1
|
Ronan V. An open window: the crucial role of the gut-brain axis in neurodevelopmental outcomes post-neurocritical illness. Front Pediatr 2025; 12:1499330. [PMID: 39902230 PMCID: PMC11788388 DOI: 10.3389/fped.2024.1499330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Among patients admitted to the pediatric intensive care unit, approximately 10% are discharged with a new functional morbidity. For those who were admitted with a neurocritical illness, the number can be as high as 60%. The most common diagnoses for a neurocritical illness admission include traumatic brain injury, status epilepticus, post-cardiac arrest, hypoxic ischemic encephalopathy, meningo/encephalitis, and stroke. The gut-brain axis is crucial to childhood development, particularly neurodevelopment. Alterations on either side of the bidirectional communication of the gut-brain axis have been shown to alter typical development and have been associated with autism spectrum disorder, anxiety, sleep disturbances, and learning disabilities, among others. For those patients who have experienced a direct neurologic insult, subsequent interventions may contribute to dysbiosis, which could compound injury to the brain. Increasing data suggests the existence of a critical window for both gut microbiome plasticity and neurodevelopment in which interventions could help or could harm and warrant further investigation.
Collapse
Affiliation(s)
- Victoria Ronan
- Department of Pediatrics, Section of Critical Care, Children’s Wisconsin/Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Beauchamp MH, Anderson V, Ewing-Cobbs L, Haarbauer-Krupa J, McKinlay A, Wade SL, Suskauer SJ. Early Childhood Concussion. Pediatrics 2024; 154:e2023065484. [PMID: 39380506 DOI: 10.1542/peds.2023-065484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
The unconsolidated motor and cognitive skills that are typical of the early childhood period place infants, toddlers, and preschoolers at risk for a variety of traumatic injuries. Such injuries may include mild traumatic brain injury or concussion. Knowledge regarding the risk, diagnosis, outcomes, and management of early childhood concussion is limited, especially compared with what is known about concussion in school-age children, adolescents, and adults. This state-of-the-art review aims to provide current knowledge on the epidemiology, physical signs, behavior, and clinical outcomes associated with early childhood concussion. Research on this condition has been challenged by the need to adapt methods to the unique physical, behavioral, and developmental characteristics of young children. We provide information on observable symptoms associated with concussion, recommended approaches to care, and suggestions for overcoming barriers to research in this area. Developmentally appropriate efforts are needed to improve our ability to identify, evaluate, and treat early childhood concussion.
Collapse
Affiliation(s)
- Miriam H Beauchamp
- Sainte-Justine Azrieli Research Center, and Department of Psychology, University of Montreal, Montréal, Québec, Canada
| | - Vicki Anderson
- Murdoch Children's Research Institute, and School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Linda Ewing-Cobbs
- Department of Pediatrics and Children's Learning Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Audrey McKinlay
- Murdoch Children's Research Institute, and School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
- School of Psychology, Speech and Hearing, University of Canterbury, Ilam, Christchurch, New Zealand, and Queens University, Belfast, United Kingdom
| | - Shari L Wade
- University of Cincinnati College of Medicine, Cincinnati Children's Hospital Division of Pediatric Rehabilitation Medicine, Cincinnati, Ohio
| | - Stacy J Suskauer
- Kennedy Krieger Institute and Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Seblani M, Brezun JM, Féron F, Hoquet T. Rethinking plasticity: Analysing the concept of "destructive plasticity" in the light of neuroscience definitions. Eur J Neurosci 2024; 60:4798-4812. [PMID: 39092545 DOI: 10.1111/ejn.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
As a multilevel and multidisciplinary field, neuroscience is designed to interact with various branches of natural and applied sciences as well as with humanities and philosophy. The continental tradition in philosophy, particularly over the past 20 years, tended to establish strong connections with biology and neuroscience findings. This cross fertilization can however be impeded by conceptual intricacies, such as those surrounding the concept of plasticity. The use of this concept has broadened as scientists applied it to explore an ever-growing range of biological phenomena. Here, we examine the consequences of this ambiguity in an interdisciplinary context through the analysis of the concept of "destructive plasticity" in the philosophical writings of Catherine Malabou. The term "destructive plasticity" was coined by Malabou in 2009 to refer to all processes leading to psycho-cognitive and emotional alterations following traumatic or nontraumatic brain injuries or resulting from neurodevelopmental disorders. By comparing it with the neuroscientific definitions of plasticity, we discuss the epistemological obstacles and possibilities related to the integration of this concept into neuroscience. Improving interdisciplinary exchanges requires an advanced and sophisticated manipulation of neurobiological concepts. These concepts are not only intended to guide research programmes within neuroscience but also to organize and frame the dialogue between different theoretical backgrounds.
Collapse
Affiliation(s)
- Mostafa Seblani
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| | - Jean-Michel Brezun
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
| | - François Féron
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
| | - Thierry Hoquet
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| |
Collapse
|
4
|
Shen J, Wang Y. Correlates of Longitudinal Trajectories of Depressive Symptoms in Adolescents With Traumatic Brain Injuries. J Pediatr Psychol 2023; 48:1021-1029. [PMID: 37846151 PMCID: PMC10733728 DOI: 10.1093/jpepsy/jsad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Depression poses a significant threat to the health and well-being of adolescents with traumatic brain injury. Existing research has limitations in longitudinal follow-up period, consideration of sample heterogeneity, and outcome measurement modeling. This study aimed to address these gaps by applying the second-order growth mixture model (SO-GMM) to examine the 10-year post-injury depression trajectories in adolescents with TBI. METHODS A total of 1,989 adolescents with TBI 16-21 years old from the Traumatic Brain Injury Model System National Data Bank were analyzed up to 10 years post-injury. Depressive symptoms were measured by Patient Health Questionnaire-9. Covariates included age, sex, race/ethnicity, employment, Functional Independence Measure Cognition, TBI severity, pre-injury disability, and substance use. Longitudinal measurement invariance was tested at the configural, metric, and scalar levels before SO-GMM was fit. Logistic regression was conducted for disparities in depression trajectories by covariates. RESULTS A 2-class SO-GMM was identified with a low-stable group (85% of the sample) and a high-increasing group (15% of the sample) on depression levels. Older age, being a Native American, and having Hispanic origin was associated with a higher likelihood of being in the high-increasing class (odds ratios [ORs] = 1.165-4.989 and 1.609, respectively), while patients with higher education and being male were less likely to be in the high-increasing class (ORs = 0.735 and 0.557, respectively). CONCLUSIONS This study examined the disparities in depression among two distinct longitudinal groups of adolescents with TBI 10 years post-injury. Findings of the study are informative for intervention development to improve long-term mental health in adolescents with TBI.
Collapse
Affiliation(s)
- Jiabin Shen
- Department of Psychology, University of Massachusetts Lowell, USA
| | - Yan Wang
- Department of Psychology, University of Massachusetts Lowell, USA
| |
Collapse
|
5
|
Williamson BJ, Greiner HM, Kadis DS. Virtual lesions in MEG reveal increasing vulnerability of the language network from early childhood through adolescence. Nat Commun 2023; 14:7313. [PMID: 37951971 PMCID: PMC10640569 DOI: 10.1038/s41467-023-43165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
In childhood, language outcomes following brain injury are inversely related to age. Neuroimaging findings suggest that extensive representation and/or topological redundancy may confer the pediatric advantage. Here, we assess whole brain and language network resilience using in silico attacks, for 85 children participating in a magnetoencephalography (MEG) study. Nodes are targeted based on eigenvector centrality, betweenness centrality, or at random. The size of each connected component is assessed after iterated node removal; the percolation point, or moment of dis-integration, is defined as the first instance where the second largest component peaks in size. To overcome known effects of fixed thresholding on subsequent graph and resilience analyses, we study percolation across all possible network densities, within a Functional Data Analysis (FDA) framework. We observe age-related increases in vulnerability for random and betweenness centrality-based attacks for whole-brain and stories networks (adjusted-p < 0.05). Here we show that changes in topology underlie increasing language network vulnerability in development.
Collapse
Affiliation(s)
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Atkinson TB, Forsyth RJ. It's easier to relearn gross motor skills than learn them for the first time after injury: Empirical evidence informing the age at injury debate. Eur J Paediatr Neurol 2023; 47:67-71. [PMID: 37741169 DOI: 10.1016/j.ejpn.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
The effect of age at injury on outcomes after brain injury has long been debated. Many have argued that the greater plasticity of the immature brain aids in its recovery from trauma, but others (notably Donald Hebb) have argued that early injury can impair the future ability of the brain to acquire new capabilities. This is difficult to assess empirically due to the presence of many age-dependent confounders. We performed Item Response Theory (IRT) analyses of two datasets of Gross Motor Function Measure (GMFM) observations, one in children with cerebral palsy (CP) and one in children with acquired brain injury (ABI) sustained at later ages. We used IRT to derive independent estimates of test item difficulty in the two populations. Additionally, where comparison between GMFM items and items in the Denver II Developmental Screening Test battery was possible we used the latter to obtain the ages at which these abilities are acquired in typically developing children. Item difficulty estimates for the two populations are highly correlated (adjusted r2=0.89, p<0.0005), but demonstrate significant bias with harder items (typically acquired at later ages) being more readily achieved by children with ABI compared to CP. These results support the Hebbian perspective that (when considering gross motor function) it is easier to maintain or recover previously established functions than to learn them for the first time in an injured brain. This argues for a more cautious outcome prognosis in injury at very young ages.
Collapse
Affiliation(s)
| | - Rob J Forsyth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Althammer A, Prückner S, Gehring GC, Lieftüchter V, Trentzsch H, Hoffmann F. Systemic review of age brackets in pediatric emergency medicine literature and the development of a universal age classification for pediatric emergency patients - the Munich Age Classification System (MACS). BMC Emerg Med 2023; 23:77. [PMID: 37491219 PMCID: PMC10369835 DOI: 10.1186/s12873-023-00851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Currently arbitrary, inconsistent and non-evidence-based age cutoffs are used in the literature to classify pediatric emergencies. None of these classifications have valid medical rationale. This leads to confusion and poor comparability of the different study results. To clarify this problem, this paper presents a systematic review of the commonly used age limits from 115 relevant articles. In the literature search 6226 articles were screened. To be included, the articles had to address the following three topics: "health services research in emergency medicine", "pediatrics" and "age as a differentiator". Physiologic and anatomic principles with reference to emergency medicine were used to solve the problem to create a medically based age classification for the first time.The Munich Age Classification System (MACS) presented in this paper is thus consistent with previous literature and is based on medical evidence. In the future, MAC should lead to ensure that a uniform classification is used. This will allow a better comparability of study results and enable meta-analyses across studies.
Collapse
Affiliation(s)
- Alexander Althammer
- Institut für Notfallmedizin und Medizinmanagement (INM), Ludwig-Maximilians-University, Schillerstr. 53, 80336, Munich, Germany.
- Department of Anesthesiology, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Stephan Prückner
- Institut für Notfallmedizin und Medizinmanagement (INM), Ludwig-Maximilians-University, Schillerstr. 53, 80336, Munich, Germany
| | - Geogr Christian Gehring
- Institut für Notfallmedizin und Medizinmanagement (INM), Ludwig-Maximilians-University, Schillerstr. 53, 80336, Munich, Germany
| | - Victoria Lieftüchter
- Pediatric Intensive Care and Emergency Medicine, Dr. von Hauner Children's Hospital, Ludwig- Maximilians-University, Lindwurmstraße 4, 80337, Munich, Germany
| | - Heiko Trentzsch
- Institut für Notfallmedizin und Medizinmanagement (INM), Ludwig-Maximilians-University, Schillerstr. 53, 80336, Munich, Germany
| | - Florian Hoffmann
- Pediatric Intensive Care and Emergency Medicine, Dr. von Hauner Children's Hospital, Ludwig- Maximilians-University, Lindwurmstraße 4, 80337, Munich, Germany
| |
Collapse
|
8
|
Sullivan AW, Johnson MK, Boes AD, Tranel D. Implications of age at lesion onset for neuropsychological outcomes: A systematic review focusing on focal brain lesions. Cortex 2023; 163:92-122. [PMID: 37086580 PMCID: PMC10192019 DOI: 10.1016/j.cortex.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/10/2023] [Accepted: 03/19/2023] [Indexed: 04/24/2023]
Abstract
Theories of the relation between age at lesion onset and outcomes posit different views of the young brain: resilient and plastic (i.e., the so-called "Kennard Principle"), or vulnerable (i.e., the Early Vulnerability Hypothesis). There is support for both perspectives in previous research and questions about the "best" or "worst" times to sustain brain injury remain. Here, we present a systematic review investigating the influence of age at focal brain lesion onset on cognitive functioning. This systematic review identifies and qualitatively synthesizes empirical studies from 1985 to 2021 that investigated age at lesion onset as a variable of interest associated with neuropsychological outcomes. A total of 45 studies were identified from PubMed, PsycINFO, and CINAHL databases. Almost all studies indicated that brain injury earlier in the developmental period predicts worse cognitive outcomes when compared to onset either later in the developmental period or in adulthood. More specifically, the overwhelming majority of studies support an "earlier is worse" model for domains of intellect, processing speed, attention and working memory, visuospatial and perceptual skills, and learning and memory. Relatively more variability in outcomes exists for domains of language and executive functioning. Outcomes for all domains are influenced by various other age and injury variables (e.g., lesion size, lesion laterality, chronicity, a history of epilepsy). Continued interdisciplinary understanding and communication about the influence of age at lesion onset on neuropsychological outcomes will aid in promoting the best possible outcomes for patients.
Collapse
Affiliation(s)
- Alyssa W Sullivan
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Marcie K Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Aaron D Boes
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Long-Term Outcomes after Non-Traumatic Out-of-Hospital Cardiac Arrest in Pediatric Patients: A Systematic Review. J Clin Med 2022; 11:jcm11175003. [PMID: 36078931 PMCID: PMC9457161 DOI: 10.3390/jcm11175003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term outcomes after non-traumatic pediatric out-of-hospital cardiac arrest (OHCA) are not well understood. This systematic review aimed to summarize long-term outcomes (1 year and beyond), including overall survival, survival with favorable neurological outcomes, and health-related quality of life (HRQoL) outcomes) amongst pediatric OHCA patients who survived to discharge. Embase, Medline, and The Cochrane Library were searched from inception to October 6, 2021. Studies were included if they reported outcomes at 1 year or beyond after pediatric OHCA. Data abstraction and quality assessment was conducted by three authors independently. Qualitative outcomes were reported systematically. Seven studies were included, and amongst patients that survived to hospital discharge or to 30 days, longer-term survival was at least 95% at 24 months of follow up. A highly variable proportion (range 10–71%) of patients had favorable neurological outcomes at 24 months of follow up. With regard to health-related quality of life outcomes, at a time point distal to 1 year, at least 60% of pediatric non-traumatic OHCA patients were reported to have good outcomes. Our study found that at least 95% of pediatric OHCA patients, who survived to discharge, survived to a time point distal to 1 year. There is a general paucity of data surrounding the pediatric OHCA population.
Collapse
|
10
|
Batschelett M, Gibbs S, Holder CM, Holcombe B, Wheless JW, Narayana S. Plasticity in the developing brain: neurophysiological basis for lesion-induced motor reorganization. Brain Commun 2021; 4:fcab300. [PMID: 35174326 PMCID: PMC8842689 DOI: 10.1093/braincomms/fcab300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
The plasticity of the developing brain can be observed following injury to the
motor cortex and/or corticospinal tracts, the most commonly injured brain area
in the pre- or peri-natal period. Factors such as the timing of injury, lesion
size and lesion location may affect a single hemisphere’s ability to
acquire bilateral motor representation. Bilateral motor representation of single
hemisphere origin is most likely to occur if brain injury occurs before the age
of 2 years; however, the link between injury aetiology, reorganization type and
functional outcome is largely understudied. We performed a retrospective review
to examine reorganized cortical motor maps identified through transcranial
magnetic stimulation in a cohort of 52 patients. Subsequent clinical,
anthropometric and demographic information was recorded for each patient. Each
patient’s primary hand motor cortex centre of gravity, along with the
Euclidian distance between reorganized and normally located motor cortices, was
also calculated. The patients were classified into broad groups including
reorganization type (inter- and intrahemispheric motor reorganization), age at
the time of injury (before 2 years and after 2 years) and injury aetiology
(developmental disorders and acquired injuries). All measures were analysed to
find commonalities between motor reorganization type and injury aetiology,
function and centre of gravity distance. There was a significant effect of
injury aetiology on type of motor reorganization
(P < 0.01), with 60.7% of patients
with acquired injuries and 15.8% of patients with developmental disorders
demonstrating interhemispheric motor reorganization. Within the interhemispheric
motor reorganization group, ipsilaterally and contralaterally projecting hand
motor cortex centres of gravity overlapped, indicating shared cortical motor
representation. Furthermore, the data suggest significantly higher prevalence of
bilateral motor representation from a single hemisphere in cases of acquired
injuries compared to those of developmental origin. Functional outcome was found
to be negatively affected by acquired injuries and interhemispheric motor
reorganization relative to their respective counterparts with developmental
lesions and intrahemispheric motor reorganization. These results provide novel
information regarding motor reorganization in the developing brain via an
unprecedented cohort sample size and transcranial magnetic stimulation.
Transcranial magnetic stimulation is uniquely suited for use in understanding
the principles of motor reorganization, thereby aiding in the development of
more efficacious therapeutic techniques to improve functional recovery following
motor cortex injury.
Collapse
Affiliation(s)
- Mitchell Batschelett
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Rhodes College, Memphis, TN, USA
| | - Savannah Gibbs
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
| | - Christen M. Holder
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Billy Holcombe
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James W. Wheless
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shalini Narayana
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
van Hedel HJA, Bulloni A, Gut A. Prefrontal Cortex and Supplementary Motor Area Activation During Robot-Assisted Weight-Supported Over-Ground Walking in Young Neurological Patients: A Pilot fNIRS Study. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:788087. [PMID: 36188767 PMCID: PMC9397849 DOI: 10.3389/fresc.2021.788087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 06/16/2023]
Abstract
Introduction: Rehabilitation therapy devices are designed for practicing intensively task-specific exercises inducing long-term neuroplastic changes underlying improved functional outcome. The Andago enables over-ground walking with bodyweight support requiring relatively high cognitive demands. In this study, we investigated whether we could identify children and adolescents with neurological gait impairments who show increased hemodynamic responses of the supplementary motor area (SMA) or prefrontal cortex (PFC) measured with functional near-infrared spectroscopy (fNIRS) when walking in Andago compared to walking on a treadmill. We further assessed the practicability and acceptability of fNIRS. Methods: Thirteen participants (two girls, 11 boys, age 8.0-15.7 years) with neurological impairments walked in the Andago and on a treadmill under comparable conditions. We measured hemodynamic responses over SMA and PFC during 10 walks (each lasting 20 s.) per condition and analyzed the data according to the latest recommendations. In addition, we listed technical issues, stopped the time needed to don fNIRS, and used a questionnaire to assess acceptability. Results: Hemodynamic responses varied largely between participants. Participants with a typical hemodynamic response (i.e., increased oxygenated hemoglobin concentration) showed large cortical activations during walking in Andago compared to treadmill walking (large effect sizes, i.e., for SMA: r = 0.91, n = 4; for PFC: r = 0.62, n = 3). Other participants showed atypical (SMA: n = 2; PFC: n = 4) or inconclusive hemodynamic responses (SMA: n = 5; PFC: n = 4). The median time for donning fNIRS was 28 min. The questionnaire indicated high acceptance of fNIRS, despite that single participants reported painful sensations. Discussion: Repetitive increased activation of cortical areas like the SMA and PFC might result in long-term neuroplastic changes underlying improved functional outcome. This cross-sectional pilot study provides first numbers on hemodynamic responses in SMA and PFC during walking in Andago in children with neurological impairments, reveals that only a small proportion of the participants shows typical hemodynamic responses, and reports that fNIRS requires considerable time for donning. This information is needed when designing future longitudinal studies to investigate whether increased brain activation of SMA and PFC during walking in Andago could serve as a biomarker to identify potential therapy responders among children and adolescents undergoing neurorehabilitation.
Collapse
Affiliation(s)
- Hubertus J. A. van Hedel
- Swiss Children's Rehab, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Agata Bulloni
- Swiss Children's Rehab, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
- Department of Health Sciences and Technology, Institute for Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Anja Gut
- Swiss Children's Rehab, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Bonaventura E, Purpura G, Pasquariello R, Da Prato S, Di Lieto MC, Barsotti J, Paolicelli PB, Cioni G, Tinelli F. Complex neurodevelopmental disorder in a preterm child with unilateral cerebellar hemorrhage. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:915-920. [PMID: 34100324 DOI: 10.1080/21622965.2021.1935256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cerebellar hemorrhage (CBH) represents the main form of direct cerebellar injury in preterm infants. Most CBHs occur bilaterally, while isolated unilateral hemorrhages are less frequent and often associated with focal atrophy. Limited and heterogeneous data exist on preterm birth, unilateral CBH and consequent long-term neurodevelopmental and non-motor outcomes. CASE REPORT This is the case of a six-year-old child, born preterm, diagnosed with a complete atrophy of the right cerebellar hemisphere through brain MRI and presenting mild social atypies, visuo-perceptive and pragmatic language impairment, but only minor neurological signs. DISCUSSION Despite the large extension of the patient's CBH neurological sequelae were mild, likely due to cerebellar plasticity, and only specific deficits in non-motor, behavioral and social skills were shown. Evidence exists on cerebellar contribution to dynamic visual information processing and to perceptual signals detection and prediction, that might explain the presence of non-motor signs.
Collapse
Affiliation(s)
- Eleonora Bonaventura
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giulia Purpura
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Da Prato
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Maria Chiara Di Lieto
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Jessica Barsotti
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | | | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
13
|
Williams TS. Introduction to the special issue: Transdiagnostic approaches to early brain injury: Harnessing neuroprotection through parents and families. Clin Neuropsychol 2021; 35:841-845. [PMID: 34032187 DOI: 10.1080/13854046.2021.1927192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tricia S Williams
- Division of Neurology, Department of Psychology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Elliott D. The Legacy of the Kennard Principle. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2020; 19:R11-R14. [PMID: 33880106 PMCID: PMC8040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/12/2023]
Abstract
Research into neural plasticity has progressed rapidly over the last few decades, but the origins of this field lie in the early 20th century. In 1936, Margaret Kennard introduced the concept of brain plasticity in an animal model by studying the recovery of motor functions after performing brain lesions in infant and adult monkeys. It took until the 1970s for her work to be widely acknowledged. When her work did eventually make it into the limelight, this led to the synthesis of what scientists dubbed the 'Kennard Principle'. The Kennard Principle states that the younger an organism is, the greater and swifter recovery from brain injury will be. This principle itself is subject to controversy and debate; furthermore, it is based on a simplification of Kennard's original results. This article will explore Kennard's original 1936 paper, published in the American Journal of Physiology, and the context in which the Kennard Principle arose. Kennard's paper demonstrates early pioneering work within the field of behavioral neuroscience which provides a historical foundation for psychology and neuroscience undergraduates. Exploring the context in which the Kennard Principle arose also highlights the importance of tracing the origins of scientific principles and theories for students and researchers alike.
Collapse
Affiliation(s)
- Danielle Elliott
- School of Psychology & Neuroscience, University of St. Andrews, St. Andrews, Fife, Scotland KY16 9JP
| |
Collapse
|
15
|
Beauchamp MH, Séguin M, Gagner C, Lalonde G, Bernier A. The PARENT model: a pathway approach for understanding parents’ role after early childhood mild traumatic brain injury. Clin Neuropsychol 2020; 35:846-867. [DOI: 10.1080/13854046.2020.1834621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- M. H. Beauchamp
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - M. Séguin
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - C. Gagner
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - G. Lalonde
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - A. Bernier
- Department of Psychology, University of Montreal, Canada
| |
Collapse
|
16
|
Ausili SA, Agterberg MJH, Engel A, Voelter C, Thomas JP, Brill S, Snik AFM, Dazert S, Van Opstal AJ, Mylanus EAM. Spatial Hearing by Bilateral Cochlear Implant Users With Temporal Fine-Structure Processing. Front Neurol 2020; 11:915. [PMID: 33101160 PMCID: PMC7554532 DOI: 10.3389/fneur.2020.00915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Several studies have demonstrated the advantages of the bilateral vs. unilateral cochlear implantation in listeners with bilateral severe to profound hearing loss. However, it remains unclear to what extent bilaterally implanted listeners have access to binaural cues, e.g., accurate processing of interaural timing differences (ITDs) for low-frequency sounds (<1.5 kHz) and interaural level differences (ILDs) for high frequencies (>3 kHz). We tested 25 adult listeners, bilaterally implanted with MED-EL cochlear implant (CI) devices, with and without fine-structure (FS) temporal processing as encoding strategy in the low-frequency channels. In order to assess whether the ability to process binaural cues was affected by fine-structure processing, we performed psychophysical ILD and ITD sensitivity measurements and free-field sound localization experiments. We compared the results of the bilaterally implanted listeners with different numbers of FS channels. All CI listeners demonstrated good sensitivity to ILDs, but relatively poor to ITD cues. Although there was a large variability in performance, some bilateral CI users showed remarkably good localization skills. The FS coding strategy for bilateral CI hearing did not improve fine-structure ITD processing for spatial hearing on a group level. However, some CI listeners were able to exploit weakly informative temporal cues to improve their low-frequency spatial perception.
Collapse
Affiliation(s)
- Sebastián A Ausili
- Department of Biophysics, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands.,Department of Otolaryngology, University of Miami, Miami, FL, United States
| | - Martijn J H Agterberg
- Department of Biophysics, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands.,Department of Otorhinolaryngology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Andreas Engel
- Department of Otorhinolaryngology Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Christiane Voelter
- Department of Otorhinolaryngology Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jan Peter Thomas
- Department of Otorhinolaryngology Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Ad F M Snik
- Department of Biophysics, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Stefan Dazert
- Department of Otorhinolaryngology Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - A John Van Opstal
- Department of Biophysics, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Emmanuel A M Mylanus
- Department of Otorhinolaryngology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|
17
|
The vulnerability of the immature brain. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32958197 DOI: 10.1016/b978-0-444-64150-2.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The concept of vulnerability of the immature brain is multifactorial by definition. Newer scientific work in this area has shifted and enlarged the concept from theoretical frameworks to the multiple levels (molecular, cellular, anatomic, network, behavioral) of the organization of the growing brain. The concept of vulnerability was first introduced by Donald O. Hebb in the 1950s and referred to the inability of the immature brain to completely recover normal development after a brain insult. The concept of vulnerability was further extended to the limitations of the brain in the development of specific skills in neuronal substrates originally used for other functions. We present an overview of some neurodevelopmental processes that characterize the immature brain and that can predict vulnerability in the case of disturbances: Hebb's principle, synaptic homeostasis, selective vulnerability of immature cells in mammals, and inherited constraint networks. A better understanding of the vulnerability mechanisms may help in early detection and prevention and further proposed individualized therapeutic approaches to enhance children's developmental outcomes.
Collapse
|
18
|
Gaubatz J, Prillwitz CC, Ernst L, David B, Hoppe C, Hattingen E, Weber B, Vatter H, Surges R, Elger CE, Rüber T. Contralesional White Matter Alterations in Patients After Hemispherotomy. Front Hum Neurosci 2020; 14:262. [PMID: 32733222 PMCID: PMC7358777 DOI: 10.3389/fnhum.2020.00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral lesions may cause degeneration and neuroplastic reorganization in both the ipsi- and the contralesional hemisphere, presumably creating an imbalance of primarily inhibitory interhemispheric influences produced via transcallosal pathways. The two hemispheres are thought to mutually hamper neuroplastic reorganization of the other hemisphere. The results of preceding degeneration and neuroplastic reorganization of white matter may be reflected by Diffusion Tensor Imaging-derived diffusivity parameters such as fractional anisotropy (FA). In this study, we applied Diffusion Tensor Imaging (DTI) to contrast the white matter status of the contralesional hemisphere of young lesioned brains with and without contralateral influences by comparing patients after hemispherotomy to those who had not undergone neurosurgery. DTI was applied to 43 healthy controls (26 females, mean age ± SD: 25.07 ± 11.33 years) and two groups of in total 51 epilepsy patients with comparable juvenile brain lesions (32 females, mean age ± SD: 25.69 ± 12.77 years) either after hemispherotomy (30 of 51 patients) or without neurosurgery (21 of 51 patients), respectively. FA values were compared between these groups using the unbiased tract-based spatial statistics approach. A voxel-wise ANCOVA controlling for age at scan yielded significant group differences in FA. A post hoc t-test between hemispherotomy patients and healthy controls revealed widespread supra-threshold voxels in the contralesional hemisphere of hemispherotomy patients indicating comparatively higher FA values (p < 0.05, FWE-corrected). The non-surgery group, in contrast, showed extensive supra-threshold voxels indicating lower FA values in the contralesional hemisphere as compared to healthy controls (p < 0.05, FWE-corrected). Whereas lower FA values are suggestive of pronounced contralesional degeneration in the non-surgery group, higher FA values in the hemispherotomy group may be interpreted as a result of preceding plastic remodeling. We conclude that, whether juvenile brain lesions are associated with contralesional degeneration or reorganization partly depends on the ipsilesional hemisphere. Contralesional reorganization as observed in hemispherotomy patients was most likely enabled by the complete neurosurgical deafferentation of the ipsilesional hemisphere and, thereby, the disinhibition of the neuroplastic potential of the contralesional hemisphere. The main argument of this study is that hemispherotomy may be seen as a major plastic stimulus and as a prerequisite for contralesional neuroplastic remodeling in patients with juvenile brain lesions.
Collapse
Affiliation(s)
- Jennifer Gaubatz
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Conrad C Prillwitz
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Leon Ernst
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Bastian David
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Christian Hoppe
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Hart MG, Romero-Garcia R, Price SJ, Suckling J. Global Effects of Focal Brain Tumors on Functional Complexity and Network Robustness: A Prospective Cohort Study. Neurosurgery 2020; 84:1201-1213. [PMID: 30137556 PMCID: PMC6520100 DOI: 10.1093/neuros/nyy378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/19/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Neurosurgical management of brain tumors has entered a paradigm of supramarginal resections that demands thorough understanding of peritumoral functional effects. Historically, the effects of tumors have been believed to be local, and long-range effects have not been considered. OBJECTIVE To test the hypothesis that tumors affect the brain globally, producing long-range gradients in cortical function. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were acquired from 11 participants with glioblastoma and split into discovery and validation datasets in a single-center prospective cohort study. Fractal complexity was computed with a wavelet-based estimator of the Hurst exponent. Distance-related effects of the tumors were tested with a tumor mask-dilation technique and parcellation of the underlying Hurst maps. RESULTS Fractal complexity demonstrates a penumbra of suppression in the peritumoral region. At a global level, as distance from the tumor increases, this initial suppression is balanced by a subsequent overactivity before finally normalizing. These effects were best fit by a quadratic model and were consistent across different network construction pipelines. The Hurst exponent was correlated with graph theory measures of centrality including network robustness, but graph theory measures did not demonstrate distance-dependent effects. CONCLUSION This work provides evidence supporting the theory that focal brain tumors produce long-range gradients in function. Consequently, the effects of focal lesions need to be interpreted in terms of the global changes on functional complexity and network architecture rather than purely in terms of functional localization. Determining whether peritumoral changes represent potential plasticity may facilitate extended resection of tumors without functional cost.
Collapse
Affiliation(s)
- Michael G Hart
- Brain Mapping Unit, Department of Psychiatry, Sir William Hardy Building, University of Cambridge, Cambridge, United Kingdom.,Academic Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, Sir William Hardy Building, University of Cambridge, Cambridge, United Kingdom.,Academic Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Price
- Academic Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Beuriat PA, Cristofori I, Richard N, Bardi L, Loriette C, Szathmari A, Di Rocco F, Leblond P, Frappaz D, Faure-Conter C, Claude L, Mottolese C, Desmurget M. Cerebellar lesions at a young age predict poorer long-term functional recovery. Brain Commun 2020; 2:fcaa027. [PMID: 32954287 PMCID: PMC7425375 DOI: 10.1093/braincomms/fcaa027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Early studies on long-term functional recovery after motor and premotor lesions showed better outcomes in younger monkeys than in older monkeys. This finding led to the widespread belief that brain injuries cause less impairment in children than adults. However, this view has limitations and a large body of evidence now indicates that cerebral damages can be more harmful when inflicted at young age, during critical periods of neural development. To date, this issue has been mainly investigated in the context of focal and diffuse cortical lesions. Much less is known about the potential influence of early cerebellar damages. Several studies exist in survivor of posterior fossa tumours. However, in these studies, critical confounders were not always considered and contradictory conclusions were provided. We studied the impact or early cerebellar damage on long-term functional recovery in three groups of 15 posterior fossa survivors, comparable with respect to their tumour characteristics (type, size and location) but operated at different ages: young (≤7 years), middle (>7 and ≤13 years) and older (>13 years). Daily (health-related quality of life scale, performance status scale), motor (International Cooperative Ataxia Rating Scale, Pegboard Purdue Test) and cognitive (full-scale intelligence quotient) functioning were assessed. A general linear model controlling for age at surgery, radiotherapy, preservation of deep cerebellar nuclei, tumour volume and delay between surgery and assessment was used to investigate significant variations in outcome measures. Early age at surgery, lesion of deep cerebellar nuclei and postoperative radiotherapy had a significant, independent negative influence on long-term recovery. Tumour volume and delay between surgery and assessment had no statistically detectable impact. The negative influence of early age at surgery was significant in all domains: daily functioning (health-related quality of life scale, performance status scale), motor functioning (International Cooperative Ataxia Rating Scale, Pegboard Purdue Test) and cognitive functioning (full-scale intelligence quotient). These results support the existence of an early critical period of development during which the cerebellar ‘learning machine’ is of critical importance. Although the extent to which the early deficits here observed can be reversed needs now to be established, our data plead for the implementation of prompt and intense rehabilitation interventions in children operated before 7 years of age.
Collapse
Affiliation(s)
- Pierre-Aurélien Beuriat
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.,Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500 Bron, France
| | - Irene Cristofori
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Nathalie Richard
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Lara Bardi
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Celia Loriette
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Alexandru Szathmari
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.,Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500 Bron, France
| | - Federico Di Rocco
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.,Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500 Bron, France
| | - Pierre Leblond
- Department of Pediatric Hematology and Oncology, Institut d'hématologie et d'oncologie Pédiatrique, 69008 Lyon, France
| | - Didier Frappaz
- Department of Pediatric Hematology and Oncology, Institut d'hématologie et d'oncologie Pédiatrique, 69008 Lyon, France
| | - Cécile Faure-Conter
- Department of Pediatric Hematology and Oncology, Institut d'hématologie et d'oncologie Pédiatrique, 69008 Lyon, France
| | - Line Claude
- Department of Radiotherapy, Centre Léon Bérard, 69008 Lyon, France
| | - Carmine Mottolese
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.,Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500 Bron, France
| | - Michel Desmurget
- Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500 Bron, France.,Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
21
|
Meoded A, Jacobson L, Liu A, Bauza C, Huisman TAGM, Goldenberg N, Weiner H, Jallo G, Jackson E. Diffusion Tensor Imaging Connectomics Reveals Preoperative Neural Connectivity Changes in Children with Postsurgical Posterior Fossa Syndrome. J Neuroimaging 2020; 30:192-197. [PMID: 31908091 DOI: 10.1111/jon.12686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Posterior fossa syndrome (PFS), characterized by loss of language and other neurological impairments within the immediate postoperative period, occurs in approximately 25% of children who undergo surgical resection of posterior fossa tumors. Diffusion tensor imaging connectomics offer promise for elucidation of pathway-level disruption in neural connectivity of patients with this disorder. We aim to determine differences in pre- and postoperative connectomics between children with PFS and children with mild or no language deficit after surgery. METHODS Pre- and postoperative diffusion tensor imaging connectomics were applied and compared among patients with PFS, mild deficits, and intact language. RESULTS A total of 35 patients were included in the study. Twenty-three patients with preoperative data and 24 patients with postoperative data were included in the analysis. Mean ages: PFS-8.5 years, mild-3.1 years, intact language-9.4 years (P = .02). Diagnoses included medulloblastoma (44.1%), pilocytic astrocytoma (28.6%), ependymoma (8.6%), other (11.4%), and unknown (8.6%). Five (21.7%) patients had PFS, 4 (17.4%) had mild deficits, and 14 (60.9%) had intact language. The assortativity coefficient was significantly higher in patients with PFS when compared to patients with mild deficits (P = .023). In the connectometry analyses, decreased connectivity was found involving the corpus callosum, right corticothalamic pathway, and right corticostriatal pathway in patients with PFS when compared to patients with intact language. CONCLUSIONS Our findings revealed significant differences in preoperative neural connectivity involving the corticothalamic and other pathways among children who did, versus who did not, develop PFS postoperatively. Diffusion tensor imaging connectomics offers a unique opportunity to study the effect of the posterior fossa tumors on cerebello-cerebral networks and provide new insights into the mechanism of the structural plasticity/reorganization after surgery.
Collapse
Affiliation(s)
- Avner Meoded
- Edward B. Singleton Department of Radiology, Section of Pediatric Neuroradiology, Texas Children's Hospital, Houston, TX
| | - Lisa Jacobson
- Department of Neuropsychology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Colleen Bauza
- Health Informatics, Johns Hopkins All Children's Hospital, St. Petersburg, FL
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Section of Pediatric Neuroradiology, Texas Children's Hospital, Houston, TX
| | - Neil Goldenberg
- Department of Pediatrics and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.,All Children's Research Institute, and Johns Hopkins Cancer and Blood Disorders Institute, St. Petersburg, FL
| | - Howard Weiner
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - George Jallo
- Johns Hopkins All Children's Institute for Brain Protection Sciences, St. Petersburg, FL
| | - Eric Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Arterial ischemic stroke in non-neonate children: Diagnostic and therapeutic specificities. Rev Neurol (Paris) 2020; 176:20-29. [DOI: 10.1016/j.neurol.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
|
23
|
Ismail FY, Ljubisavljevic MR, Johnston MV. A conceptual framework for plasticity in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:57-66. [PMID: 32958193 DOI: 10.1016/b978-0-444-64150-2.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter, we highlight the various definitions of early brain plasticity commonly used in the scientific literature. We then present a conceptual framework of early brain plasticity that focuses on plasticity at the level of the synapse (synaptic plasticity) and the level of the network (connectivity). The proposed framework is organized around three main domains through which current theories and principles of early brain plasticity can be integrated: (1) the mechanisms of plasticity and constraints at the synaptic level and network connectivity, (2) the importance of temporal considerations related to the development of the immature brain, and (3) the functions early brain plasticity serve. We then apply this framework to discuss some clinical disorders caused by and/or associated with impaired plasticity mechanisms. We propose that a careful examination of the relationship between mechanisms, constraints, and functions of early brain plasticity in health and disease may provide an integrative understanding of the current theories and principles generated by experimental and observational studies.
Collapse
Affiliation(s)
- Fatima Y Ismail
- Department of Pediatrics, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Neurology (adjunct), Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | | | - Michael V Johnston
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
24
|
Rojczyk A, Dziewanowska A, Maryniak A. When the brain looks imperfect: An example of neuroplasticity as seen in a patient with arachnoid cysts - a case study. Clin Neuropsychol 2019; 34:1038-1048. [PMID: 30892127 DOI: 10.1080/13854046.2019.1578898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: This study presents a case of a teenager (J.J.) prenatally diagnosed with large arachnoid cysts which did not allow parts of his brain to develop correctly. It aims to establish whether the congenital malformation affected the boy's cognitive development.Method: In order to assess his cognitive development, the authors analyzed J.J.'s medical history, interviewed him and his parents and conducted neuropsychological examination.Results: Despite major parts of his brain undeveloped, the boy achieved average to outstanding scores in all tests.Conclusions: The scores achieved by J.J. suggest that normal development of cognitive abilities is possible even for a person whose central nervous system differs structurally from what is expected in a healthy subject.
Collapse
Affiliation(s)
- Agnieszka Rojczyk
- Faculty of Psychology, University of Warsaw, Warsaw, Poland.,Department of Health Psychology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | |
Collapse
|
25
|
Morosanu CO, Jurca RL, Simonca L, Ilies RF, Moldovan R, Florian IS, Filip GA. Experimental cerebral hemispherectomy in rodent models. A systematic review of current literature. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
[Brain plasticity and early rehabilitative care for children after neonatal arterial cerebral infarction]. Arch Pediatr 2017; 24:9S61-9S68. [PMID: 28867040 DOI: 10.1016/s0929-693x(17)30333-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Currently, in the literature of the evidence based medicine, little data are available to confirm the benefit and the specific procedures of an early intervention for a neonatal arterial ischemic stroke. However, data about the effect of an early physical rehabilitation program on the cerebral plasticity, and preliminary results of clinical studies in children with cerebral palsy strongly suggest the benefit of an early rehabilitation with a multidisciplinary approach. The type of the rehabilitation and its frequency must be determined because a wide variability in the practices exists. A comprehensive care, of the children and his family is necessary to limit the orthopaedics but also the social consequences of a neonatal stroke.
Collapse
|
27
|
Sta Maria NS, Reger ML, Cai Y, Baquing MAT, Buen F, Ponnaluri A, Hovda DA, Harris NG, Giza CC. D-Cycloserine Restores Experience-Dependent Neuroplasticity after Traumatic Brain Injury in the Developing Rat Brain. J Neurotrauma 2017; 34:1692-1702. [PMID: 27931146 PMCID: PMC5397224 DOI: 10.1089/neu.2016.4747] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) in children can cause persisting cognitive and behavioral dysfunction, and inevitably raises concerns about lost potential in these injured youth. Lateral fluid percussion injury (FPI) in weanling rats pathologically affects hippocampal N-methyl-d-aspartate receptor (NMDAR)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated glutamatergic neurotransmission subacutely within the first post-injury week. FPI to weanling rats has also been shown to impair enriched-environment (EE) induced enhancement of Morris water maze (MWM) learning and memory in adulthood. Recently, improved outcomes can be achieved using agents that enhance NMDAR function. We hypothesized that administering D-cycloserine (DCS), an NMDAR co-agonist, every 12 h (i.p.) would restore subacute glutamatergic neurotransmission and reinstate experience-dependent plasticity. Postnatal day 19 (P19) rats received either a sham or FPI. On post-injury day (PID) 1-3, animals were randomized to saline (Sal) or DCS. Firstly, immunoblotting of hippocampal NMDAR and AMPAR proteins were measured on PID4. Second, PID4 novel object recognition, an NMDAR- and hippocampal- mediated working memory task, was assessed. Third, P19 rats were placed in an EE (17 days), and MWM performance was measured, starting on PID30. On PID4, DCS restored reduced NR2A and increased GluR2 by 54%, and also restored diminished recognition memory in FPI pups. EE significantly improved MWM performance in shams, regardless of treatment. In contrast, FPI-EE-Sal animals only performed to the level of standard housed animals, whereas FPI-EE-DCS animals were comparable with sham-EE counterparts. This study shows that NMDAR agonist use during reduced glutamatergic transmission after developmental TBI can reinstate early molecular and behavioral responses that subsequently manifest in experience-dependent plasticity and rescued potential.
Collapse
Affiliation(s)
- Naomi S. Sta Maria
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Bioengineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - Maxine L. Reger
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Psychology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Yan Cai
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Mary Anne T. Baquing
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Harbor-UCLA Department of Obstetrics and Gynecology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Floyd Buen
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Head and Neck Surgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Aditya Ponnaluri
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Mechanical Engineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - David A. Hovda
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Medical and Molecular Pharmacology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Neil G. Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Christopher C. Giza
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Division of Pediatric Neurology, UCLA Brain Injury Research Center, Los Angeles, California
| |
Collapse
|
28
|
|
29
|
Short and long-term outcomes in children with suspected acute encephalopathy. Brain Dev 2016; 38:731-7. [PMID: 26952815 DOI: 10.1016/j.braindev.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The time-dependent changes that occur in children after acute encephalopathy are not clearly understood. Therefore, we assessed changes in brain function after suspected acute encephalopathy over time. METHODS We created a database of children admitted to the pediatric intensive care unit at Kobe Children's Hospital because of convulsions or impaired consciousness with fever between 2002 and 2013. Clinical courses and outcomes were reviewed and patients who met the following criteria were included in the study: (1) 6months to 15years of age, (2) no neurological abnormality before onset, (3) treated for suspected acute encephalopathy, and (4) followed after 1 (0-2) month and 12 (10-17) months of onset. Outcomes were assessed using the Pediatric Cerebral Performance Category (PCPC) scale, with a score of 1 representing normal performance; 2, mild disability; 3, moderate disability; 4, severe disability; 5, vegetative state; and 6, brain death. RESULTS A total of 78 children (32 male) with a median (range) age at onset of 20 (6-172) months were enrolled. Fifty-one cases scored 1 on the PCPC, 13 scored 2, three scored 3, five scored 4, one scored 5, and five cases scored 6 at discharge. Whereas seven of the 13 cases that scored a 2 on the PCPC recovered normal brain function after 12months, none of the nine cases that scored a 3-5 on the PCPC recovered normal function. CONCLUSIONS Our findings suggest moderate to severe disability caused by acute encephalopathy had lasting consequences on brain function, whereas mild disability might result in improved function.
Collapse
|
30
|
Meoded A, Faria AV, Hartman AL, Jallo GI, Mori S, Johnston MV, Huisman TAGM, Poretti A. Cerebral Reorganization after Hemispherectomy: A DTI Study. AJNR Am J Neuroradiol 2016; 37:924-31. [PMID: 26767710 DOI: 10.3174/ajnr.a4647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hemispherectomy is a neurosurgical procedure to treat children with intractable seizures. Postsurgical improvement of cognitive and behavioral functions is observed in children after hemispherectomy suggesting plastic reorganization of the brain. Our aim was to characterize changes in DTI scalars in WM tracts of the remaining hemisphere in children after hemispherectomy, assess the associations between WM DTI scalars and age at the operation and time since the operation, and evaluate the changes in GM fractional anisotropy values in patients compared with controls. MATERIALS AND METHODS Patients with congenital or acquired neurologic diseases who required hemispherectomy and had high-quality postsurgical DTI data available were included in this study. Atlas- and voxel-based analyses of DTI raw data of the remaining hemisphere were performed. Fractional anisotropy and mean, axial, and radial diffusivity values were calculated for WM and GM regions. A linear regression model was used for correlation between DTI scalars and age at and time since the operation. RESULTS Nineteen patients after hemispherectomy and 21 controls were included. In patients, a decrease in fractional anisotropy and axial diffusivity values and an increase in mean diffusivity and radial diffusivity values of WM regions were observed compared with controls (P < .05, corrected for multiple comparisons). In patients with acquired pathologies, time since the operation had a significant positive correlation with white matter fractional anisotropy values. In all patients, an increase in cortical GM fractional anisotropy values was found compared with controls (P < .05). CONCLUSIONS Changes in DTI metrics likely reflect Wallerian and/or transneuronal degeneration of the WM tracts within the remaining hemisphere. In patients with acquired pathologies, postsurgical fractional anisotropy values correlated positively with elapsed time since the operation, suggesting a higher ability to recover compared with patients with congenital pathologies leading to hemispherectomy.
Collapse
Affiliation(s)
- A Meoded
- From the Section of Pediatric Neuroradiology (A.M., T.A.G.M.H., A.P.)
| | - A V Faria
- Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences (A.V.F., S.M.)
| | | | - G I Jallo
- Neurosurgery (G.I.J.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - S Mori
- Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences (A.V.F., S.M.) F.M. Kirby Research Center for Functional Brain Imaging (S.M.)
| | - M V Johnston
- Departments of Neurology (A.L.H., M.V.J.) Kennedy Krieger Institute (M.V.J.), Baltimore, Maryland
| | - T A G M Huisman
- From the Section of Pediatric Neuroradiology (A.M., T.A.G.M.H., A.P.)
| | - A Poretti
- From the Section of Pediatric Neuroradiology (A.M., T.A.G.M.H., A.P.)
| |
Collapse
|
31
|
Garcia DM, Sheehan MC. Extreme Weather-driven Disasters and Children’s Health. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2015; 46:79-105. [DOI: 10.1177/0020731415625254] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extreme weather events such as heat waves, extreme precipitation, and storm surges are likely to become more frequent and intense with climate change. Extreme weather-driven disasters (EWDDs) cause a substantial burden of childhood mortality and morbidity worldwide. We reviewed the published literature on EWDDs and their health impacts on children, and developed a conceptual model based on complex systems thinking to identify the health risks, vulnerabilities, and capacities of children in the context of EWDDs as a means of informing areas for adaptive intervention. We found that direct and indirect physical and mental impacts of EWDDs on child health are abundant and interrelate in complex ways. The literature review and modeling demonstrated the centrality of resilience at the level of the child and his or her direct environment, suggesting that mental health status may play a key role in a child’s experience of numerous other health outcomes of EWDDs. EWDDs interact with environmental and social systems and with individual children and their contexts in complex ways, the impacts of which are nonlinear and difficult to predict. Traditional perspectives on climate change-driven health impacts often overlook complex bio-psychosocial interactions, suggesting a need to work on preventive strategies to reduce vulnerability and build individual child resilience.
Collapse
Affiliation(s)
| | - Mary C. Sheehan
- Johns Hopkins Bloomberg School of Public Health, Maryland, USA
| |
Collapse
|
32
|
Babikian T, Merkley T, Savage RC, Giza CC, Levin H. Chronic Aspects of Pediatric Traumatic Brain Injury: Review of the Literature. J Neurotrauma 2015; 32:1849-60. [DOI: 10.1089/neu.2015.3971] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine and Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Tricia Merkley
- Department of Clinical Neuropsychology, Barrow Neurological Institute, Phoenix, Arizona
| | | | - Christopher C. Giza
- Department of Pediatrics and Neurosurgery, David Geffen School of Medicine and Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Harvey Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
Holland JN, Schmidt AT. Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review. Neural Plast 2015; 2015:902802. [PMID: 26347352 PMCID: PMC4539485 DOI: 10.1155/2015/902802] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience) for children and adults following TBI. For the purpose of this paper, the authors divided these factors into static or unmodifiable factors (i.e., age, sex, intellectual abilities/education, and preinjury psychiatric history) and dynamic or modifiable factors (i.e., socioeconomic status, family functioning/social support, nutrition, and exercise). Drawing on human and animal studies, the research reviewed indicated that these various factors can improve outcomes in multiple domains of functioning (e.g., cognition, emotion regulation, health and wellness, behavior, etc.) following a TBI. However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults.
Collapse
Affiliation(s)
- Jessica N. Holland
- Department of Psychology and Philosophy, Sam Houston State University, Campus Box 2447, Huntsville, TX 77341, USA
| | - Adam T. Schmidt
- Department of Psychology and Philosophy, Sam Houston State University, Campus Box 2447, Huntsville, TX 77341, USA
| |
Collapse
|
34
|
Turkstra LS, Politis AM, Forsyth R. Cognitive-communication disorders in children with traumatic brain injury. Dev Med Child Neurol 2015; 57:217-22. [PMID: 25283953 DOI: 10.1111/dmcn.12600] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2014] [Indexed: 11/28/2022]
Abstract
Children with moderate to severe traumatic brain injury (TBI) are at risk of developing cognitive-communication disorders that have devastating effects on their school life, family life, and social life. These problems can be difficult for families to describe and may be overlooked by community-based providers who are unfamiliar with TBI sequelae. To support the identification and management of cognitive-communication disorders, we review the common signs and symptoms of these disorders in children with TBI and discuss principles of assessment and intervention.
Collapse
Affiliation(s)
- Lyn S Turkstra
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
35
|
Dennis M, Spiegler BJ, Simic N, Sinopoli KJ, Wilkinson A, Yeates KO, Taylor HG, Bigler ED, Fletcher JM. Functional plasticity in childhood brain disorders: when, what, how, and whom to assess. Neuropsychol Rev 2014; 24:389-408. [PMID: 24821533 PMCID: PMC4231018 DOI: 10.1007/s11065-014-9261-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/17/2014] [Indexed: 12/29/2022]
Abstract
At every point in the lifespan, the brain balances malleable processes representing neural plasticity that promote change with homeostatic processes that promote stability. Whether a child develops typically or with brain injury, his or her neural and behavioral outcome is constructed through transactions between plastic and homeostatic processes and the environment. In clinical research with children in whom the developing brain has been malformed or injured, behavioral outcomes provide an index of the result of plasticity, homeostasis, and environmental transactions. When should we assess outcome in relation to age at brain insult, time since brain insult, and age of the child at testing? What should we measure? Functions involving reacting to the past and predicting the future, as well as social-affective skills, are important. How should we assess outcome? Information from performance variability, direct measures and informants, overt and covert measures, and laboratory and ecological measures should be considered. In whom are we assessing outcome? Assessment should be cognizant of individual differences in gene, socio-economic status (SES), parenting, nutrition, and interpersonal supports, which are moderators that interact with other factors influencing functional outcome.
Collapse
Affiliation(s)
- Maureen Dennis
- Department of Psychology, Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury. Arch Phys Med Rehabil 2014; 96:S129-37. [PMID: 25448248 DOI: 10.1016/j.apmr.2014.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 02/03/2023]
Abstract
Noninvasive brain stimulation (NIBS) offers the potential to modulate neural activity and recovery after acquired brain injury. There are few studies of NIBS in children, but a survey of those studies might provide insight into the potential for NIBS to modulate motor rehabilitation, seizures, and behavior in children. We surveyed the published literature prior to July 2014 for articles pertaining to children and NIBS with a focus on case series or trials. We also reviewed selected articles involving adults to illustrate specific points where the literature in children is lacking. A limited number of articles suggest that NIBS can transiently improve motor function. The evidence for an effect on seizures is mixed. Two open-label studies reported improvement of mood in adolescents with depression. NIBS may serve as a tool for pediatric neurorehabilitation, but many gaps in our knowledge must be filled before NIBS can be adopted as a clinical intervention. To move forward, the field needs adequately powered trials that can answer these questions. Such trials will be challenging to perform, will likely require multicenter collaboration, and may need to adopt novel trial designs that have been used with rare disorders.
Collapse
|
37
|
Allievi AG, Arichi T, Gordon AL, Burdet E. Technology-aided assessment of sensorimotor function in early infancy. Front Neurol 2014; 5:197. [PMID: 25324827 PMCID: PMC4181230 DOI: 10.3389/fneur.2014.00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/17/2014] [Indexed: 01/31/2023] Open
Abstract
There is a pressing need for new techniques capable of providing accurate information about sensorimotor function during the first 2 years of childhood. Here, we review current clinical methods and challenges for assessing motor function in early infancy, and discuss the potential benefits of applying technology-assisted methods. We also describe how the use of these tools with neuroimaging, and in particular functional magnetic resonance imaging (fMRI), can shed new light on the intra-cerebral processes underlying neurodevelopmental impairment. This knowledge is of particular relevance in the early infant brain, which has an increased capacity for compensatory neural plasticity. Such tools could bring a wealth of knowledge about the underlying pathophysiological processes of diseases such as cerebral palsy; act as biomarkers to monitor the effects of possible therapeutic interventions; and provide clinicians with much needed early diagnostic information.
Collapse
Affiliation(s)
- Alessandro G Allievi
- Human Robotics Group, Department of Bioengineering, Imperial College London , London , UK
| | - Tomoki Arichi
- Human Robotics Group, Department of Bioengineering, Imperial College London , London , UK ; Department of Perinatal Imaging and Health, King's College London , London , UK
| | - Anne L Gordon
- Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust , London , UK ; Institute of Psychiatry, Psychology and Neuroscience, Kings College London , London , UK
| | - Etienne Burdet
- Human Robotics Group, Department of Bioengineering, Imperial College London , London , UK
| |
Collapse
|
38
|
Allievi AG, Arichi T, Gordon AL, Burdet E. Technology-aided assessment of sensorimotor function in early infancy. Front Neurol 2014; 5:197. [PMID: 25324827 DOI: 10.3389/fneur.2014.00197/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/17/2014] [Indexed: 05/23/2023] Open
Abstract
There is a pressing need for new techniques capable of providing accurate information about sensorimotor function during the first 2 years of childhood. Here, we review current clinical methods and challenges for assessing motor function in early infancy, and discuss the potential benefits of applying technology-assisted methods. We also describe how the use of these tools with neuroimaging, and in particular functional magnetic resonance imaging (fMRI), can shed new light on the intra-cerebral processes underlying neurodevelopmental impairment. This knowledge is of particular relevance in the early infant brain, which has an increased capacity for compensatory neural plasticity. Such tools could bring a wealth of knowledge about the underlying pathophysiological processes of diseases such as cerebral palsy; act as biomarkers to monitor the effects of possible therapeutic interventions; and provide clinicians with much needed early diagnostic information.
Collapse
Affiliation(s)
- Alessandro G Allievi
- Human Robotics Group, Department of Bioengineering, Imperial College London , London , UK
| | - Tomoki Arichi
- Human Robotics Group, Department of Bioengineering, Imperial College London , London , UK ; Department of Perinatal Imaging and Health, King's College London , London , UK
| | - Anne L Gordon
- Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust , London , UK ; Institute of Psychiatry, Psychology and Neuroscience, Kings College London , London , UK
| | - Etienne Burdet
- Human Robotics Group, Department of Bioengineering, Imperial College London , London , UK
| |
Collapse
|
39
|
Adult cortical plasticity following injury: Recapitulation of critical period mechanisms? Neuroscience 2014; 283:4-16. [PMID: 24791715 DOI: 10.1016/j.neuroscience.2014.04.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
A primary goal of research on developmental critical periods (CPs) is the recapitulation of a juvenile-like state of malleability in the adult brain that might enable recovery from injury. These ambitions are often framed in terms of the simple reinstatement of enhanced plasticity in the growth-restricted milieu of an injured adult brain. Here, we provide an analysis of the similarities and differences between deprivation-induced and injury-induced cortical plasticity, to provide for a nuanced comparison of these remarkably similar processes. As a first step, we review the factors that drive ocular dominance plasticity in the primary visual cortex of the uninjured brain during the CP and in adults, to highlight processes that might confer adaptive advantage. In addition, we directly compare deprivation-induced cortical plasticity during the CP and plasticity following acute injury or ischemia in mature brain. We find that these two processes display a biphasic response profile following deprivation or injury: an initial decrease in GABAergic inhibition and synapse loss transitions into a period of neurite expansion and synaptic gain. This biphasic response profile emphasizes the transition from a period of cortical healing to one of reconnection and recovery of function. Yet while injury-induced plasticity in adult shares several salient characteristics with deprivation-induced plasticity during the CP, the degree to which the adult injured brain is able to functionally rewire, and the time required to do so, present major limitations for recovery. Attempts to recapitulate a measure of CP plasticity in an adult injury context will need to carefully dissect the circuit alterations and plasticity mechanisms involved while measuring functional behavioral output to assess their ultimate success.
Collapse
|
40
|
Murias K, Brooks B, Kirton A, Iaria G. A Review of Cognitive Outcomes in Children Following Perinatal Stroke. Dev Neuropsychol 2014; 39:131-57. [DOI: 10.1080/87565641.2013.870178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Abstract
Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology & Rehabilitation, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94122, USA.
| | | |
Collapse
|
42
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Fitch RH, Alexander ML, Threlkeld SW. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability. Front Syst Neurosci 2013; 7:58. [PMID: 24155699 PMCID: PMC3800847 DOI: 10.3389/fnsys.2013.00058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/11/2013] [Indexed: 02/03/2023] Open
Abstract
Most researchers in the field of neural plasticity are familiar with the "Kennard Principle," which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate-both developmentally and functionally-with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human "term," but only transient deficits (undetectable in adulthood) when induced in a "preterm" window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations.
Collapse
Affiliation(s)
- R Holy Fitch
- 1Department of Psychology/Behavioral Neuroscience, University of Connecticut Storrs, CT, USA
| | | | | |
Collapse
|
44
|
Zhang J, Mei S, Liu Q, Liu W, Chen H, Xia H, Zhou Z, Wang L, Li Y. fMRI and DTI assessment of patients undergoing radical epilepsy surgery. Epilepsy Res 2013; 104:253-63. [PMID: 23340329 DOI: 10.1016/j.eplepsyres.2012.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
Hemispherectomy is effective for young patients suffered from unilateral cortical disease and severe drug-resistant epilepsy, but a major concern for hemispherectomy is the remaining brain functions and function recovery in patients after such surgery. In this study, seven patients were evaluated with clinical and imaging assessment pre- and post-surgery. Among them, four underwent anatomic hemispherectomy (AH) and three underwent subtotal hemispherectomy (functional hemispherectomy, FH). After the surgery, 71.4% (5/7) patients [(4/4) with AH and (1/3) with FH] became seizure free (Engel class I). Motor function of the paretic upper extremity unchanged in 4 patients and deteriorated in 3. Functional imaging results indicated that relocation of hand motor function (to the ipsilateral hemisphere) could take place before or after the surgery, or did not occur. Similar observations were made in the motor cortex activation on the paretic foot movement. In addition, both the affected and unaffected hemispheres underwent post-surgical changes in the corticospinal tracks (CST) in various degrees, but significant reinforcement of the CST in the remaining unaffected hemisphere was not evident. Further research is needed to reveal the true functional and structural changes of the remaining brain after surgery and to explore the mechanisms of such functional relocation and reorganization in patients underwent hemispherectomy.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The brain of the infant and young child is a developing, dynamic, structure subject to functional remodelling under the influence of factors responsible for optimal neuronal development and synaptogenesis. It exhibits age dependent variation in metabolic rate, blood flow, and ability to tolerate oxidative stress. It is also characterized by an exuberance of neurotransmitter activity, particularly in the first few years of life. The dynamic evolution and adaptability of early brain function permits the organization of neuronal networks to be influenced by environmental stimulation, and, to reduce the functional impact of injury. However, these same processes may also exacerbate the harm sustained by the brain following an acquired brain injury (ABI). The developing neurons are susceptible to excitotoxicity, oxidative stress, and, inflammation, often leading to cellular necrosis and apoptosis. Despite being immunologically privileged via the blood brain barrier, the developing brain is susceptible to injury from systemic inflammation through alteration of normally protective cerebrovascular endothelial cell function. Finally, many of the therapeutic agents currently employed in post-ABI hospital care may also compromise ABI outcome via non-intended pharmacological effects. These agents include analgesic, sedative and anti-convulsant medications. This review emphasizes those physiological considerations in the developing brain which may impact the outcome after ABI, including, the cellular mechanisms of neuronal and cerebrovascular endothelial cell injury, ABI outcome and future therapeutic directions.
Collapse
|
46
|
|
47
|
Foley JA, Della Sala S. Do shorter Cortex papers have greater impact? Cortex 2011; 47:635-42. [PMID: 21463860 DOI: 10.1016/j.cortex.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/02/2023]
|