehav Rev 2024; 158:105522. [PMID: 38141692 DOI: 10.1016/j.neubiorev.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
When listening to music, we naturally move our bodies rhythmically to the beat, which can be pleasurable and difficult to resist. This pleasurable sensation of wanting to move the body to music has been called "groove." Following pioneering humanities research, psychological and neuroscientific studies have provided insights on associated musical features, behavioral responses, phenomenological aspects, and brain structural and functional correlates of the groove experience. Groove research has advanced the field of music science and more generally informed our understanding of bidirectional links between perception and action, and the role of the motor system in prediction. Activity in motor and reward-related brain networks during music listening is associated with the groove experience, and this neural activity is linked to temporal prediction and learning. This article reviews research on groove as a psychological phenomenon with neurophysiological correlates that link musical rhythm perception, sensorimotor prediction, and reward processing. Promising future research directions range from elucidating specific neural mechanisms to exploring clinical applications and socio-cultural implications of groove.
Collapse
Affiliation(s)
- Takahide Etani
- School of Medicine, College of Medical, Pharmaceutical, and Health, Kanazawa University, Kanazawa, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Japan.
| | - Akito Miura
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Kawase
- The Faculty of Psychology, Kobe Gakuin University, Kobe, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Kazutoshi Kudo
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Fiorin G, Delfitto D. Syncopation as structure bootstrapping: the role of asymmetry in rhythm and language. Front Psychol 2024; 15:1304485. [PMID: 38440243 PMCID: PMC10911290 DOI: 10.3389/fpsyg.2024.1304485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Syncopation - the occurrence of a musical event on a metrically weak position preceding a rest on a metrically strong position - represents an important challenge in the study of the mapping between rhythm and meter. In this contribution, we present the hypothesis that syncopation is an effective strategy to elicit the bootstrapping of a multi-layered, hierarchically organized metric structure from a linear rhythmic surface. The hypothesis is inspired by a parallel with the problem of linearization in natural language syntax, which is the problem of how hierarchically organized phrase-structure markers are mapped onto linear sequences of words. The hypothesis has important consequences for the role of meter in music perception and cognition and, more particularly, for its role in the relationship between rhythm and bodily entrainment.
Collapse
Affiliation(s)
- Gaetano Fiorin
- Department of Humanities, University of Trieste, Trieste, Italy
| | - Denis Delfitto
- Department of Cultures and Civilizations, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Bianco R, Zuk NJ, Bigand F, Quarta E, Grasso S, Arnese F, Ravignani A, Battaglia-Mayer A, Novembre G. Neural encoding of musical expectations in a non-human primate. Curr Biol 2024; 34:444-450.e5. [PMID: 38176416 DOI: 10.1016/j.cub.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
The appreciation of music is a universal trait of humankind.1,2,3 Evidence supporting this notion includes the ubiquity of music across cultures4,5,6,7 and the natural predisposition toward music that humans display early in development.8,9,10 Are we musical animals because of species-specific predispositions? This question cannot be answered by relying on cross-cultural or developmental studies alone, as these cannot rule out enculturation.11 Instead, it calls for cross-species experiments testing whether homologous neural mechanisms underlying music perception are present in non-human primates. We present music to two rhesus monkeys, reared without musical exposure, while recording electroencephalography (EEG) and pupillometry. Monkeys exhibit higher engagement and neural encoding of expectations based on the previously seeded musical context when passively listening to real music as opposed to shuffled controls. We then compare human and monkey neural responses to the same stimuli and find a species-dependent contribution of two fundamental musical features-pitch and timing12-in generating expectations: while timing- and pitch-based expectations13 are similarly weighted in humans, monkeys rely on timing rather than pitch. Together, these results shed light on the phylogeny of music perception. They highlight monkeys' capacity for processing temporal structures beyond plain acoustic processing, and they identify a species-dependent contribution of time- and pitch-related features to the neural encoding of musical expectations.
Collapse
Affiliation(s)
- Roberta Bianco
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Nathaniel J Zuk
- Department of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham NG1 4FQ, UK
| | - Félix Bigand
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Flavia Arnese
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Universitetsbyen 3, 8000 Aarhus, Denmark; Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
17
|
Bouwer FL, Háden GP, Honing H. Probing Beat Perception with Event-Related Potentials (ERPs) in Human Adults, Newborns, and Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:227-256. [PMID: 38918355 DOI: 10.1007/978-3-031-60183-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g., a beat) in rhythm. Additionally, we highlight the importance of dissociating beat perception from the perception of other types of structure in rhythm, such as predictable sequences of temporal intervals, ordinal structure, and rhythmic grouping. In the second section of the chapter, we start with a discussion of auditory ERPs elicited by infrequent and frequent sounds: ERP responses to regularity violations, such as mismatch negativity (MMN), N2b, and P3, as well as early sensory responses to sounds, such as P1 and N1, have been shown to be instrumental in probing beat perception. Subsequently, we discuss how beat perception can be probed by comparing ERP responses to sounds in regular and irregular sequences, and by comparing ERP responses to sounds in different metrical positions in a rhythm, such as on and off the beat or on strong and weak beats. Finally, we will discuss previous research that has used the aforementioned ERPs and paradigms to study beat perception in human adults, human newborns, and nonhuman primates. In doing so, we consider the possible pitfalls and prospects of the technique, as well as future perspectives.
Collapse
Affiliation(s)
- Fleur L Bouwer
- Cognitive Psychology Unit, Institute of Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
- Department of Psychology, Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.
| | - Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Henkjan Honing
- Music Cognition group (MCG), Institute for Logic, Language and Computation (ILLC), Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Pando-Naude V, Matthews TE, Højlund A, Jakobsen S, Østergaard K, Johnsen E, Garza-Villarreal EA, Witek MAG, Penhune V, Vuust P. Dopamine dysregulation in Parkinson's disease flattens the pleasurable urge to move to musical rhythms. Eur J Neurosci 2024; 59:101-118. [PMID: 37724707 DOI: 10.1111/ejn.16128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
The pleasurable urge to move to music (PLUMM) activates motor and reward areas of the brain and is thought to be driven by predictive processes. Dopamine in motor and limbic networks is implicated in beat-based timing and music-induced pleasure, suggesting a central role of basal ganglia (BG) dopaminergic systems in PLUMM. This study tested this hypothesis by comparing PLUMM in participants with Parkinson's disease (PD), age-matched controls, and young controls. Participants listened to musical sequences with varying rhythmic and harmonic complexity (low, medium and high), and rated their experienced pleasure and urge to move to the rhythm. In line with previous results, healthy younger participants showed an inverted U-shaped relationship between rhythmic complexity and ratings, with preference for medium complexity rhythms, while age-matched controls showed a similar, but weaker, inverted U-shaped response. Conversely, PD showed a significantly flattened response for both the urge to move and pleasure. Crucially, this flattened response could not be attributed to differences in rhythm discrimination and did not reflect an overall decrease in ratings. For harmonic complexity, PD showed a negative linear pattern for both the urge to move and pleasure while healthy age-matched controls showed the same pattern for pleasure and an inverted U for the urge to move. This contrasts with the pattern observed in young healthy controls in previous studies, suggesting that both healthy aging and PD also influence affective responses to harmonic complexity. Together, these results support the role of dopamine within cortico-striatal circuits in the predictive processes that form the link between the perceptual processing of rhythmic patterns and the affective and motor responses to rhythmic music.
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Tomas Edward Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Sebastian Jakobsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Karen Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Sano, Private Hospital, Aarhus, Denmark
| | - Erik Johnsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Maria A G Witek
- Department of Music School of Languages, Cultures, Art History and Music, University of Birmingham, Birmingham, UK
| | - Virginia Penhune
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
19
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Foster Vander Elst O, Foster NHD, Vuust P, Keller PE, Kringelbach ML. The Neuroscience of Dance: A Conceptual Framework and Systematic Review. Neurosci Biobehav Rev 2023; 150:105197. [PMID: 37100162 DOI: 10.1016/j.neubiorev.2023.105197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ancient and culturally universal, dance pervades many areas of life and has multiple benefits. In this article, we provide a conceptual framework and systematic review, as a guide for researching the neuroscience of dance. We identified relevant articles following PRISMA guidelines, and summarised and evaluated all original results. We identified avenues for future research in: the interactive and collective aspects of dance; groove; dance performance; dance observation; and dance therapy. Furthermore, the interactive and collective aspects of dance constitute a vital part of the field but have received almost no attention from a neuroscientific perspective so far. Dance and music engage overlapping brain networks, including common regions involved in perception, action, and emotion. In music and dance, rhythm, melody, and harmony are processed in an active, sustained pleasure cycle giving rise to action, emotion, and learning, led by activity in specific hedonic brain networks. The neuroscience of dance is an exciting field, which may yield information concerning links between psychological processes and behaviour, human flourishing, and the concept of eudaimonia.
Collapse
Affiliation(s)
- Olivia Foster Vander Elst
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| |
Collapse
|
21
|
Bonetti L, Bruzzone S, Paunio T, Kantojärvi K, Kliuchko M, Vuust P, Palva S, Brattico E. Moderate associations between BDNF Val66Met gene polymorphism, musical expertise, and mismatch negativity. Heliyon 2023; 9:e15600. [PMID: 37153429 PMCID: PMC10160759 DOI: 10.1016/j.heliyon.2023.e15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Auditory predictive processing relies on a complex interaction between environmental, neurophysiological, and genetic factors. In this view, the mismatch negativity (MMN) and intensive training on a musical instrument for several years have been used for studying environment-driven neural adaptations in audition. In addition, brain-derived neurotrophic factor (BDNF) has been shown crucial for both the neurogenesis and the later adaptation of the auditory system. The functional single-nucleotide polymorphism (SNP) Val66Met (rs6265) in the BDNF gene can affect BDNF protein levels, which are involved in neurobiological and neurophysiological processes such as neurogenesis and neuronal plasticity. In this study, we hypothesised that genetic variation within the BDNF gene would be associated with different levels of neuroplasticity of the auditory cortex in 74 musically trained participants. To achieve this goal, musicians and non-musicians were recruited and divided in Val/Val and Met- (Val/Met and Met/Met) carriers and their brain activity was measured with magnetoencephalography (MEG) while they listened to a regular auditory sequence eliciting different types of prediction errors. MMN responses indexing those prediction errors were overall enhanced in Val/Val carriers who underwent intensive musical training, compared to Met-carriers and non-musicians with either genotype. Although this study calls for replications with larger samples, our results provide a first glimpse of the possible role of gene-regulated neurotrophic factors in the neural adaptations of automatic predictive processing in the auditory domain after long-term training.
Collapse
Affiliation(s)
- L. Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Psychology, University of Bologna, Italy
- Corresponding author. Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark, and Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
| | - S.E.P. Bruzzone
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - T. Paunio
- Department of Psychiatry, University of Helsinki, Finland
| | - K. Kantojärvi
- Department of Psychiatry, University of Helsinki, Finland
| | - M. Kliuchko
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - P. Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
| | - S. Palva
- Helsinki Institute of Life Sciences, Neuroscience Center, University of Helsinki, Finland
- Centre for Cognitive Neuroscience, School of Neuroscience and Psychology, University of Glasgow, United Kingdom
| | - E. Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
- Corresponding author. Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark.
| |
Collapse
|
22
|
Fiveash A, Ferreri L, Bouwer FL, Kösem A, Moghimi S, Ravignani A, Keller PE, Tillmann B. Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neurosci Biobehav Rev 2023; 149:105153. [PMID: 37019245 DOI: 10.1016/j.neubiorev.2023.105153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Studies of rhythm processing and of reward have progressed separately, with little connection between the two. However, consistent links between rhythm and reward are beginning to surface, with research suggesting that synchronization to rhythm is rewarding, and that this rewarding element may in turn also boost this synchronization. The current mini review shows that the combined study of rhythm and reward can be beneficial to better understand their independent and combined roles across two central aspects of cognition: 1) learning and memory, and 2) social connection and interpersonal synchronization; which have so far been studied largely independently. From this basis, it is discussed how connections between rhythm and reward can be applied to learning and memory and social connection across different populations, taking into account individual differences, clinical populations, human development, and animal research. Future research will need to consider the rewarding nature of rhythm, and that rhythm can in turn boost reward, potentially enhancing other cognitive and social processes.
Collapse
Affiliation(s)
- A Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France; University of Lyon 1, Lyon, France; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - L Ferreri
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Laboratoire d'Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, Lyon, France
| | - F L Bouwer
- Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - A Kösem
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France
| | - S Moghimi
- Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, INSERM U1105, Amiens, France
| | - A Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - P E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - B Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000 Lyon, France; University of Lyon 1, Lyon, France; Laboratory for Research on Learning and Development, LEAD - CNRS UMR5022, Université de Bourgogne, Dijon, France
| |
Collapse
|
23
|
Senn O. A predictive coding approach to modelling the perceived complexity of popular music drum patterns. Heliyon 2023; 9:e15199. [PMID: 37123947 PMCID: PMC10130781 DOI: 10.1016/j.heliyon.2023.e15199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
This study presents a method to estimate the complexity of popular music drum patterns based on a core idea from predictive coding. Specifically, it postulates that the complexity of a drum pattern depends on the quantity of surprisal it causes in the listener. Surprisal, according to predictive coding theory, is a numerical measure that takes large values when the perceiver's internal model of the surrounding world fails to predict the actual stream of sensory data (i.e. when the perception surprises the perceiver), and low values if model predictions and sensory data agree. The proposed new method first approximates a listener's internal model of a popular music drum pattern (using ideas on enculturation and a Bayesian learning process). It then quantifies the listener's surprisal evaluating the discrepancies between the predictions of the internal model and the actual drum pattern. It finally estimates drum pattern complexity from surprisal. The method was optimised and tested using a set of forty popular music drum patterns, for which empirical perceived complexity measurements are available. The new method provided complexity estimates that had a good fit with the empirical measurements ( R 2 = . 852 ). The method was implemented as an R script that can be used to estimate the complexity of popular music drum patterns in the future. Simulations indicate that we can expect the method to predict perceived complexity with a good fit ( R 2 ≥ . 709 ) in 99% of drum pattern sets randomly drawn from the Western popular music repertoire. These results suggest that surprisal indeed captures essential aspects of complexity, and that it may serve as a basis for a general theory of perceived complexity.
Collapse
|
24
|
Klarlund M, Brattico E, Pearce M, Wu Y, Vuust P, Overgaard M, Du Y. Worlds apart? Testing the cultural distance hypothesis in music perception of Chinese and Western listeners. Cognition 2023; 235:105405. [PMID: 36807031 DOI: 10.1016/j.cognition.2023.105405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
According to the cultural distance hypothesis (CDH), individuals learn culture-specific statistical structures in music as internal stylistic models and use these models in predictive processing of music, with musical structures closer to their home culture being easier to predict. This cultural distance effect may be affected by domain-specific (musical ability) and domain-general individual characteristics (openness, implicit cultural bias). To test the CDH and its modulation by individual characteristics, we recruited Chinese and Western adults to categorize stylistically ambiguous and unambiguous Chinese and Western melodies by cultural origin. Categorization performance was better for unambiguous (low CD) than ambiguous melodies (high CD), and for in-culture melodies regardless of ambiguity for both groups, providing evidence for CDH. Musical ability, but not other traits, correlated positively with melody categorization, suggesting that musical ability refines internal stylistic models. Therefore, both cultures show musical enculturation in their home culture with a modulatory effect of individual musical ability.
Collapse
Affiliation(s)
- Mathias Klarlund
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
| | - Marcus Pearce
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark; Music Cognition Lab, Queen Mary University of London, London, England, UK
| | - Yiyang Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Morten Overgaard
- Center for Functionally Integrative Neuroscience, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
25
|
Scarratt RJ, Heggli OA, Vuust P, Jespersen KV. The audio features of sleep music: Universal and subgroup characteristics. PLoS One 2023; 18:e0278813. [PMID: 36652415 PMCID: PMC9847986 DOI: 10.1371/journal.pone.0278813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/25/2022] [Indexed: 01/19/2023] Open
Abstract
Throughout history, lullabies have been used to help children sleep, and today, with the increasing accessibility of recorded music, many people report listening to music as a tool to improve sleep. Nevertheless, we know very little about this common human habit. In this study, we elucidated the characteristics of music associated with sleep by extracting audio features from a large number of tracks (N = 225,626) retrieved from sleep playlists at the global streaming platform Spotify. Compared to music in general, we found that sleep music was softer and slower; it was more often instrumental (i.e. without lyrics) and played on acoustic instruments. Yet, a large amount of variation was present in sleep music, which clustered into six distinct subgroups. Strikingly, three of the subgroups included popular tracks that were faster, louder, and more energetic than average sleep music. The findings reveal previously unknown aspects of the audio features of sleep music and highlight the individual variation in the choice of music used for sleep. By using digital traces, we were able to determine the universal and subgroup characteristics of sleep music in a unique, global dataset, advancing our understanding of how humans use music to regulate their behaviour in everyday life.
Collapse
Affiliation(s)
- Rebecca Jane Scarratt
- Radboud University, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Ole Adrian Heggli
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Kira Vibe Jespersen
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
26
|
Fernández-Rubio G, Brattico E, Kotz SA, Kringelbach ML, Vuust P, Bonetti L. Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences. Commun Biol 2022; 5:1272. [PMID: 36402843 PMCID: PMC9675809 DOI: 10.1038/s42003-022-04217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Auditory recognition is a crucial cognitive process that relies on the organization of single elements over time. However, little is known about the spatiotemporal dynamics underlying the conscious recognition of auditory sequences varying in complexity. To study this, we asked 71 participants to learn and recognize simple tonal musical sequences and matched complex atonal sequences while their brain activity was recorded using magnetoencephalography (MEG). Results reveal qualitative changes in neural activity dependent on stimulus complexity: recognition of tonal sequences engages hippocampal and cingulate areas, whereas recognition of atonal sequences mainly activates the auditory processing network. Our findings reveal the involvement of a cortico-subcortical brain network for auditory recognition and support the idea that stimulus complexity qualitatively alters the neural pathways of recognition memory.
Collapse
Affiliation(s)
- Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Hansen NC, Højlund A, Møller C, Pearce M, Vuust P. Musicians show more integrated neural processing of contextually relevant acoustic features. Front Neurosci 2022; 16:907540. [PMID: 36312026 PMCID: PMC9612920 DOI: 10.3389/fnins.2022.907540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Little is known about expertise-related plasticity of neural mechanisms for auditory feature integration. Here, we contrast two diverging hypotheses that musical expertise is associated with more independent or more integrated predictive processing of acoustic features relevant to melody perception. Mismatch negativity (MMNm) was recorded with magnetoencephalography (MEG) from 25 musicians and 25 non-musicians, exposed to interleaved blocks of a complex, melody-like multi-feature paradigm and a simple, oddball control paradigm. In addition to single deviants differing in frequency (F), intensity (I), or perceived location (L), double and triple deviants were included reflecting all possible feature combinations (FI, IL, LF, FIL). Following previous work, early neural processing overlap was approximated in terms of MMNm additivity by comparing empirical MMNms obtained with double and triple deviants to modeled MMNms corresponding to summed constituent single-deviant MMNms. Significantly greater subadditivity was found in musicians compared to non-musicians, specifically for frequency-related deviants in complex, melody-like stimuli. Despite using identical sounds, expertise effects were absent from the simple oddball paradigm. This novel finding supports the integrated processing hypothesis whereby musicians recruit overlapping neural resources facilitating more integrative representations of contextually relevant stimuli such as frequency (perceived as pitch) during melody perception. More generally, these specialized refinements in predictive processing may enable experts to optimally capitalize upon complex, domain-relevant, acoustic cues.
Collapse
Affiliation(s)
- Niels Chr. Hansen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Dramaturgy and Musicology, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- *Correspondence: Niels Chr. Hansen,
| | - Andreas Højlund
- Department of Linguistics, Cognitive Science, and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Cecilie Møller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Marcus Pearce
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- School of Electronic Engineering and Computer Science, Cognitive Science Research Group and Centre for Digital Music, Queen Mary University of London, London, United Kingdom
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
28
|
Stupacher J, Matthews TE, Pando-Naude V, Foster Vander Elst O, Vuust P. The sweet spot between predictability and surprise: musical groove in brain, body, and social interactions. Front Psychol 2022; 13:906190. [PMID: 36017431 PMCID: PMC9396343 DOI: 10.3389/fpsyg.2022.906190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Groove-defined as the pleasurable urge to move to a rhythm-depends on a fine-tuned interplay between predictability arising from repetitive rhythmic patterns, and surprise arising from rhythmic deviations, for example in the form of syncopation. The perfect balance between predictability and surprise is commonly found in rhythmic patterns with a moderate level of rhythmic complexity and represents the sweet spot of the groove experience. In contrast, rhythms with low or high complexity are usually associated with a weaker experience of groove because they are too boring to be engaging or too complex to be interpreted, respectively. Consequently, the relationship between rhythmic complexity and groove experience can be described by an inverted U-shaped function. We interpret this inverted U shape in light of the theory of predictive processing and provide perspectives on how rhythmic complexity and groove can help us to understand the underlying neural mechanisms linking temporal predictions, movement, and reward. A better understanding of these mechanisms can guide future approaches to improve treatments for patients with motor impairments, such as Parkinson's disease, and to investigate prosocial aspects of interpersonal interactions that feature music, such as dancing. Finally, we present some open questions and ideas for future research.
Collapse
Affiliation(s)
- Jan Stupacher
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Institute of Psychology, University of Graz, Graz, Austria
| | - Tomas Edward Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Olivia Foster Vander Elst
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
29
|
Ross JM, Balasubramaniam R. Time Perception for Musical Rhythms: Sensorimotor Perspectives on Entrainment, Simulation, and Prediction. Front Integr Neurosci 2022; 16:916220. [PMID: 35865808 PMCID: PMC9294366 DOI: 10.3389/fnint.2022.916220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neural mechanisms supporting time perception in continuously changing sensory environments may be relevant to a broader understanding of how the human brain utilizes time in cognition and action. In this review, we describe current theories of sensorimotor engagement in the support of subsecond timing. We focus on musical timing due to the extensive literature surrounding movement with and perception of musical rhythms. First, we define commonly used but ambiguous concepts including neural entrainment, simulation, and prediction in the context of musical timing. Next, we summarize the literature on sensorimotor timing during perception and performance and describe current theories of sensorimotor engagement in the support of subsecond timing. We review the evidence supporting that sensorimotor engagement is critical in accurate time perception. Finally, potential clinical implications for a sensorimotor perspective of timing are highlighted.
Collapse
Affiliation(s)
- Jessica M. Ross
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, United States
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jessica M. Ross,
| | - Ramesh Balasubramaniam
- Cognitive and Information Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
30
|
Mårup SH, Møller C, Vuust P. Coordination of voice, hands and feet in rhythm and beat performance. Sci Rep 2022; 12:8046. [PMID: 35577815 PMCID: PMC9110414 DOI: 10.1038/s41598-022-11783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
Interlimb coordination is critical to the successful performance of simple activities in everyday life and it depends on precisely timed perception–action coupling. This is particularly true in music-making, where performers often use body-movements to keep the beat while playing more complex rhythmic patterns. In the current study, we used a musical rhythmic paradigm of simultaneous rhythm/beat performance to examine how interlimb coordination between voice, hands and feet is influenced by the inherent figure-ground relationship between rhythm and beat. Sixty right-handed participants—professional musicians, amateur musicians and non-musicians—performed three short rhythmic patterns while keeping the underlying beat, using 12 different combinations of voice, hands and feet. Results revealed a bodily hierarchy with five levels (1) left foot, (2) right foot, (3) left hand, (4) right hand, (5) voice, i.e., more precise task execution was observed when the rhythm was performed with an effector occupying a higher level in the hierarchy than the effector keeping the beat. The notion of a bodily hierarchy implies that the role assigned to the different effectors is key to successful interlimb coordination: the performance level of a specific effector combination differs considerably, depending on which effector holds the supporting role of the beat and which effector holds the conducting role of the rhythm. Although performance generally increased with expertise, the evidence of the hierarchy was consistent in all three expertise groups. The effects of expertise further highlight how perception influences action. We discuss the possibility that musicians’ more robust metrical prediction models make it easier for musicians to attenuate prediction errors than non-musicians. Overall, the study suggests a comprehensive bodily hierarchy, showing how interlimb coordination is influenced by hierarchical principles in both perception and action.
Collapse
|
31
|
Vuust P, Heggli OA, Friston KJ, Kringelbach ML. Music in the brain. Nat Rev Neurosci 2022; 23:287-305. [PMID: 35352057 DOI: 10.1038/s41583-022-00578-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Music is ubiquitous across human cultures - as a source of affective and pleasurable experience, moving us both physically and emotionally - and learning to play music shapes both brain structure and brain function. Music processing in the brain - namely, the perception of melody, harmony and rhythm - has traditionally been studied as an auditory phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions about what is likely to happen next. This enactive aspect has led to a more comprehensive understanding of music processing involving brain structures implicated in action, emotion and learning. Here we review the cognitive neuroscience literature of music perception. We show that music perception, action, emotion and learning all rest on the human brain's fundamental capacity for prediction - as formulated by the predictive coding of music model. This Review elucidates how this formulation of music perception and expertise in individuals can be extended to account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important implications for human creativity as evinced by music improvisation. These recent advances shed new light on what makes music meaningful from a neuroscientific perspective.
Collapse
Affiliation(s)
- Peter Vuust
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music (Det Jyske Musikkonservatorium), Aarhus, Denmark.
| | - Ole A Heggli
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music (Det Jyske Musikkonservatorium), Aarhus, Denmark
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Morten L Kringelbach
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music (Det Jyske Musikkonservatorium), Aarhus, Denmark.,Department of Psychiatry, University of Oxford, Oxford, UK.,Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Chabin T, Pazart L, Gabriel D. Vocal melody and musical background are simultaneously processed by the brain for musical predictions. Ann N Y Acad Sci 2022; 1512:126-140. [PMID: 35229293 DOI: 10.1111/nyas.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
Musical pleasure is related to the capacity to predict and anticipate the music. By recording early cerebral responses of 16 participants with electroencephalography during periods of silence inserted in known and unknown songs, we aimed to measure the contribution of different musical attributes to musical predictions. We investigated the mismatch between past encoded musical features and the current sensory inputs when listening to lyrics associated with vocal melody, only background instrumental material, or both attributes grouped together. When participants were listening to chords and lyrics for known songs, the brain responses related to musical violation produced event-related potential responses around 150-200 ms that were of a larger amplitude than for chords or lyrics only. Microstate analysis also revealed that for chords and lyrics, the global field power had an increased stability and a longer duration. The source localization identified that the right superior temporal and frontal gyri and the inferior and medial frontal gyri were activated for a longer time for chords and lyrics, likely caused by the increased complexity of the stimuli. We conclude that grouped together, a broader integration and retrieval of several musical attributes at the same time recruit larger neuronal networks that lead to more accurate predictions.
Collapse
Affiliation(s)
- Thibault Chabin
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France
| | - Lionel Pazart
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Bourgogne Franche-Comté, France
| | - Damien Gabriel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
33
|
Reybrouck M, Vuust P, Brattico E. Neural Correlates of Music Listening: Does the Music Matter? Brain Sci 2021; 11:1553. [PMID: 34942855 PMCID: PMC8699514 DOI: 10.3390/brainsci11121553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
The last decades have seen a proliferation of music and brain studies, with a major focus on plastic changes as the outcome of continuous and prolonged engagement with music. Thanks to the advent of neuroaesthetics, research on music cognition has broadened its scope by considering the multifarious phenomenon of listening in all its forms, including incidental listening up to the skillful attentive listening of experts, and all its possible effects. These latter range from objective and sensorial effects directly linked to the acoustic features of the music to the subjectively affective and even transformational effects for the listener. Of special importance is the finding that neural activity in the reward circuit of the brain is a key component of a conscious listening experience. We propose that the connection between music and the reward system makes music listening a gate towards not only hedonia but also eudaimonia, namely a life well lived, full of meaning that aims at realizing one's own "daimon" or true nature. It is argued, further, that music listening, even when conceptualized in this aesthetic and eudaimonic framework, remains a learnable skill that changes the way brain structures respond to sounds and how they interact with each other.
Collapse
Affiliation(s)
- Mark Reybrouck
- Faculty of Arts, University of Leuven, 3000 Leuven, Belgium
- Department of Art History, Musicology and Theater Studies, IPEM Institute for Psychoacoustics and Electronic Music, 9000 Ghent, Belgium
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (P.V.); (E.B.)
- The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (P.V.); (E.B.)
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| |
Collapse
|
34
|
Kondoh S, Okanoya K, Tachibana RO. Switching perception of musical meters by listening to different acoustic cues of biphasic sound stimulus. PLoS One 2021; 16:e0256712. [PMID: 34460855 PMCID: PMC8405023 DOI: 10.1371/journal.pone.0256712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Meter is one of the core features of music perception. It is the cognitive grouping of regular sound sequences, typically for every 2, 3, or 4 beats. Previous studies have suggested that one can not only passively perceive the meter from acoustic cues such as loudness, pitch, and duration of sound elements, but also actively perceive it by paying attention to isochronous sound events without any acoustic cues. Studying the interaction of top-down and bottom-up processing in meter perception leads to understanding the cognitive system’s ability to perceive the entire structure of music. The present study aimed to demonstrate that meter perception requires the top-down process (which maintains and switches attention between cues) as well as the bottom-up process for discriminating acoustic cues. We created a “biphasic” sound stimulus, which consists of successive tone sequences designed to provide cues for both the triple and quadruple meters in different sound attributes, frequency, and duration. Participants were asked to focus on either frequency or duration of the stimulus, and to answer how they perceived meters on a five-point scale (ranged from “strongly triple” to “strongly quadruple”). As a result, we found that participants perceived different meters by switching their attention to specific cues. This result adds evidence to the idea that meter perception involves the interaction between top-down and bottom-up processes.
Collapse
Affiliation(s)
- Sotaro Kondoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Brain Science, Saitama, Japan
- * E-mail: (KO); (ROT)
| | - Ryosuke O. Tachibana
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (KO); (ROT)
| |
Collapse
|
35
|
Thornton MA, Tamir DI. Perceiving actions before they happen: psychological dimensions scaffold neural action prediction. Soc Cogn Affect Neurosci 2021; 16:807-815. [PMID: 32986080 PMCID: PMC8343568 DOI: 10.1093/scan/nsaa126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others successfully, we need to both understand their current actions and predict their future actions. Here we used functional neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simultaneously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demonstrate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up to three actions into the future, based on their proximity to the current action's coordinates in ACT-FAST space. This finding suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of future actions.
Collapse
Affiliation(s)
- Mark A Thornton
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03766, USA
| | - Diana I Tamir
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
36
|
Tramontano M, De Angelis S, Mastrogiacomo S, Princi AA, Ciancarelli I, Frizziero A, Iosa M, Paolucci S, Morone G. Music-based techniques and related devices in neurorehabilitation: a scoping review. Expert Rev Med Devices 2021; 18:733-749. [PMID: 34162284 DOI: 10.1080/17434440.2021.1947793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Introduction:The music as a powerful, and versatile stimulus for the brain, is at the date sometimes used in neurorehabilitation and proposed as a promising complementary strategy provided in combination with other therapy in individuals with neurological disorders. Different techniques and devices have been developed in the field of the music-based neurorehabilitation.Areas covered:This scoping review analyzes the current scientific literature concerning the different techniques and devices used in the music-supported neurorehabilitation, also focusing on the devices used in music-based therapies in patients with neurological disorders: 46 studies met the inclusion criteria and were included.Expert opinion:Included studies, highlight the potentiality and the versatility of the music-based therapy in the rehabilitation of neurological disorders. The variety of existing techniques allow to applied the music-based therapy in different situations and conditions. Moreover, the wide range of used devices that ranging from the simple musical instruments to the more advanced technologies, allows to develop customized exercises based on the needs of the patient. This review may be considered as a starting point to better design future RCTs that would investigate the effectiveness of music therapy on neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | - Irene Ciancarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Frizziero
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Iosa
- Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University of Rome La Sapienza, Rome, Italy
| | | | | |
Collapse
|
37
|
Edalati M, Mahmoudzadeh M, Safaie J, Wallois F, Moghimi S. Violation of rhythmic expectancies can elicit late frontal gamma activity nested in theta oscillations. Psychophysiology 2021; 58:e13909. [PMID: 34310719 PMCID: PMC9285090 DOI: 10.1111/psyp.13909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Rhythm processing involves building expectations according to the hierarchical temporal structure of auditory events. Although rhythm processing has been addressed in the context of predictive coding, the properties of the oscillatory response in different cortical areas are still not clear. We explored the oscillatory properties of the neural response to rhythmic incongruence and the cross-frequency coupling between multiple frequencies to further investigate the mechanisms underlying rhythm perception. We designed an experiment to investigate the neural response to rhythmic deviations in which the tone either arrived earlier than expected or the tone in the same metrical position was omitted. These two manipulations modulate the rhythmic structure differently, with the former creating a larger violation of the general structure of the musical stimulus than the latter. Both deviations resulted in an MMN response, whereas only the rhythmic deviant resulted in a subsequent P3a. Rhythmic deviants due to the early occurrence of a tone, but not omission deviants, seemed to elicit a late high gamma response (60-80 Hz) at the end of the P3a over the left frontal region, which, interestingly, correlated with the P3a amplitude over the same region and was also nested in theta oscillations. The timing of the elicited high-frequency gamma oscillations related to rhythmic deviation suggests that it might be related to the update of the predictive neural model, corresponding to the temporal structure of the events in higher-level cortical areas.
Collapse
Affiliation(s)
- M Edalati
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - J Safaie
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - S Moghimi
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| |
Collapse
|
38
|
Kocagoncu E, Klimovich-Gray A, Hughes LE, Rowe JB. Evidence and implications of abnormal predictive coding in dementia. Brain 2021; 144:3311-3321. [PMID: 34240109 PMCID: PMC8677549 DOI: 10.1093/brain/awab254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
The diversity of cognitive deficits and neuropathological processes associated with dementias has encouraged divergence in pathophysiological explanations of disease. Here, we review an alternative framework that emphasizes convergent critical features of cognitive pathophysiology. Rather than the loss of ‘memory centres’ or ‘language centres’, or singular neurotransmitter systems, cognitive deficits are interpreted in terms of aberrant predictive coding in hierarchical neural networks. This builds on advances in normative accounts of brain function, specifically the Bayesian integration of beliefs and sensory evidence in which hierarchical predictions and prediction errors underlie memory, perception, speech and behaviour. We describe how analogous impairments in predictive coding in parallel neurocognitive systems can generate diverse clinical phenomena, including the characteristics of dementias. The review presents evidence from behavioural and neurophysiological studies of perception, language, memory and decision-making. The reformulation of cognitive deficits in terms of predictive coding has several advantages. It brings diverse clinical phenomena into a common framework; it aligns cognitive and movement disorders; and it makes specific predictions on cognitive physiology that support translational and experimental medicine studies. The insights into complex human cognitive disorders from the predictive coding framework may therefore also inform future therapeutic strategies.
Collapse
Affiliation(s)
- Ece Kocagoncu
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Laura E Hughes
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Listeners with congenital amusia are sensitive to context uncertainty in melodic sequences. Neuropsychologia 2021; 158:107911. [PMID: 34102187 DOI: 10.1016/j.neuropsychologia.2021.107911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
In typical listeners, the perceptual salience of a surprising auditory event depends on the uncertainty of its context. For example, in melodies, pitch deviants are more easily detected and generate larger neural responses when the context is highly predictable than when it is less so. However, it is not known whether amusic listeners with abnormal pitch processing are sensitive to the degree of uncertainty of pitch sequences and, if so, whether they are to a different extent than typical non-musician listeners. To answer this question, we manipulated the uncertainty of short melodies while participants with and without congenital amusia underwent EEG recordings in a passive listening task. Uncertainty was manipulated by presenting melodies with different levels of complexity and familiarity, under the assumption that simpler and more familiar patterns would enhance pitch predictability. We recorded mismatch negativity (MMN) responses to pitch, intensity, timbre, location, and rhythm deviants as a measure of auditory surprise. In both participant groups, we observed reduced MMN amplitudes and longer peak latencies for all sound features with increasing levels of complexity, and putative familiarity effects only for intensity deviants. No significant group-by-complexity or group-by-familiarity interactions were detected. However, in contrast to previous studies, pitch MMN responses in amusics were disrupted in high complexity and unfamiliar melodies. The present results thus indicate that amusics are sensitive to the uncertainty of melodic sequences and that preattentive auditory change detection is greatly spared in this population across sound features and levels of predictability. However, our findings also hint at pitch-specific impairments in this population when uncertainty is high, thus suggesting that pitch processing under high uncertainty conditions requires an intact frontotemporal loop.
Collapse
|
40
|
Pesnot Lerousseau J, Schön D. Musical Expertise Is Associated with Improved Neural Statistical Learning in the Auditory Domain. Cereb Cortex 2021; 31:4877-4890. [PMID: 34013316 DOI: 10.1093/cercor/bhab128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
It is poorly known whether musical training is associated with improvements in general cognitive abilities, such as statistical learning (SL). In standard SL paradigms, musicians have shown better performances than nonmusicians. However, this advantage could be due to differences in auditory discrimination, in memory or truly in the ability to learn sequence statistics. Unfortunately, these different hypotheses make similar predictions in terms of expected results. To dissociate them, we developed a Bayesian model and recorded electroencephalography (EEG). Our results confirm that musicians perform approximately 15% better than nonmusicians at predicting items in auditory sequences that embed either low or high-order statistics. These higher performances are explained in the model by parameters governing the learning of high-order statistics and the selection stage noise. EEG recordings reveal a neural underpinning of the musician's advantage: the P300 amplitude correlates with the surprise elicited by each item, and so, more strongly for musicians. Finally, early EEG components correlate with the surprise elicited by low-order statistics, as opposed to late EEG components that correlate with the surprise elicited by high-order statistics and this effect is stronger for musicians. Overall, our results demonstrate that musical expertise is associated with improved neural SL in the auditory domain. SIGNIFICANCE STATEMENT It is poorly known whether musical training leads to improvements in general cognitive skills. One fundamental cognitive ability, SL, is thought to be enhanced in musicians, but previous studies have reported mixed results. This is because such musician's advantage can embrace very different explanations, such as improvement in auditory discrimination or in memory. To solve this problem, we developed a Bayesian model and recorded EEG to dissociate these explanations. Our results reveal that musical expertise is truly associated with an improved ability to learn sequence statistics, especially high-order statistics. This advantage is reflected in the electroencephalographic recordings, where the P300 amplitude is more sensitive to surprising items in musicians than in nonmusicians.
Collapse
Affiliation(s)
| | - Daniele Schön
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
41
|
Li CW, Guo FY, Tsai CG. Predictive processing, cognitive control, and tonality stability of music: An fMRI study of chromatic harmony. Brain Cogn 2021; 151:105751. [PMID: 33991840 DOI: 10.1016/j.bandc.2021.105751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed at identifying the brain regions which preferentially responded to music with medium degrees of key stability. There were three types of auditory stimuli. Diatonic music based strictly on major and minor scales has the highest key stability, whereas atonal music has the lowest key stability. Between these two extremes, chromatic music is characterized by sophisticated uses of out-of-key notes, which challenge the internal model of musical pitch and lead to higher precision-weighted prediction error compared to diatonic and atonal music. The brain activity of 29 adults with excellent relative pitch was measured with functional magnetic resonance imaging while they listened to diatonic music, chromatic music, and atonal random note sequences. Several frontoparietal regions showed significantly greater response to chromatic music than to diatonic music and atonal sequences, including the pre-supplementary motor area (extending into the dorsal anterior cingulate cortex), dorsolateral prefrontal cortex, rostrolateral prefrontal cortex, intraparietal sulcus, and precuneus. We suggest that these frontoparietal regions may support working memory processes, hierarchical sequencing, and conflict resolution of remotely related harmonic elements during the predictive processing of chromatic music. This finding suggested a possible correlation between precision-weighted prediction error and the frontoparietal regions implicated in cognitive control.
Collapse
Affiliation(s)
- Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fong-Yi Guo
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
42
|
Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Res 2021; 1754:147248. [PMID: 33417893 DOI: 10.1016/j.brainres.2020.147248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022]
Abstract
Evoked cortical responses (ERs) have mainly been studied in controlled experiments using simplified stimuli. Though, an outstanding question is how the human cortex responds to the complex stimuli encountered in realistic situations. Few electroencephalography (EEG) studies have used Music Information Retrieval (MIR) tools to extract cortical P1/N1/P2 to acoustical changes in real music. However, less than ten events per music piece could be detected leading to ERs due to limitations in automatic detection of sound onsets. Also, the factors influencing a successful extraction of the ERs have not been identified. Finally, previous studies did not localize the sources of the cortical generators. This study is based on an EEG/MEG dataset from 48 healthy normal hearing participants listening to three real music pieces. Acoustic features were computed from the audio signal of the music with the MIR Toolbox. To overcome limits in automatic methods, sound onsets were also manually detected. The chance of obtaining detectable ERs based on ten randomly picked onset points was less than 1:10,000. For the first time, we show that naturalistic P1/N1/P2 ERs can be reliably measured across 100 manually identified sound onsets, substantially improving the signal-to-noise level compared to <10 trials. More ERs were measurable in musical sections with slow event rates (0.2 Hz-2.5 Hz) than with fast event rates (>2.5 Hz). Furthermore, during monophonic sections of the music only P1/P2 were measurable, and during polyphonic sections only N1. Finally, MEG source analysis revealed that naturalistic P2 is located in core areas of the auditory cortex.
Collapse
|
43
|
Lumaca M, Dietz MJ, Hansen NC, Quiroga-Martinez DR, Vuust P. Perceptual learning of tone patterns changes the effective connectivity between Heschl's gyrus and planum temporale. Hum Brain Mapp 2020; 42:941-952. [PMID: 33146455 PMCID: PMC7856650 DOI: 10.1002/hbm.25269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 11/11/2022] Open
Abstract
Learning of complex auditory sequences such as music can be thought of as optimizing an internal model of regularities through unpredicted events (or “prediction errors”). We used dynamic causal modeling (DCM) and parametric empirical Bayes on functional magnetic resonance imaging (fMRI) data to identify modulation of effective brain connectivity that takes place during perceptual learning of complex tone patterns. Our approach differs from previous studies in two aspects. First, we used a complex oddball paradigm based on tone patterns as opposed to simple deviant tones. Second, the use of fMRI allowed us to identify cortical regions with high spatial accuracy. These regions served as empirical regions‐of‐interest for the analysis of effective connectivity. Deviant patterns induced an increased blood oxygenation level‐dependent response, compared to standards, in early auditory (Heschl's gyrus [HG]) and association auditory areas (planum temporale [PT]) bilaterally. Within this network, we found a left‐lateralized increase in feedforward connectivity from HG to PT during deviant responses and an increase in excitation within left HG. In contrast to previous findings, we did not find frontal activity, nor did we find modulations of backward connections in response to oddball sounds. Our results suggest that complex auditory prediction errors are encoded by changes in feedforward and intrinsic connections, confined to superior temporal gyrus.
Collapse
Affiliation(s)
- Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Martin J Dietz
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Chr Hansen
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - David R Quiroga-Martinez
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
44
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
45
|
Meter enhances the subcortical processing of speech sounds at a strong beat. Sci Rep 2020; 10:15973. [PMID: 32994430 PMCID: PMC7525485 DOI: 10.1038/s41598-020-72714-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/07/2020] [Indexed: 11/08/2022] Open
Abstract
The temporal structure of sound such as in music and speech increases the efficiency of auditory processing by providing listeners with a predictable context. Musical meter is a good example of a sound structure that is temporally organized in a hierarchical manner, with recent studies showing that meter optimizes neural processing, particularly for sounds located at a higher metrical position or strong beat. Whereas enhanced cortical auditory processing at times of high metric strength has been studied, there is to date no direct evidence showing metrical modulation of subcortical processing. In this work, we examined the effect of meter on the subcortical encoding of sounds by measuring human auditory frequency-following responses to speech presented at four different metrical positions. Results show that neural encoding of the fundamental frequency of the vowel was enhanced at the strong beat, and also that the neural consistency of the vowel was the highest at the strong beat. When comparing musicians to non-musicians, musicians were found, at the strong beat, to selectively enhance the behaviorally relevant component of the speech sound, namely the formant frequency of the transient part. Our findings indicate that the meter of sound influences subcortical processing, and this metrical modulation differs depending on musical expertise.
Collapse
|
46
|
Rhythmic Synchrony with Artificial Agents and Its Effects on Frequency of Visual Illusions Seen in White Noise. MULTIMODAL TECHNOLOGIES AND INTERACTION 2020. [DOI: 10.3390/mti4030062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhythmic synchrony among different individuals has often been observed in various religious rituals and it has been known to bring various psychological effects in human minds. This study investigated the effects of induced rhythmic synchrony with artificial agents in drumming on participants’ visual illusions. The participants completed a task with three cartoon agents on a computer screen beating drums taking turns. We then investigated whether participants were tended to find more meaningful shapes in displayed random dots (pareidolia) when rhythms of intervals between each agents’ drumbeats were in-sync rather than out-of-sync. We simultaneously compared an active condition, in which participants took the role as one of three agents to beat a drum, with a passive condition, in which they only observed three agents beating the drums. The results showed that pareidolia appeared strongly in participants where the drum rhythm was in sync, regardless of active and passive conditions.
Collapse
|
47
|
Future thinking about social targets: The influence of prediction outcome on memory. Cognition 2020; 204:104390. [PMID: 32711183 DOI: 10.1016/j.cognition.2020.104390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Work on future thinking suggests that people use what they know about the world (e.g., contents of memory) to make predictions about events to come, which reflects an adaptive use of memory. Less work, however, has examined whether the outcomes of these predictions-whether the outcome is consistent or inconsistent with predictions-influences memory. In two experiments, participants learned trait information about social targets and used that information to predict which of two behaviors social targets would be most likely to engage in: one behavior consistent with previously learned trait information about the target and the other behavior inconsistent. Participants then learned which behavior the social target actually performed (outcome) and then judged whether or not they expected that outcome (expectancy). Across both studies, prediction-consistent outcomes were better remembered than inconsistent ones, suggesting that participants relied on their existing representations of social targets when making memory judgments rather than incorporating inconsistent information into memory. Further, there was a memory advantage for prediction-inconsistent outcomes, but only when participants subjectively rated these outcomes as unexpected. Overall, these findings extend understanding of future thinking and suggest a reliable memory advantage for outcomes that are consistent with predictions.
Collapse
|
48
|
Matthews TE, Witek MA, Lund T, Vuust P, Penhune VB. The sensation of groove engages motor and reward networks. Neuroimage 2020; 214:116768. [DOI: 10.1016/j.neuroimage.2020.116768] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023] Open
|
49
|
Chiang CH, Hämäläinen J, Xu W, Wang HL. Neural Responses to Musical Rhythm in Chinese Children With Reading Difficulties. Front Psychol 2020; 11:1013. [PMID: 32581920 PMCID: PMC7291366 DOI: 10.3389/fpsyg.2020.01013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
The perception of the musical rhythm has been suggested as one of the predicting factors for reading abilities. Several studies have demonstrated that children with reading difficulties (RD) show reduced neural sensitivity in musical rhythm perception. Despite this prior evidence, the association between music and reading in Chinese is still controversial. In the present study, we sought to answer the question of whether the musical rhythm perception of Chinese children with RD is intact or not, providing further clues on how reading and music might be interlinked across languages. Oddball paradigm was adapted for testing the difference of musical rhythm perception, including predictable and unpredictable omission, in elementary school children with RD and typically developing age-controlled children with magnetoencephalography (MEG). We used the cluster-based permutation tests to examine the statistical difference in neural responses. The event-related field (ERF) components, mismatch negativity (MMNm) and P3a(m), were elicited by the rhythmical patterns with omitted strong beats. Specifically, differential P3a(m) components were found smaller in children with RD when comparing the rhythmical patterns between predictable and unpredicted omission patterns. The results showed that brain responses to the omission in the strong beat of an unpredicted rhythmic pattern were significantly smaller in Chinese children with RD. This indicated that children with RD may be impaired in the auditory sensitivity of rhythmic beats. This also suggests that children with reading difficulties may have atypical neural representations of rhythm that could be one of the underlying factors in dysfluent reading development.
Collapse
Affiliation(s)
- Chun-Han Chiang
- Department of Special Education, National Taiwan Normal University, Taipei, Taiwan
| | - Jarmo Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Hsiao-Lan Wang
- Department of Special Education, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
50
|
Dell'Anna A, Buhmann J, Six J, Maes PJ, Leman M. Timing Markers of Interaction Quality During Semi-Hocket Singing. Front Neurosci 2020; 14:619. [PMID: 32625057 PMCID: PMC7315043 DOI: 10.3389/fnins.2020.00619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/19/2020] [Indexed: 01/30/2023] Open
Abstract
Music is believed to work as a bio-social tool enabling groups of people to establish joint action and group bonding experiences. However, little is known about the quality of the group members' interaction needed to bring about these effects. To investigate the role of interaction quality, and its effect on joint action and bonding experience, we asked dyads (two singers) to perform music in medieval "hocket" style, in order to engage their co-regulatory activity. The music contained three relative inter-onset-interval (IOI) classes: quarter note, dotted quarter note and eight note, marking time intervals between successive onsets (generated by both singers). We hypothesized that singers co-regulated their activity by minimizing prediction errors in view of stable IOI-classes. Prediction errors were measured using a dynamic Bayesian inference approach that allows us to identify three different types of error called fluctuation (micro-timing errors measured in milliseconds), narration (omission errors or misattribution of an IOI to a wrong IOI class), and collapse errors (macro-timing errors that cause the breakdown of a performance). These three types of errors were correlated with the singers' estimated quality of the performance and the experienced sense of joint agency. We let the singers perform either while moving or standing still, under the hypothesis that the moving condition would have reduced timing errors and increased We-agency as opposed to Shared-agency (the former portraying a condition in which the performers blend into one another, the latter portraying a joint, but distinct, control of the performance). The results show that estimated quality correlates with fluctuation and narration errors, while agency correlates (to a lesser degree) with narration errors. Somewhat unexpectedly, there was a minor effect of movement, and it was beneficial only for good performers. Joint agency resulted in a "shared," rather than a "we," sense of joint agency. The methodology and findings open up promising avenues for future research on social embodied music interaction.
Collapse
Affiliation(s)
- Alessandro Dell'Anna
- Department of Musicology - IPEM, Ghent University, Ghent, Belgium.,Department of Psychology, University of Turin, Turin, Italy
| | - Jeska Buhmann
- Department of Musicology - IPEM, Ghent University, Ghent, Belgium
| | - Joren Six
- Department of Musicology - IPEM, Ghent University, Ghent, Belgium
| | - Pieter-Jan Maes
- Department of Musicology - IPEM, Ghent University, Ghent, Belgium
| | - Marc Leman
- Department of Musicology - IPEM, Ghent University, Ghent, Belgium
| |
Collapse
|