1
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
2
|
Korte JA, Weakley A, Fernandez KD, Joiner WM, Fan AP. Neural Underpinnings of Learning in Dementia Populations: A Review of Motor Learning Studies Combined with Neuroimaging. J Cogn Neurosci 2024; 36:734-755. [PMID: 38285732 PMCID: PMC11934338 DOI: 10.1162/jocn_a_02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The intent of this review article is to serve as an overview of current research regarding the neural characteristics of motor learning in Alzheimer disease (AD) as well as prodromal phases of AD: at-risk populations, and mild cognitive impairment. This review seeks to provide a cognitive framework to compare various motor tasks. We will highlight the neural characteristics related to cognitive domains that, through imaging, display functional or structural changes because of AD progression. In turn, this motivates the use of motor learning paradigms as possible screening techniques for AD and will build upon our current understanding of learning abilities in AD populations.
Collapse
Affiliation(s)
- Jessica A. Korte
- Department of Biomedical Engineering, University of California, Davis
| | - Alyssa Weakley
- Department of Neurology, University of California, Davis
| | | | - Wilsaan M. Joiner
- Department of Biomedical Engineering, University of California, Davis
- Department of Neurology, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis
- Department of Neurology, University of California, Davis
| |
Collapse
|
3
|
Meira T, Coelho A, Onat S, Ruano L, Cerqueira JJ. One-year regional brain volume changes as potential predictors of cognitive function in multiple sclerosis: a pilot study. Ir J Med Sci 2024; 193:957-965. [PMID: 37773245 PMCID: PMC10961282 DOI: 10.1007/s11845-023-03528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The most reliable magnetic resonance imaging (MRI) marker of cognitive dysfunction in multiple sclerosis (MS) is brain atrophy. However, 1-year volumetric changes prior to cognitive assessment were never studied as potential predictors of cognition, which we aim to assess with this pilot work. METHODS Twenty-two MS patients were submitted to a baseline measure of 83 regional brain volumes with MRI and re-evaluated 1 year later; they were also tested with the Brief International Cognitive Assessment for MS (BICAMS): sustained attention and processing speed were examined with the Symbol Digit Modalities Test (SDMT), verbal and visuo-spatial learning and memory with the learning trials from the California Verbal Learning Test-II (CVLT) and the Brief Visuo-spatial Memory Test-revised (BVMT), respectively. Controlling for age, sex, and years of education, a multivariate linear regression model was created for each cognitive score at 1-year follow-up in a backward elimination manner, considering cross-sectional regional volumes and 1-year volume changes as potential predictors. RESULTS Decreases in the volumes of the left amygdala and the right lateral orbitofrontal cortex in the year prior to assessment were identified as possible predictors of worse performance in verbal memory (P = 0.009) and visuo-spatial memory (P = 0.001), respectively, independently of cross-sectional brain regional volumes at time of testing. CONCLUSION Our work reveals novel 1-year regional brain volume changes as potential predictors of cognitive deficits in MS. This suggests a possible role of these regions in such deficits and might contribute to uncover cognitively deteriorating patients, whose detection is still unsatisfying in clinical practice.
Collapse
Affiliation(s)
- Torcato Meira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057, Braga, Portugal
- Neuroradiology Department, Hospital de Braga, Rua da Comunidades Lusíadas 133, Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057, Braga, Portugal
| | - Seyda Onat
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057, Braga, Portugal
| | - Luís Ruano
- Neurology Department, Centro Hospitalar de Entre Douro e Vouga, Rua Dr. Cândido Pinho 5, 4520-211, Santa Maria da Feira, Portugal
- EPIUnit, Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057, Braga, Portugal.
- Neurology Department, Hospital de Braga, Rua da Comunidades Lusíadas 133, Braga, Portugal.
| |
Collapse
|
4
|
Cui Y, Liu C, Wang Y, Xie H. Multimodal magnetic resonance scans of patients with mild cognitive impairment. Dement Neuropsychol 2023; 17:e20230017. [PMID: 38111592 PMCID: PMC10727029 DOI: 10.1590/1980-5764-dn-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/20/2023] Open
Abstract
The advancement of neuroimaging technology offers a pivotal reference for the early detection of mild cognitive impairment (MCI), a significant area of focus in contemporary cognitive function research. Structural MRI scans present visual and quantitative manifestations of alterations in brain tissue, whereas functional MRI scans depict the metabolic and functional state of brain tissues from diverse perspectives. As various magnetic resonance techniques possess both strengths and constraints, this review examines the methodologies and outcomes of multimodal magnetic resonance technology in MCI diagnosis, laying the groundwork for subsequent diagnostic and therapeutic interventions for MCI.
Collapse
Affiliation(s)
- Yu Cui
- Shandong First Medical University, The Second Affiliated Hospital, Department of Neurosurgery, Tai’an, Shandong, China
| | - Chenglong Liu
- Shandong First Medical University, The Second Affiliated Hospital, Department of Radiology, Tai’an, Shandong, China
| | - Ying Wang
- Shandong First Medical University, Department of Scientific Research, Ji’nan, Shandong, China
| | - Hongyan Xie
- Shandong First Medical University, The Second Affiliated Hospital, Department of Neurology, Tai’an, Shandong, China
| |
Collapse
|
5
|
Casagrande CC, Rempe MP, Springer SD, Wilson TW. Comprehensive review of task-based neuroimaging studies of cognitive deficits in Alzheimer's disease using electrophysiological methods. Ageing Res Rev 2023; 88:101950. [PMID: 37156399 PMCID: PMC10261850 DOI: 10.1016/j.arr.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
With an aging population, cognitive decline and neurodegenerative disorders are an emerging public health crises with enormous, yet still under-recognized burdens. Alzheimer's disease (AD) is the most common type of dementia, and the number of cases is expected to dramatically rise in the upcoming decades. Substantial efforts have been placed into understanding the disease. One of the primary avenues of research is neuroimaging, and while positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are most common, crucial recent advancements in electrophysiological methods such as magnetoencephalography (MEG) and electroencephalography (EEG) have provided novel insight into the aberrant neural dynamics at play in AD pathology. In this review, we outline task-based M/EEG studies published since 2010 using paradigms probing the cognitive domains most affected by AD, including memory, attention, and executive functioning. Furthermore, we provide important recommendations for adapting cognitive tasks for optimal use in this population and adjusting recruitment efforts to improve and expand future neuroimaging work.
Collapse
Affiliation(s)
- Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
6
|
Dang C, Wang Y, Li Q, Lu Y. Neuroimaging modalities in the detection of Alzheimer's disease-associated biomarkers. PSYCHORADIOLOGY 2023; 3:kkad009. [PMID: 38666112 PMCID: PMC11003434 DOI: 10.1093/psyrad/kkad009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 04/28/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological changes in AD patients occur up to 10-20 years before the emergence of clinical symptoms. Specific diagnosis and appropriate intervention strategies are crucial during the phase of mild cognitive impairment (MCI) and AD. The detection of biomarkers has emerged as a promising tool for tracking the efficacy of potential therapies, making an early disease diagnosis, and prejudging treatment prognosis. Specifically, multiple neuroimaging modalities, including magnetic resonance imaging (MRI), positron emission tomography, optical imaging, and single photon emission-computed tomography, have provided a few potential biomarkers for clinical application. The MRI modalities described in this review include structural MRI, functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, and arterial spin labelling. These techniques allow the detection of presymptomatic diagnostic biomarkers in the brains of cognitively normal elderly people and might also be used to monitor AD disease progression after the onset of clinical symptoms. This review highlights potential biomarkers, merits, and demerits of different neuroimaging modalities and their clinical value in MCI and AD patients. Further studies are necessary to explore more biomarkers and overcome the limitations of multiple neuroimaging modalities for inclusion in diagnostic criteria for AD.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanchao Wang
- Department of Neurology, Chifeng University of Affiliated Hospital, Chifeng 024000, China
| | - Qian Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu 610000, China
| |
Collapse
|
7
|
Cirillo G, Pepe R, Siciliano M, Ippolito D, Ricciardi D, de Stefano M, Buonanno D, Atripaldi D, Abbadessa S, Perfetto B, Sharbafshaaer M, Sepe G, Bonavita S, Iavarone A, Todisco V, Papa M, Tedeschi G, Esposito S, Trojsi F. Long-Term Neuromodulatory Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Plasmatic Matrix Metalloproteinases (MMPs) Levels and Visuospatial Abilities in Mild Cognitive Impairment (MCI). Int J Mol Sci 2023; 24:ijms24043231. [PMID: 36834642 PMCID: PMC9961904 DOI: 10.3390/ijms24043231] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, and neuroinflammation, including metalloproteases (MMPs) activation, might represent new potential targets of the neurodegenerative process and progression from MCI to AD. In this study, we aimed to evaluate the effects of bilateral rTMS over the dorsolateral prefrontal cortex (DLPFC) on plasmatic levels of MMP1, -2, -9, and -10; MMPs-related tissue inhibitors TIMP1 and TIMP2; and cognitive performances in MCI patients. Patients received high-frequency (10 Hz) rTMS (MCI-TMS, n = 9) or sham stimulation (MCI-C, n = 9) daily for four weeks, and they were monitored for six months after TMS. The plasmatic levels of MMPs and TIMPs and the cognitive and behavioral scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Beck Depression Inventory II, Beck Anxiety Inventory, and Apathy Evaluation Scale, were assessed at baseline (T0) and after 1 month (T1) and 6 months (T2) since rTMS. In the MCI-TMS group, at T2, plasmatic levels of MMP1, -9, and -10 were reduced and paralleled by increased plasmatic levels of TIMP1 and TIMP2 and improvement of visuospatial performances. In conclusion, our findings suggest that targeting DLPFC by rTMS might result in the long-term modulation of the MMPs/TIMPs system in MCI patients and the neurobiological mechanisms associated with MCI progression to dementia.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| | - Roberta Pepe
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Domenico Ippolito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Dario Ricciardi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Manuela de Stefano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Daniela Buonanno
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Danilo Atripaldi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Abbadessa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Minoo Sharbafshaaer
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Sepe
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandro Iavarone
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Vincenzo Todisco
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabrina Esposito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Trojsi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
8
|
Wang P, Zhou B, Yao H, Xie S, Feng F, Zhang Z, Guo Y, An N, Zhou Y, Zhang X, Liu Y. Aberrant Hippocampal Functional Connectivity Is Associated with Fornix White Matter Integrity in Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 2021; 75:1153-1168. [PMID: 32390630 DOI: 10.3233/jad-200066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older individuals, and amnestic mild cognitive impairment (aMCI) is currently considered the prodromal stage of AD. The hippocampus and fornix interact functionally and structurally, with the fornix being the major efferent white matter tract from the hippocampus. OBJECTIVE The main aim of this study was to examine the impairments present in subjects with AD or aMCI and the relationship of these impairments with the microstructure of the fornix and the functional connectivity (FC) and gray matter volume of the hippocampus. METHODS Forty-four AD, 34 aMCI, and 41 age- and gender-matched normal controls (NCs) underwent neuropsychological assessments and multimode MRI. We chose the bilateral hippocampi as the region of interest in which gray matter alterations and FC with the whole brain were assessed and the fornix body as the region of interest in which the microstructural integrity of the white matter was observed. We also evaluated the relationship among gray matter alterations, the abnormal FC of the hippocampus and the integrity of the fornix in AD/aMCIResults:Compared to the NC group, the AD and aMCI groups demonstrated decreased gray matter volume, reduced FC between the bilateral hippocampi and several brain regions in the default mode network and control network, and damaged integrity of the fornix body (decreased fractional anisotropy and increased diffusivity). We also found that left hippocampal FC with some regions, the integrity of the fornix body, and cognition ability were significantly correlated. Therefore, our findings suggest that damage to white matter integrity may partially explain the reduced resting-state FC of the hippocampus in AD and aMCI. CONCLUSION AD and aMCI are diseases of disconnectivity including not only functional but also structural disconnectivity. Damage to white matter integrity may partially explain the reduced resting-state FC in AD and aMCI. These findings have significant implications for diagnostics and modeling and provide insights for understanding the disconnection syndrome in AD.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China.,Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Sangma Xie
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Feng Feng
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zengqiang Zhang
- Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Yan'e Guo
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ningyu An
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Nestmann S, Wiesen D, Karnath HO, Rennig J. Temporo-parietal brain regions are involved in higher order object perception. Neuroimage 2021; 234:117982. [PMID: 33757908 DOI: 10.1016/j.neuroimage.2021.117982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022] Open
Abstract
Lesions to posterior temporo-parietal brain regions are associated with deficits in perception of global, hierarchical shapes, but also with impairments in the processing of objects presented under demanding viewing conditions. Evidence from neuroimaging studies and lesion patterns observed in patients with simultanagnosia and agnosia for object orientation suggest similar brain regions to be involved in perception of global shapes and processing of objects in atypical ('non-canonical') orientation. In a localizer experiment, we identified individual temporo-parietal brain areas involved in global shape perception and found significantly higher BOLD signals during the processing of non-canonical compared to canonical objects. In a multivariate approach, we demonstrated that posterior temporo-parietal brain areas show distinct voxel patterns for non-canonical and canonical objects and that voxel patterns of global shapes are more similar to those of objects in non-canonical compared to canonical viewing conditions. These results suggest that temporo-parietal brain areas are not only involved in global shape perception but might serve a more general mechanism of complex object perception. Our results challenge a strict attribution of object processing to the ventral visual stream by suggesting specific dorsal contributions in more demanding viewing conditions.
Collapse
Affiliation(s)
- Sophia Nestmann
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Daniel Wiesen
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; Department of Psychology, University of South Carolina, Columbia, USA.
| | - Johannes Rennig
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; Department of Neurosurgery and Core for Advanced MRI, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Ioulietta L, Kostas G, Spiros N, Vangelis OP, Anthoula T, Ioannis K, Magda T, Dimitris K. A Novel Connectome-Based Electrophysiological Study of Subjective Cognitive Decline Related to Alzheimer's Disease by Using Resting-State High-Density EEG EGI GES 300. Brain Sci 2020; 10:brainsci10060392. [PMID: 32575641 PMCID: PMC7349850 DOI: 10.3390/brainsci10060392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate for the first time the brain network in the Alzheimer’s disease (AD) spectrum by implementing a high-density electroencephalography (HD-EEG - EGI GES 300) study with 256 channels in order to seek if the brain connectome can be effectively used to distinguish cognitive impairment in preclinical stages. Methods: Twenty participants with AD, 30 with mild cognitive impairment (MCI), 20 with subjective cognitive decline (SCD) and 22 healthy controls (HC) were examined with a detailed neuropsychological battery and 10 min resting state HD-EEG. We extracted correlation matrices by using Pearson correlation coefficients for each subject and constructed weighted undirected networks for calculating clustering coefficient (CC), strength (S) and betweenness centrality (BC) at global (256 electrodes) and local levels (29 parietal electrodes). Results: One-way ANOVA presented a statistically significant difference among the four groups at local level in CC [F (3, 88) = 4.76, p = 0.004] and S [F (3, 88) = 4.69, p = 0.004]. However, no statistically significant difference was found at a global level. According to the independent sample t-test, local CC was higher for HC [M (SD) = 0.79 (0.07)] compared with SCD [M (SD) = 0.72 (0.09)]; t (40) = 2.39, p = 0.02, MCI [M (SD) = 0.71 (0.09)]; t (50) = 0.41, p = 0.004 and AD [M (SD) = 0.68 (0.11)]; t (40) = 3.62, p = 0.001 as well, while BC showed an increase at a local level but a decrease at a global level as the disease progresses. These findings provide evidence that disruptions in brain networks in parietal organization may potentially represent a key factor in the ability to distinguish people at early stages of the AD continuum. Conclusions: The above findings reveal a dynamically disrupted network organization of preclinical stages, showing that SCD exhibits network disorganization with intermediate values between MCI and HC. Additionally, these pieces of evidence provide information on the usefulness of the 256 HD-EEG in network construction.
Collapse
Affiliation(s)
- Lazarou Ioulietta
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
- 1st Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
- Correspondence:
| | - Georgiadis Kostas
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
- Informatics Department, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Nikolopoulos Spiros
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
| | - Oikonomou P. Vangelis
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
| | - Tsolaki Anthoula
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
- Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD), 54643 Thessaloniki, Greece
| | - Kompatsiaris Ioannis
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
| | - Tsolaki Magda
- Information Technologies Institute, Centre for Research and Technology Hellas (CERTH-ITI), 57001 Thessaloniki, Greece; (G.K.); (N.S.); (O.V.P.); (T.A.); (K.I.); (T.M.)
- 1st Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
- Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD), 54643 Thessaloniki, Greece
| | - Kugiumtzis Dimitris
- Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Impaired Parahippocampal Gyrus-Orbitofrontal Cortex Circuit Associated with Visuospatial Memory Deficit as a Potential Biomarker and Interventional Approach for Alzheimer Disease. Neurosci Bull 2020; 36:831-844. [PMID: 32350798 DOI: 10.1007/s12264-020-00498-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
The parahippocampal gyrus-orbitofrontal cortex (PHG-OFC) circuit in humans is homologous to the postrhinal cortex (POR)-ventral lateral orbitofrontal cortex (vlOFC) circuit in rodents. Both are associated with visuospatial malfunctions in Alzheimer's disease (AD). However, the underlying mechanisms remain to be elucidated. In this study, we explored the relationship between an impaired POR-vlOFC circuit and visuospatial memory deficits through retrograde tracing and in vivo local field potential recordings in 5XFAD mice, and investigated alterations of the PHG-OFC circuit by multi-domain magnetic resonance imaging (MRI) in patients on the AD spectrum. We demonstrated that an impaired glutamatergic POR-vlOFC circuit resulted in deficient visuospatial memory in 5XFAD mice. Moreover, MRI measurements of the PHG-OFC circuit had an accuracy of 77.33% for the classification of amnestic mild cognitive impairment converters versus non-converters. Thus, the PHG-OFC circuit explains the neuroanatomical basis of visuospatial memory deficits in AD, thereby providing a potential predictor for AD progression and a promising interventional approach for AD.
Collapse
|
12
|
Wasserman V, Emrani S, Matusz EF, Peven J, Cleary S, Price CC, Ginsberg TB, Swenson R, Heilman KM, Lamar M, Libon DJ. Visuospatial performance in patients with statistically-defined mild cognitive impairment. J Clin Exp Neuropsychol 2020; 42:319-328. [PMID: 31973657 PMCID: PMC7224008 DOI: 10.1080/13803395.2020.1714550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
Introduction: The Oblique Effect denotes superior performance for perceiving horizontal or vertical rather than diagonal or oblique stimuli. The current research investigated responding to oblique test stimuli in patients with mild cognitive impairment (MCI).Method: Four statistically-determined groups (n = 112) were studied; patients with little to no cognitive impairment (non-MCI, n = 39); subtle cognitive impairment (SCI, n = 15); amnestic MCI (aMCI, n = 28); and a combined mixed/dysexecutive MCI (mixed/dys MCI, n = 30). The ability to respond to oblique versus non-oblique test stimuli was assessed using the Judgment of Line Orientation Test (JOLO). Comprehensive neuropsychological assessment was also obtained. Between-group differences for JOLO oblique and non-oblique test stimuli were analyzed. Hierarchical linear regression models were constructed to identify relations between accuracy for oblique and non-oblique test items and neurocognitive domains.Results: The mixed/dys MCI group demonstrated lower accuracy for oblique test items compared to non-MCI patients. Accurate responding to oblique test items was associated with better performance on tests measuring executive control, processing speed, naming/lexical retrieval, and verbal concept formation. No between-group differences were seen for non-oblique items and these items were not associated with cognition.Conclusions:Significant impairment on oblique test items distinguished patients with multi-domain/dysexecutive MCI from non-MCI patients. Accurate responding to oblique test items was associated with a complex array of neuropsychological tests suggesting that multidimensional neuropsychological skills underlie the visuospatial reasoning abilities necessary for successful oblique line identification. Research associating responding to oblique versus non-oblique test stimuli using additional neuropsychological test paradigms, and MRI-defined neuroanatomical regions of interest may provide additional information about the brain-behavior relations that underlie MCI subtypes.
Collapse
Affiliation(s)
| | - Sheina Emrani
- Department of Psychology, Rowan University, Stratford, NF
| | - Emily F. Matusz
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Jamie Peven
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA
| | - Seana Cleary
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Terrie Beth Ginsberg
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Rod Swenson
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Kenneth M. Heilman
- Department of Neurology, University of Florida College of Medicine, Neurologist-Geriatric Research, Education and Clinical Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Melissa Lamar
- Department of Behavioral Sciences and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - David J. Libon
- Department of Psychology, Rowan University, Stratford, NF
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ
| |
Collapse
|
13
|
Okabe K, Nagata T, Shinagawa S, Inamura K, Tagai K, Nukariya K, Shigeta M. Effects of neuropsychiatric symptoms of dementia on reductions in activities of daily living in patients with Alzheimer's disease. Geriatr Gerontol Int 2020; 20:584-588. [PMID: 32232948 DOI: 10.1111/ggi.13918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 11/29/2022]
Abstract
AIM In patients with Alzheimer's disease (AD), cognitive impairments cause a progressive reduction in Activities of Daily Living (ADL). Neuropsychiatric symptoms (NPS) also appear in most patients; however, the association between NPS and reductions in ADL remains unclear. The present study evaluated whether NPS influence such reductions using two different ADL measures in patients with AD. METHODS Among 546 consecutive outpatients who visited the memory clinic at the Jikei University Kashiwa Hospital, we recruited 208 patients with AD and investigated the correlations between either the Physical Self-Maintenance Scale (PSMS) score or the Instrumental ADL (IADL) level, and each of the Behavioral Pathology in AD (Behave-AD) subscales. To clarify the causal relationships of these correlations, we then verified the associations between statistically significant demographic variables and the Behave-AD subscales as well as the two ADL scales (PSMS score and IADL percentage) using a general linear model. RESULTS Neither the PSMS nor the IADL results were significantly influenced by the aberrant motor behaviors score. However, the IADL was significantly influenced by the Mini-Mental State Exam (MMSE) score. Furthermore, diurnal rhythm disturbances and the interaction between diurnal rhythm disturbances score and the MMSE score significantly influenced the PSMS results. CONCLUSION Basic ADL reductions may be influenced by diurnal rhythm disturbances, in addition to cognitive impairments in patients with AD. Furthermore, the interaction between the diurnal rhythm disturbances score and cognitive function may also influence basic ADL. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Kiwamu Okabe
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Psychiatry, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Tomoyuki Nagata
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Psychiatry, Airanomori Hospital, Kagoshima, Japan
| | | | - Keisuke Inamura
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Tagai
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazutaka Nukariya
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Psychiatry, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Sun X, Nie B, Zhao S, Chen Q, Li P, Zhang T, Pan T, Feng T, Wang L, Yin X, Zhang W, Zhao S, Shan B, Liu H, Liang S, Ai L, Wang G. Tau PET Distributional Pattern in AD Patients with Visuospatial Dysfunction. Curr Alzheimer Res 2019; 16:1055-1062. [PMID: 31724513 DOI: 10.2174/1567205016666191113152434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Visuospatial dysfunction is one predominant symptom in many atypical Alzheimer's disease (AD) patients, however, until now its neural correlates still remain unclear. For the accumulation of intracellular hyperphosphorylated tau proteins is a major pathogenic factor in neurodegeneration of AD, the distributional pattern of tau could highlight the affected brain regions associated with specific cognitive deficits. OBJECTIVE We investigated the brain regions particularly affected by tau accumulation in patients with visuospatial dysfunction to explore its neural correlates. METHODS Using 18F-AV-1451 tau positron emission tomography (PET), voxel-wise two-sample t-tests were performed between AD patients with obvious visuospatial dysfunction (VS-AD) and cognitively normal subjects, AD patients with little-to-no visuospatial dysfunction (non VS-AD) and cognitively normal subjects, respectively. RESULTS Results showed increased tau accumulations mainly located in occipitoparietal cortex, posterior cingulate cortex, precuneus, inferior and medial temporal cortex in VS-AD patients, while increased tau accumulations mainly occurred in the inferior and medial temporal cortex in non VS-AD patients. CONCLUSION These findings suggested that occipitoparietal cortex, posterior cingulate cortex and precuneus, which were particularly affected by increased tau accumulation in VS-AD patients, may associate with visuospatial dysfunction of AD.
Collapse
Affiliation(s)
- Xi Sun
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Panlong Li
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Pan
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Feng
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Luying Wang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Yin
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou 450001, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Zhao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Guihong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| |
Collapse
|
15
|
Zhang T, Zhao Z, Zhang C, Zhang J, Jin Z, Li L. Classification of Early and Late Mild Cognitive Impairment Using Functional Brain Network of Resting-State fMRI. Front Psychiatry 2019; 10:572. [PMID: 31555157 PMCID: PMC6727827 DOI: 10.3389/fpsyt.2019.00572] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Using the Pearson correlation coefficient to constructing functional brain network has been evidenced to be an effective means to diagnose different stages of mild cognitive impairment (MCI) disease. In this study, we investigated the efficacy of a classification framework to distinguish early mild cognitive impairment (EMCI) from late mild cognitive impairment (LMCI) by using the effective features derived from functional brain network of three frequency bands (full-band: 0.01-0.08 Hz; slow-4: 0.027-0.08 Hz; slow-5: 0.01-0.027 Hz) at Rest. Graphic theory was performed to calculate and analyze the relationship between changes in network connectivity. Subsequently, three different algorithms [minimal redundancy maximal relevance (mRMR), sparse linear regression feature selection algorithm based on stationary selection (SS-LR), and Fisher Score (FS)] were applied to select the features of network attributes, respectively. Finally, we used the support vector machine (SVM) with nested cross validation to classify the samples into two categories to obtain unbiased results. Our results showed that the global efficiency, the local efficiency, and the average clustering coefficient were significantly higher in the slow-5 band for the LMCI-EMCI comparison, while the characteristic path length was significantly longer under most threshold values. The classification results showed that the features selected by the mRMR algorithm have higher classification performance than those selected by the SS-LR and FS algorithms. The classification results obtained by using mRMR algorithm in slow-5 band are the best, with 83.87% accuracy (ACC), 86.21% sensitivity (SEN), 81.21% specificity (SPE), and the area under receiver operating characteristic curve (AUC) of 0.905. The present results suggest that the method we proposed could effectively help diagnose MCI disease in clinic and predict its conversion to Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Two distinct pathological substrates associated with MMSE-pentagons item deficit in DLB and AD. Neuropsychologia 2019; 133:107174. [PMID: 31446008 DOI: 10.1016/j.neuropsychologia.2019.107174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Dementia with Lewy Bodies (DLB) is characterized by a prominent deficit in visuospatial abilities. Visuospatial impairment is also detectable in the course of Alzheimer's dementia (AD). However, visuospatial impairment presents some differences in these two conditions, suggesting pathological involvement of distinct brain circuits. Recent studies applied a new method to score the Mini Mental State Examination (MMSE) pentagon copy subtest, namely the Qualitative Scoring Pentagon Test (QSPT), which is a sensitive measure of visuospatial abilities. Using [18F]fluorodeoxy-glucose positron emission tomography (FDG-PET), we assessed the relationship between in vivo brain metabolic dysfunction and visuospatial deficits, in terms of QSPT total value, in DLB and AD. MATERIALS AND METHODS Sixty Patients were diagnosed as DLB (n = 35) and AD (n = 25) dementia according with the standard research diagnostic criteria. Each patient underwent a FDG-PET scan as support for the final diagnosis. Patients underwent an extended neuropsychological evaluation, including MMSE, language, memory, executive functions and visuospatial abilities tests. The MMSE QSPT scoring was calculated following the methods by Caffarra et al. (2013). Offline voxel-wise correlation analysis between QSPT total scores and FDG-PET brain metabolism was then performed, correcting for MMSE, sex and disease duration. RESULTS Both groups presented reduced visuospatial performances, as assessed by QSPT scores. DLB compared to AD showed a statistically significant difference in QSPT rotation parameter (p = 0.022). In DLB, worse performance at QSPT total score, i.e. more severe visuospatial impairment, correlated with brain occipital hypometabolism (i.e. lateral occipital cortex, calcarine cortex, fusiform and lingual gyri). In AD, worse performance at QSPT total score correlated with brain hypometabolism in the right parietal cortex (i.e. superior and inferior parietal cortex and angular gyrus). DISCUSSION These findings reveal that visuospatial deficits may derive from distinct brain alterations in AD and DLB. We propose that the inabilities to perform correctly the QSPT task is related to altered visuoperceptual process in DLB, and visuospatial process in AD. This is consistent with our results showing hypometabolism in brain system related to visuoperceptual processing, namely the occipital cortex in DLB, and visuospatial processing, namely parietal cortex in AD.
Collapse
|
17
|
Li J, Jin D, Li A, Liu B, Song C, Wang P, Wang D, Xu K, Yang H, Yao H, Zhou B, Bejanin A, Chetelat G, Han T, Lu J, Wang Q, Yu C, Zhang X, Zhou Y, Zhang X, Jiang T, Liu Y, Han Y. ASAF: altered spontaneous activity fingerprinting in Alzheimer's disease based on multisite fMRI. Sci Bull (Beijing) 2019; 64:998-1010. [PMID: 36659811 DOI: 10.1016/j.scib.2019.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Several monocentric studies have noted alterations in spontaneous brain activity in Alzheimer's disease (AD), although there is no consensus on the altered amplitude of low-frequency fluctuations in AD patients. The main aim of the present study was to identify a reliable and reproducible abnormal brain activity pattern in AD. The amplitude of local brain activity (AM), which can provide fast mapping of spontaneous brain activity across the whole brain, was evaluated based on multisite rs-fMRI data for 688 subjects (215 normal controls (NCs), 221 amnestic mild cognitive impairment (aMCI) 252 AD). Two-sample t-tests were used to detect group differences between AD patients and NCs from the same site. Differences in the AM maps were statistically analyzed via the Stouffer's meta-analysis. Consistent regions of lower spontaneous brain activity in the default mode network and increased activity in the bilateral hippocampus/parahippocampus, thalamus, caudate nucleus, orbital part of the middle frontal gyrus and left fusiform were observed in the AD patients compared with those in NCs. Significant correlations (P < 0.05, Bonferroni corrected) between the normalized amplitude index and Mini-Mental State Examination scores were found in the identified brain regions, which indicates that the altered brain activity was associated with cognitive decline in the patients. Multivariate analysis and leave-one-site-out cross-validation led to a 78.49% prediction accuracy for single-patient classification. The altered activity patterns of the identified brain regions were largely correlated with the FDG-PET results from another independent study. These results emphasized the impaired brain activity to provide a robust and reproducible imaging signature of AD.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Dan Jin
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital, Ji'nan 250012, China
| | - Kaibin Xu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Hongxiang Yao
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhou
- Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Alexandre Bejanin
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen 14000, France
| | - Gael Chetelat
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen 14000, France
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital, Ji'nan 250012, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xi Zhang
- Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China; Beijing Institute of Geriatrics, Beijing 100053, China; National Clinical Research Center for Geriatric Disorders, Beijing 100053, China.
| |
Collapse
|
18
|
Forouzannezhad P, Abbaspour A, Fang C, Cabrerizo M, Loewenstein D, Duara R, Adjouadi M. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer’s disease. J Neurosci Methods 2019; 317:121-140. [DOI: 10.1016/j.jneumeth.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
|
19
|
Ocular and Visual Manifestation of Alzheimer’s Disease: A Literature Review II Part: Clinical Studies. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.74239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wink AM, Tijms BM, Ten Kate M, Raspor E, de Munck JC, Altena E, Ecay-Torres M, Clerigue M, Estanga A, Garcia-Sebastian M, Izagirre A, Martinez-Lage Alvarez P, Villanua J, Barkhof F, Sanz-Arigita E. Functional brain network centrality is related to APOE genotype in cognitively normal elderly. Brain Behav 2018; 8:e01080. [PMID: 30136422 PMCID: PMC6160659 DOI: 10.1002/brb3.1080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Amyloid plaque deposition in the brain is an early pathological change in Alzheimer's disease (AD), causing disrupted synaptic connections. Brain network disruptions in AD have been demonstrated with eigenvector centrality (EC), a measure that identifies central regions within networks. Carrying an apolipoprotein (APOE)-ε4 allele is a genetic risk for AD, associated with increased amyloid deposition. We studied whether APOE-ε4 carriership is associated with EC disruptions in cognitively normal individuals. METHODS A total of 261 healthy middle-aged to older adults (mean age 56.6 years) were divided into high-risk (APOE-ε4 carriers) and low-risk (noncarriers) groups. EC was computed from resting-state functional MRI data. Clusters of between-group differences were assessed with a permutation-based method. Correlations between cluster mean EC with brain volume, CSF biomarkers, and psychological test scores were assessed. RESULTS Decreased EC in the visual cortex was associated with APOE-ε4 carriership, a genetic risk factor for AD. EC differences were correlated with age, CSF amyloid levels, and scores on the trail-making and 15-object recognition tests. CONCLUSION Our findings suggest that the APOE-ε4 genotype affects brain connectivity in regions previously found to be abnormal in AD as a sign of very early disease-related pathology. These differences were too subtle in healthy elderly to use EC for single-subject prediction of APOE genotype.
Collapse
Affiliation(s)
- Alle Meije Wink
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Betty M Tijms
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mara Ten Kate
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Eva Raspor
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jan C de Munck
- Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ellemarije Altena
- Université Bordeaux, Bordeaux, France.,CNRS, SANPSY, USR 3413, Bordeaux, France
| | - Mirian Ecay-Torres
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | - Montserrat Clerigue
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | - Ainara Estanga
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | | | - Andrea Izagirre
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | | | - Jorge Villanua
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain.,Donostia Unit, Osatek, Donostia University Hospital, San Sebastian, Spain
| | - Frederik Barkhof
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Ernesto Sanz-Arigita
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands.,Université Bordeaux, Bordeaux, France
| |
Collapse
|
21
|
Verkerk MJ, van Hoof J, Aarts S, de Koning SJ, van der Plaats JJ. A neurological and philosophical perspective on the design of environments and technology for older people with dementia. JOURNAL OF ENABLING TECHNOLOGIES 2018. [DOI: 10.1108/jet-11-2017-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Older people with dementia (OPD) have specific housing and technology-related needs, for which various design principles exist. A model for designing environments and its constituting items for people with dementia that has a firm foundation in neurology may help guide designers in making design choices. The paper aims to discuss these issues.
Design/methodology/approach
A general design model is presented consisting of three principles for OPD, namely designing for ageing people; designing for a favourable state and designing for beautiful moments. The neurosciences as a whole give shape to an eminent framework explaining the behaviour of OPD. One of the objectives of this paper is to translate the design principles into design specifications and to show that these specifications can be translated in a design.
Findings
Philosophical concepts are introduced which are required to understand design for OPD. Four case studies from Dutch nursing homes are presented that show how the theory of modal aspects of the philosopher Dooyeweerd can be used to map design specifications in a systematic way.
Research limitations/implications
These examples of design solutions illustrate the applicability of the model developed in this article. It emphasises the importance of the environment for supporting the daily life of OPD.
Originality/value
There is a need for a design model for OPD. The environment and technology should initiate positive behaviours and meaningful experiences. In this paper, a general model for the designing of environments for OPD was developed that has a firm foundation in neurology and behavioural sciences. This model consists of six distinct steps and each step can be investigated empirically. In other words, this model may lay the foundation for an evidence-based design.
Collapse
|
22
|
Broster LS, Li J, Wagner B, Smith CD, Jicha GA, Schmitt FA, Munro N, Haney RH, Jiang Y. Spared behavioral repetition effects in Alzheimer's disease linked to an altered neural mechanism at posterior cortex. J Clin Exp Neuropsychol 2018; 40:761-776. [PMID: 29463181 DOI: 10.1080/13803395.2018.1430230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Individuals with dementia of the Alzheimer type (AD) classically show disproportionate impairment in measures of working memory, but repetition learning effects are relatively preserved. As AD affects brain regions implicated in both working memory and repetition effects, the neural basis of this discrepancy is poorly understood. We hypothesized that the posterior repetition effect could account for this discrepancy due to the milder effects of AD at visual cortex. METHOD Participants with early AD, amnestic mild cognitive impairment (MCI), and healthy controls performed a working memory task with superimposed repetition effects while electroencephalography was collected to identify possible neural mechanisms of preserved repetition effects. RESULTS Participants with AD showed preserved behavioral repetition effects and a change in the posterior repetition effect. CONCLUSION Visual cortex may play a role in maintained repetition effects in persons with early AD.
Collapse
Affiliation(s)
- Lucas S Broster
- a Department of Behavioral Science , University of Kentucky College of Medicine , Lexington , KY , USA.,b Department of Psychiatry , University of California , San Francisco , CA , USA
| | - Juan Li
- a Department of Behavioral Science , University of Kentucky College of Medicine , Lexington , KY , USA.,c Key Laboratory of Mental Health , Institute of Psychology, Chinese Academy of Sciences , Beijing , China
| | - Benjamin Wagner
- a Department of Behavioral Science , University of Kentucky College of Medicine , Lexington , KY , USA
| | - Charles D Smith
- d Department of Neurology , University of Kentucky College of Medicine , Lexington , KY , USA.,e Sanders-Brown Center on Aging , University of Kentucky College of Medicine , Lexington , KY , USA.,f Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky College of Medicine , Lexington , KY , USA
| | - Gregory A Jicha
- d Department of Neurology , University of Kentucky College of Medicine , Lexington , KY , USA.,e Sanders-Brown Center on Aging , University of Kentucky College of Medicine , Lexington , KY , USA
| | - Frederick A Schmitt
- b Department of Psychiatry , University of California , San Francisco , CA , USA.,d Department of Neurology , University of Kentucky College of Medicine , Lexington , KY , USA.,e Sanders-Brown Center on Aging , University of Kentucky College of Medicine , Lexington , KY , USA
| | - Nancy Munro
- g Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Ryan H Haney
- a Department of Behavioral Science , University of Kentucky College of Medicine , Lexington , KY , USA
| | - Yang Jiang
- a Department of Behavioral Science , University of Kentucky College of Medicine , Lexington , KY , USA.,e Sanders-Brown Center on Aging , University of Kentucky College of Medicine , Lexington , KY , USA.,f Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky College of Medicine , Lexington , KY , USA
| |
Collapse
|
23
|
Neural evidence for defective top-down control of visual processing in Parkinson's and Alzheimer's disease. Neuropsychologia 2017; 106:236-244. [DOI: 10.1016/j.neuropsychologia.2017.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/11/2017] [Accepted: 09/27/2017] [Indexed: 01/29/2023]
|
24
|
Krajcovicova L, Barton M, Elfmarkova-Nemcova N, Mikl M, Marecek R, Rektorova I. Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer’s disease. J Neural Transm (Vienna) 2017; 124:1607-1619. [DOI: 10.1007/s00702-017-1789-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/31/2017] [Indexed: 02/13/2023]
|
25
|
Dillen KN, Jacobs HI, Kukolja J, Richter N, von Reutern B, Onur ÖA, Langen KJ, Fink GR. Functional Disintegration of the Default Mode Network in Prodromal Alzheimer’s Disease. J Alzheimers Dis 2017; 59:169-187. [DOI: 10.3233/jad-161120] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kim N.H. Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Heidi I.L. Jacobs
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Nils Richter
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Boris von Reutern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Özgür A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich, Jülich, Germany
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
26
|
Ferrari L, Huang SC, Magnani G, Ambrosi A, Comi G, Leocani L. Optical Coherence Tomography Reveals Retinal Neuroaxonal Thinning in Frontotemporal Dementia as in Alzheimer’s Disease. J Alzheimers Dis 2017; 56:1101-1107. [DOI: 10.3233/jad-160886] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laura Ferrari
- Department of Neurology and INSPE – Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Magnani
- Department of Neurology and INSPE – Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurology and INSPE – Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele Milan, Italy
| | - Letizia Leocani
- Department of Neurology and INSPE – Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele Milan, Italy
| |
Collapse
|
27
|
Xu M, Tan X, Zhang X, Guo Y, Mei Y, Feng Q, Xu Y, Feng Y. Alterations of white matter structural networks in patients with non-neuropsychiatric systemic lupus erythematosus identified by probabilistic tractography and connectivity-based analyses. Neuroimage Clin 2016; 13:349-360. [PMID: 28066709 PMCID: PMC5200918 DOI: 10.1016/j.nicl.2016.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/04/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
PURPOSE Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. METHODS Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. RESULTS Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. CONCLUSION This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Collapse
Affiliation(s)
- Man Xu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiangliang Tan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yihao Guo
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yingjie Mei
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Philips Healthcare, Guangzhou, China
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Three-Dimensional Face Recognition in Mild Cognitive Impairment: A Psychophysical and Structural MR Study. J Int Neuropsychol Soc 2016; 22:744-54. [PMID: 27406061 DOI: 10.1017/s135561771600059x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Mild cognitive impairment (MCI) has been associated with a high risk of conversion to Alzheimer's dementia. In addition to memory complaints, impairments in the visuospatial domain have been reported in this condition. We have previously shown that deficits in perceiving structure-from-motion (SFM) objects are reflected in functional reorganization of brain activity within the visual ventral stream. Here we aimed to identify structural correlates of psychophysical complex face and object recognition performance in amnestic MCI patients (n=30 vs. n=25 controls). This study was, therefore, motivated by evidence from recent studies showing that a combination of visual information across dorsal and ventral visual streams may be needed for the perception of three-dimensional (3D) SFM objects. METHODS In our experimental paradigm, participants had to discriminate 3D SFM shapes (faces and objects) from 3D SFM meaningless (scrambled) shapes. RESULTS Morphometric analysis established neuroanatomical evidence for impairment in MCI as demonstrated by smaller hippocampal volumes. We found association between cortical thickness and face recognition performance, comprising the occipital lobe and visual ventral stream fusiform regions (overlapping the known location of face fusiform area) in the right hemisphere, in MCI. CONCLUSIONS We conclude that impairment of 3D visual integration exists at the MCI stage involving also the visual ventral stream and contributing to face recognition deficits. The specificity of such observed structure-function correlation for faces suggests a special role of this processing pathway in health and disease. (JINS, 2016, 22, 744-754).
Collapse
|
29
|
Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL. The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 2016; 126:945-971. [PMID: 27257832 DOI: 10.3171/2016.1.jns152082] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The relationship of the white matter tracts to the lateral ventricles is important when planning surgical approaches to the ventricles and in understanding the symptoms of hydrocephalus. The authors' aim was to explore the relationship of the white matter tracts of the cerebrum to the lateral ventricles using fiber dissection technique and MR tractography and to discuss these findings in relation to approaches to ventricular lesions. METHODS Forty adult human formalin-fixed cadaveric hemispheres (20 brains) and 3 whole heads were examined using fiber dissection technique. The dissections were performed from lateral to medial, medial to lateral, superior to inferior, and inferior to superior. MR tractography showing the lateral ventricles aided in the understanding of the 3D relationships of the white matter tracts with the lateral ventricles. RESULTS The relationship between the lateral ventricles and the superior longitudinal I, II, and III, arcuate, vertical occipital, middle longitudinal, inferior longitudinal, inferior frontooccipital, uncinate, sledge runner, and lingular amygdaloidal fasciculi; and the anterior commissure fibers, optic radiations, internal capsule, corona radiata, thalamic radiations, cingulum, corpus callosum, fornix, caudate nucleus, thalamus, stria terminalis, and stria medullaris thalami were defined anatomically and radiologically. These fibers and structures have a consistent relationship to the lateral ventricles. CONCLUSIONS Knowledge of the relationship of the white matter tracts of the cerebrum to the lateral ventricles should aid in planning more accurate surgery for lesions within the lateral ventricles.
Collapse
Affiliation(s)
| | | | - Erik H Middlebrooks
- Radiology, and the.,K. Scott and E. R. Andrew Advanced Neuroimaging Lab, College of Medicine, University of Florida, Gainesville, Florida; and
| | - Necmettin Tanriover
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Cihan Isler
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
30
|
Liu S, Cai W, Pujol S, Kikinis R, Feng DD, the Alzheimer's Disease Neuroimaging Initiative. Cross-View Neuroimage Pattern Analysis in Alzheimer's Disease Staging. Front Aging Neurosci 2016; 8:23. [PMID: 26941639 PMCID: PMC4763344 DOI: 10.3389/fnagi.2016.00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/01/2016] [Indexed: 01/24/2023] Open
Abstract
The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer's disease (AD), is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC) to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed nine types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI, and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.
Collapse
Affiliation(s)
- Sidong Liu
- The Biomedical and Multimedia Information Technology Research Group, School of Information Technologies, The University of SydneySydney, NSW, Australia
| | - Weidong Cai
- The Biomedical and Multimedia Information Technology Research Group, School of Information Technologies, The University of SydneySydney, NSW, Australia
| | - Sonia Pujol
- The Surgical Planning Laboratory, Harvard Medical School, Brigham and Women's HospitalBoston, MA, USA
| | - Ron Kikinis
- The Surgical Planning Laboratory, Harvard Medical School, Brigham and Women's HospitalBoston, MA, USA
| | - Dagan D. Feng
- The Biomedical and Multimedia Information Technology Research Group, School of Information Technologies, The University of SydneySydney, NSW, Australia
- The Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
| | | |
Collapse
|
31
|
The loss of neural synchrony in the post septic brain. Clin Neurophysiol 2016; 127:2200-7. [PMID: 27072090 DOI: 10.1016/j.clinph.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Survivors of sepsis often develop long-term neuropsychological malfunctions, which can be reversible to a certain extent. The following study aimed to investigate whether this recovery is due to a loss in neural synchrony by regarding the response to a given frequency. METHODS Magnetoencephalography measurements were conducted in 36 survivors of severe sepsis and septic shock three times within a time range of 12months after discharge from intensive care unit. We analyzed steady state visual evoked responses using a set of familiar vs. unfamiliar pictures. RESULTS Sepsis survivors exhibit oscillatory deficits in terms of an impaired response to periodic visual stimulation. Oscillatory deficits and neuropsychological impairments obtained by the DemTect questionnaire were strongly linked. Impaired responses were equally found during the presentation of familiar and unfamiliar stimuli. Compared to familiar stimuli however, the response to unfamiliar stimuli was significantly lower in the follow up but not in the post-acute stage. CONCLUSIONS We assume that the processing of unfamiliar pictures requires a higher amount of networking. In case of a disrupted network, complex networking might not be maintained. SIGNIFICANCE Results indicate that neural synchrony might be restored to a certain level while more complex networking remains impaired.
Collapse
|
32
|
Pohl KM, Sullivan EV, Rohlfing T, Chu W, Kwon D, Nichols BN, Zhang Y, Brown SA, Tapert SF, Cummins K, Thompson WK, Brumback T, Colrain IM, Baker FC, Prouty D, De Bellis MD, Voyvodic JT, Clark DB, Schirda C, Nagel BJ, Pfefferbaum A. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. Neuroimage 2016; 130:194-213. [PMID: 26872408 DOI: 10.1016/j.neuroimage.2016.01.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 01/18/2023] Open
Abstract
Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study.
Collapse
Affiliation(s)
- Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - B Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yong Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra A Brown
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States; Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Kevin Cummins
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ty Brumback
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Michael D De Bellis
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - James T Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudiu Schirda
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Measuring Cortical Connectivity in Alzheimer's Disease as a Brain Neural Network Pathology: Toward Clinical Applications. J Int Neuropsychol Soc 2016; 22:138-63. [PMID: 26888613 DOI: 10.1017/s1355617715000995] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer's disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. METHODS We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). RESULTS Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior-posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. CONCLUSIONS Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD.
Collapse
|
34
|
Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform 2015; 2:167-180. [PMID: 27747507 PMCID: PMC4737664 DOI: 10.1007/s40708-015-0019-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022] Open
Abstract
Multimodal neuroimaging is increasingly used in neuroscience research, as it overcomes the limitations of individual modalities. One of the most important applications of multimodal neuroimaging is the provision of vital diagnostic data for neuropsychiatric disorders. Multimodal neuroimaging computing enables the visualization and quantitative analysis of the alterations in brain structure and function, and has reshaped how neuroscience research is carried out. Research in this area is growing exponentially, and so it is an appropriate time to review the current and future development of this emerging area. Hence, in this paper, we review the recent advances in multimodal neuroimaging (MRI, PET) and electrophysiological (EEG, MEG) technologies, and their applications to the neuropsychiatric disorders. We also outline some future directions for multimodal neuroimaging where researchers will design more advanced methods and models for neuropsychiatric research.
Collapse
Affiliation(s)
- Sidong Liu
- School of IT, The University of Sydney, Sydney, Australia.
| | - Weidong Cai
- School of IT, The University of Sydney, Sydney, Australia
| | - Siqi Liu
- School of IT, The University of Sydney, Sydney, Australia
| | - Fan Zhang
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Michael Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, and the Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dagan Feng
- School of IT, The University of Sydney, Sydney, Australia
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Sonia Pujol
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Ron Kikinis
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| |
Collapse
|
35
|
Itahashi T, Yamada T, Nakamura M, Watanabe H, Yamagata B, Jimbo D, Shioda S, Kuroda M, Toriizuka K, Kato N, Hashimoto R. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study. NEUROIMAGE-CLINICAL 2014; 7:155-69. [PMID: 25610777 PMCID: PMC4299973 DOI: 10.1016/j.nicl.2014.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD) can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI), and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA), to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM) volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA) in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder. Structural alterations of gray (GM) and white matter (WM) in ASD were investigated. Linked independent component analysis was used for multimodal data analysis. Alterations of GM and WM in ASD co-occurred in cognitive and affective networks. Results reveal an integrative view of multiple aspects of structural changes in ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Department of Pharmacognosy and Phytochemistry, Showa University School of Pharmacy, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takashi Yamada
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Motoaki Nakamura
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
- Kinko Hospital, Kanagawa Psychiatric Center, Kanagawa, Japan
| | - Hiromi Watanabe
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Daiki Jimbo
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Miho Kuroda
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
- Child Mental Health-care Center, Fukushima University, Fukushima, Japan
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Toriizuka
- Department of Pharmacognosy and Phytochemistry, Showa University School of Pharmacy, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
- Corresponding author at: Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11, Kita-karasuyama, Setagaya-ku, Tokyo 157-8577, Japan. Tel.: +81 3 5315 9357.
| |
Collapse
|
36
|
Jacobs HIL, Radua J, Lückmann HC, Sack AT. Meta-analysis of functional network alterations in Alzheimer's disease: toward a network biomarker. Neurosci Biobehav Rev 2013; 37:753-65. [PMID: 23523750 DOI: 10.1016/j.neubiorev.2013.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/06/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
Abstract
The increasing prevalence of Alzheimer's disease (AD) emphasizes the need for sensitive biomarkers. Memory, a core deficit in AD, involves the interaction of distributed brain networks. We propose that biomarkers should be sought at the level of disease-specific disturbances in large-scale neural networks instead of alterations in a single brain region. This is the first voxel-level quantitative meta-analysis of default mode connectivity and task-related activation in 1196 patients and 1255 controls to detect robust changes in components of large-scale neural networks. We show that with disease progression, specific components of networks are widespread altered. The medial parietal regions and the subcortical areas are differentially affected depending on the disease stage. Specific compensatory mechanisms are only seen in the earliest stages, before symptoms are evident, and could become a functional network biomarker or target for interventions. These results underline the need to further fine-grain these networks spatially and temporally across disease stages. To conclude, AD should indeed be considered as a syndrome involving neural network disruption before cognitive deficits are detectable.
Collapse
Affiliation(s)
- Heidi I L Jacobs
- Cognitive Neuroscience, Institute of Neuroscience and Medicine-3, Research Centre Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|