1
|
Wyckhuys KAG, Pozsgai G, Ben Fekih I, Sanchez-Garcia FJ, Elkahky M. Biodiversity loss impacts top-down regulation of insect herbivores across ecosystem boundaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172807. [PMID: 38679092 DOI: 10.1016/j.scitotenv.2024.172807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Biodiversity loss, as driven by anthropogenic global change, imperils biosphere intactness and integrity. Ecosystem services such as top-down regulation (or biological control; BC) are susceptible to loss of extinction-prone taxa at upper trophic levels and secondary 'support' species e.g., herbivores. Here, drawing upon curated open-access interaction data, we structurally analyze trophic networks centered on the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and assess their robustness to species loss. Tri-partite networks link 80 BC organisms (invertebrate or microbial), 512 lepidopteran hosts and 1194 plants (including 147 cultivated crops) in the Neotropics. These comprise threatened herbaceous or woody plants and conservation flagships such as saturniid moths. Treating all interaction partners functionally equivalent, random herbivore loss exerts a respective 26 % or 108 % higher impact on top-down regulation in crop and non-crop settings than that of BC organisms (at 50 % loss). Equally, random loss of BC organisms affects herbivore regulation to a greater extent (13.8 % at 50 % loss) than herbivore loss mediates their preservation (11.4 %). Yet, under moderate biodiversity loss, (non-pest) herbivores prove highly susceptible to loss of BC organisms. Our topological approach spotlights how agriculturally-subsidized BC agents benefit vegetation restoration, while non-pest herbivores uphold biological control in on- and off-farm settings alike. Our work underlines how the on-farm usage of endemic biological control organisms can advance conservation, restoration, and agricultural sustainability imperatives. We discuss how integrative approaches and close interdisciplinary cooperation can spawn desirable outcomes for science, policy and practice.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Chrysalis Consulting, Danang, Viet Nam; Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China; School of Biological Sciences, University of Queensland, Saint Lucia, Australia; Food and Agriculture Organization (FAO), Rome, Italy.
| | - Gabor Pozsgai
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, University of the Azores, Angra do Heroísmo, Portugal
| | - Ibtissem Ben Fekih
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | | | - Maged Elkahky
- Food and Agriculture Organization (FAO), Rome, Italy
| |
Collapse
|
2
|
Wang M, Wang J, Liang P, Wu K. Nutritional Status, Sex, and Ambient Temperature Modulate the Wingbeat Frequency of the Diamondback Moth Plutella xylostella. INSECTS 2024; 15:138. [PMID: 38392557 PMCID: PMC10889836 DOI: 10.3390/insects15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a cosmopolitan horticultural pest that is undergoing a fast, climate-driven range expansion. Its wide geographic distribution, pest status, and high incidence of insecticide resistance are directly tied to long-distance migration. Wingbeat frequency (WBF) is a key aspect of P. xylostella migratory behavior, but has received limited scientific attention. Here, we investigated the effects of environmental parameters, age, adult nutrition, and sex on P. xylostella WBF. Across experimental regimes, WBF ranged from 31.39 Hz to 78.87 Hz. Over a 10-35 °C range, the WBF of both male and female moths increased with temperature up to 62.96 Hz. Though male WBF was unaffected by humidity, females exhibited the highest WBF at 15% relative humidity (RH). WBF was unaffected by adult age, but adult nutrition exerted important impacts. Specifically, the WBF of moths fed honey water (54.66 Hz) was higher than that of water-fed individuals (49.42 Hz). Lastly, males consistently exhibited a higher WBF than females. By uncovering the biological and (nutritional) ecological determinants of diamondback moth flight, our work provides invaluable guidance to radar-based monitoring, migration forecasting, and the targeted deployment of preventative mitigation tactics.
Collapse
Affiliation(s)
- Menglun Wang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100125, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jialin Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Lu Y, Wyckhuys KAG, Wu K. Pest Status, Bio-Ecology, and Area-Wide Management of Mirids in East Asia. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:393-413. [PMID: 37758221 DOI: 10.1146/annurev-ento-121322-015345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Mirids (Hemiptera: Heteroptera: Miridae) feed upon a wide variety of cultivated and wild plants and can be economically important crop pests. They have traditionally been perceived as innocuous herbivores in East Asia; however, population levels of various mirid species have dramatically increased over the past decades. High-profile pests such as Apolygus spp., Adelphocoris spp., and Lygus spp. are now widely distributed across the region, and their infestation pressure is associated with climate, agroecological conditions, and farming practices. This review outlines how an in-depth understanding of pest biology, a systems-level characterization of pest ecology, and a comprehensive evaluation of integrated pest management tactics have enabled sustainable management of mirids across crop boundaries and harvest cycles. This work underscores how more holistic, integrative research approaches can accelerate the implementation of area-wide management of generalist pests, effectively prevent pest population build-up and yield impact, and shrink the environmental footprint of agriculture. In addition to highlighting the merits of interdisciplinary systems approaches, we discuss prospects and challenges for the sustainable management of polyphagous mirid pests in landscape matrices.
Collapse
Affiliation(s)
- Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia;
- Chrysalis Consulting, Hanoi, Vietnam
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
| |
Collapse
|
4
|
Wyckhuys KAG, Hadi BAR. Institutional Context of Pest Management Science in the Global South. PLANTS (BASEL, SWITZERLAND) 2023; 12:4143. [PMID: 38140470 PMCID: PMC10747170 DOI: 10.3390/plants12244143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The natural sciences are receiving increasing attention in the Global South. This timely development may help mitigate global change and quicken an envisioned food system transformation. Yet in order to resolve complex issues such as agrochemical pollution, science ideally proceeds along suitable trajectories within appropriate institutional contexts. Here, we employ a systematic literature review to map the nature of inquiry and institutional context of pest management science in 65 low- and middle-income countries published from 2010 to 2020. Despite large inter-country variability, any given country generates an average of 5.9 publications per annum (range 0-45.9) and individual nations such as Brazil, Kenya, Benin, Vietnam, and Turkey engage extensively in regional cooperation. International development partners are prominent scientific actors in West Africa but are commonly outpaced by national institutions and foreign academia in other regions. Transnational institutions such as the CGIAR represent a 1.4-fold higher share of studies on host plant resistance but lag in public interest science disciplines such as biological control. Despite high levels of scientific abstraction, research conducted jointly with development partners shows real yet marginal improvements in incorporating the multiple (social-ecological) layers of the farming system. Added emphasis on integrative system-level approaches and agroecological or biodiversity-driven measures can extend the reach of science to unlock transformative change.
Collapse
Affiliation(s)
- Kris A. G. Wyckhuys
- Chrysalis Consulting, Danang 50000, Vietnam
- Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- School of Biological Sciences, University of Queensland, Saint Lucia 4072, Australia
| | | |
Collapse
|
5
|
Yang Y, Zhang Y, Zhang J, Wang A, Liu B, Zhao M, Wyckhuys KAG, Lu Y. Plant volatiles mediate Aphis gossypii settling but not predator foraging in intercropped cotton. PEST MANAGEMENT SCIENCE 2023; 79:4481-4489. [PMID: 37410545 DOI: 10.1002/ps.7650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is an important pest of cotton and horticultural crops globally. In China, smallholder farmers regularly intercrop cotton with garlic or onion. Aside from higher farm-level revenue, cotton intercrops are typified by lower Aphis gossypii abundance than monocrops. So far, the mechanistic basis of this lowered pest pressure has not been empirically assessed. RESULTS Field trials showed that Aphis gossypii abundance is lower and (relative) abundance of aphid predators higher in early-season cotton intercrops than in monocrops. Cage trials and Y-tube olfactometer tests further indicated that garlic and onion volatiles repel Aphis gossypii alates. Electrophysiological bioassays and gas chromatography-mass spectrometry (GC-MS) identified two physiologically active volatiles, that is, diallyl disulfide and propyl disulfide from garlic and onion respectively. Next, behavioral tests confirmed that both sulfur compounds exert a repellent effect on alate Aphis gossypii. CONCLUSION Garlic and onion volatiles interfere with Aphis gossypii settling, but do not affect its main (ladybird) predators. Meanwhile, early-season cotton/onion intercrops bear higher numbers of Aphis gossypii predators and fewer aphids. By thus unveiling the ecological underpinnings of aphid biological control in diversified cropping systems, our work advances non-chemical management of a globally-important crop pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanxue Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
6
|
Affiliation(s)
- Baoqian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan 571101, China
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan 571101, China
| | - Kris A G Wyckhuys
- Chrysalis Consulting, Danang, Vietnam
- Institute for Plant Protection, China Academy of Agricultural Sciences, Beijing, China
- School of Biological Sciences, University of Queensland, Saint Lucia, QLD, Australia
| | - Zhuo Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan 571101, China
| |
Collapse
|
7
|
Yang X, Zhao S, Liu B, Gao Y, Hu C, Li W, Yang Y, Li G, Wang L, Yang X, Yuan H, Liu J, Liu D, Shen X, Wyckhuys KAG, Lu Y, Wu K. Bt maize can provide non-chemical pest control and enhance food safety in China. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:391-404. [PMID: 36345605 PMCID: PMC9884019 DOI: 10.1111/pbi.13960] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/26/2023]
Abstract
China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.
Collapse
Affiliation(s)
- Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chaoxing Hu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of Entomology, Guizhou UniversityGuiyangChina
| | - Wenjing Li
- Institute of Plant Protection and Soil FertilityHubei Academy of Agricultural SciencesWuhanChina
| | - Yizhong Yang
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Guoping Li
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lili Wang
- Yantai Academy of Agricultural SciencesYantaiChina
| | - Xueqing Yang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Haibin Yuan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Jian Liu
- College of AgricultureNortheast Agricultural UniversityHarbinChina
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Agricultural Information InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Fujian Agriculture and Forestry UniversityFuzhouChina
- University of QueenslandBrisbaneQueenslandAustralia
- Chrysalis ConsultingHanoiVietnam
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Li H, Wyckhuys KAG, Wu K. Hoverflies provide pollination and biological pest control in greenhouse-grown horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1118388. [PMID: 37123852 PMCID: PMC10130659 DOI: 10.3389/fpls.2023.1118388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Beneficial insects provide pollination and biological control in natural and man-made settings. Those ecosystem services (ES) are especially important for high-value fruits and vegetables, including those grown under greenhouse conditions. The hoverfly Eupeodes corollae (Diptera: Syrphidae) delivers both ES, given that its larvae prey upon aphid pests and its adults pollinate crops. In this study, we investigated this dual role of E. corollae in three insect-pollinated and aphid-affected horticultural crops i.e., tomato, melon and strawberry within greenhouses in Hebei province (China). Augmentative releases of E. corollae increased fruit set and fruit weight of all three crops, and affected population dynamics of the cotton aphid Aphis gossypii (Hemiptera: Aphididae). On melon and strawberry, E. corollae suppressed A. gossypii populations by 54-99% and 50-70% respectively. In tomato, weekly releases of 240 E. corollae individuals/100 m2led to 95% fruit set. Meanwhile, releases of 160 hoverfly individuals per 100 m2led to 100% fruit set in melon. Also, at hoverfly/aphid release rates of 1:500 in spring and 1:150 in autumn, aphid populations were reduced by more than 95% on melon. Lastly, on strawberry, optimum levels of pollination and aphid biological control were attained at E. corollae release rates of 640 individuals/100 m2. Overall, our work shows how augmentative releases of laboratory-reared hoverflies E. corollae can enhance yields of multiple horticultural crops while securing effective, non-chemical control of resident aphid pests.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Kongming Wu,
| |
Collapse
|