1
|
Farag AA, Mostafa M, Abdelfatah RM, ELdahshan AE, Gad SF, Mohamed SK, Alawam MK, Elzeer AA, Ismail NS, Elsharkawey S, Al-Mazroua HA, Alomar HA, Sarawi WS, Youssef HS. Ellagic Acid Alleviates Imidacloprid-Induced Thyroid Dysfunction via PI3K/Akt/mTOR-Mediated Autophagy. TOXICS 2025; 13:355. [PMID: 40423434 DOI: 10.3390/toxics13050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025]
Abstract
Imidacloprid (IMI) is a widely used insecticide known for its high selectivity toward insects. Ellagic acid (EA) is a plant-derived polyphenolic compound recognized for its therapeutic potential and favorable safety profile in the treatment of various diseases. This study aimed to evaluate the therapeutic effects of EA, formulated as novasomes (NOV), against IMI-induced thyroid dysfunction and to investigate the underlying mechanisms. Rats were divided into four equal groups: control, EA-NOV, IMI, and IMI + EA-NOV. Thyroid function was assessed by measuring free triiodothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) levels. Thyroid tissues were examined to evaluate histopathological alterations, as well as to assess the oxidative/antioxidant pathway (Nrf2, SOD, TAC, MDA), inflammatory pathway (IL-1β, TNF-α, NF-κB), apoptotic pathway (Bcl, BAX), and autophagy pathway (PI3K/Akt/mTOR, P53, Beclin-1). Exposure to IMI resulted in impaired thyroid function, the upregulated gene expression of the PI3K/Akt/mTOR pathway, and downregulated P53 expression. Additionally, immunohistochemical staining revealed Beclin-1-mediated autophagy, alongside increased apoptosis, oxidative stress, and elevated levels of inflammatory cytokines. Conversely, EA improved thyroid function and ameliorated histopathological alterations by enhancing autophagy-inducing pathways. Additionally, the alleviation of oxidative stress was evidenced by the increased immunohistochemical staining of Nrf2, which promoted the synthesis and activity of antioxidant enzymes and reduced apoptotic and inflammatory markers. This study proposes the use of EA as a potential protective, naturally occurring phytoceutical against IMI-induced thyroid dysfunction, primarily through the modulation of PI3K/Akt/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Minia National University, New Minia 61768, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | - Samar Fawzy Gad
- Department of Anatomy, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mona K Alawam
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Aya Aly Elzeer
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nesma S Ismail
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Sally Elsharkawey
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
2
|
Wu X, Zhu Y, Guo R, Huang J, Jin H, Zhou L. Human urinary occurrence of thiourea vulcanization accelerators and their human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125701. [PMID: 39824334 DOI: 10.1016/j.envpol.2025.125701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Thiourea vulcanization accelerators (TVAs) have been detected in various household dust samples, indicating their widespread human exposure. Until now, the occurrence of TVAs in human urine, a suitable matrix for assessing human exposure, has remained unknown. The present study comprehensively examined eight kinds of TVAs in urine samples (n = 277) from participants living in Taizhou, China. A total of eight TVAs were found in these human urine samples, exhibiting the detection frequencies ranging from 13% to 91%, highlighting widespread exposure among the general population. N, N'-ethylenethiourea (ETU; 1.7 ng mL-1, min-max range, < limits of detection (LOD)-13 ng mL-1) exhibited the highest mean human urinary concentration, followed by N, N'-diethylthiourea (DETU; 0.51 ng mL-1, < LOD-3.1 ng mL-1) and N, N'-diphenylthiourea (DPTU; 0.37 ng mL-1, < LOD-0.69 ng mL-1). Gender-specific analysis demonstrated no significant (p > 0.05) distinctions in urinary concentrations of ETU, DETU, and DPTU between males and females. Additionally, a significantly (p < 0.05) negative correlation was observed between urinary ETU levels and age, with younger individuals showing relatively higher urinary concentrations. Human daily exposure (DE) values of ETU, DETU, and DPTU were estimated, primarily using their determined urinary concentrations and the fraction of these TVAs that were excreted in human urine. The mean DE values of ETU, DETU, and DPTU were 99 ng/kg bw/day, 46 ng/kg bw/day, and 19 ng/kg bw/day, respectively. To our knowledge, the present study comprehensively characterized the human urinary occurrence of TVAs for the first time. These obtained data are important for advancing the knowledge on human exposure to these TVAs.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Yingying Zhu
- School of Life Sciences, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Juxiu Huang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Lisha Zhou
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, PR China.
| |
Collapse
|
3
|
Cuzziol Boccioni AP, Lajmanovich RC, Attademo AM, Lener G, Lien-Medrano CR, Simoniello MF, Repetti MR, Peltzer PM. Toxicity of pesticide cocktails in amphibian larvae: understanding the impact of agricultural activity on aquatic ecosystems in the Salado River basin, Argentina. Drug Chem Toxicol 2025; 48:247-265. [PMID: 39402966 DOI: 10.1080/01480545.2024.2412023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 02/25/2025]
Abstract
Aquatic communities are increasingly exposed to complex mixtures of contaminants, mainly pesticides due to the impact of agricultural activity. The aim of this study was to evaluate the toxicity of an eight-pesticide cocktail on larvae of the South American common toad, Rinella arenarum. The cocktail represents a realistic mixture of insecticides (cypermethrin, chlorpyrifos and lambda-cyhalothrin), herbicides (glyphosate, glufosinate ammonium, prometryn and metolachlor), and a fungicide (pyraclostrobin) previously found in aquatic organisms (Prochilodus lineatus) from the Salado River Basin, an area with strong agricultural pressure. Computational simulations through the Density Functional Tight-Binding method indicated a strong spontaneous trend toward the formation of the cocktail, suggesting that it may act as a novel xenobiotic entity in the environment. The cocktail effects were evaluated in early-developing and premetamorphic larvae, at feasible concentrations found in real scenarios. The mixture led to high mortality and teratogenicity in early-developing larvae. Premetamorphic larvae showed endocrine disruption, oxidative stress, and impairments in detoxification and hepatic functioning. Neurotoxicity, genotoxicity, cardiotoxicity and high mortality under stress conditions were also observed in exposed larvae. This novel evaluation highlights the ecotoxicological risk for aquatic organisms exposed to complex mixtures and underscores the need to consider cocktail effects in studies regarding ecosystems health.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - German Lener
- INFIQC-Conicet, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Carlos R Lien-Medrano
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - María Fernanda Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Maria Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BM. Cross-Sectional Examination of Thyroid Hormones and Environmental Exposure to Multiclass Pesticides in Women of Reproductive Age in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107005. [PMID: 39422607 PMCID: PMC11488487 DOI: 10.1289/ehp14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Some pesticides have been shown to interfere with thyroid functions through changes in thyroid hormone (TH) levels. However, few human studies have explored associations between TH levels and environmental exposure to currently used pesticides, including neonicotinoids, phenylpyrazoles, phenoxy acids, and azoles. Moreover, such studies often measure biomarkers of exposure in urine or blood, and thus reveal only recent exposure. In contrast, hair has been demonstrated to be a suitable matrix for assessing chronic exposure to both persistent and nonpersistent organic pollutants. OBJECTIVES We investigated 54 biomarkers of pollutant exposure in relation to tetraiodothyronine (T4), 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), and 3,3'-diiodothyronine (T2). METHODS In a cross-sectional study of 196 healthy Chinese women of reproductive age (25-45 years of age), concentrations of both pollutants and THs were analyzed in the first 12 cm (starting from the scalp) of the hair matrix, collected in 2016. Associations between pollutants and TH levels were explored using stability-enhanced least absolute shrinkage and selection operator (lasso) by regressing all exposures against each outcome of interest, adjusted for age, body mass index, and city. RESULTS Each TH was associated with the mixture of at least eight of the examined pesticides. We found associations of β -HCH, PCP, DMP, DETP, 3Me4NP, carbofuran, ClCF 3 CA , imidacloprid, 2,4-D, metolachlor, difenoconazole, and tebuconazole with THs. For example, a 2-standard deviation (SD) increase in log 10 -transformed hair DMP concentration was associated with lower hair T4 concentration [- 15.0 % (95% CI: - 26.1 , - 2.21 % )] and higher hair T3 concentration [8.16% (95% CI: 1.73, 15.0%)] in the adjusted unpenalized regression models. We also found associations of some pesticides with T3/T4, rT3/T4, and rT3/T3 molar ratios, including PCP, DMP, 2,4-D, metolachlor, difenoconazole, and tebuconazole. DISCUSSION Our results suggest that exposure to the low levels of pesticides examined here may disrupt thyroid homeostasis in humans. Further studies are needed to confirm our results and to evaluate the long-term consequences of these subtle interferences. https://doi.org/10.1289/EHP14378.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Emilie Adelin
- L’Oréal Research and Innovation, Aulnay sous Bois, France
| | | | | | - Brice M.R. Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
6
|
Zhou C, Fu W, Wei X, Zhang Z, Wang B, Fang X. Association between early-life mosquito repellents exposure and ADHD-like behaviours. J Public Health (Oxf) 2024; 46:366-375. [PMID: 38841748 DOI: 10.1093/pubmed/fdae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Limited research has explored the impact of mosquito repellents exposure during early life on ADHD symptoms. This study aimed to explore the associations of exposure to mosquito repellents from pregnancy to 3 years old and the prevalence of ADHD-like behaviours among children aged 3-9 years, and further identify the sensitive exposure period. METHODS A cross-sectional study was conducted, including 12 275 children in Hefei City, China. Exposure was self-reported via primary caregivers. ADHD-like behaviours were measured by the Swanson, Nolan and Pelham, version IV scale (SNAP-IV), and Conners' Parent Rating Scale (CPRS). Cross-over analysis, binary logistic regression and linear regression were employed. RESULTS After adjusting for confounding variables, early-life exposure to mosquito repellents was associated with a higher risk of ADHD-like behaviours (OR = 1.81, 95% CI = 1.49-2.19). By comparing the strength of the association for each subgroup, we found exposure during 1-3 years old was a sensitive period (OR = 1.89, 95% CI = 1.25-2.87) by the cross-over analysis. Furthermore, we found a dose-response relationship in which the likelihood of ADHD-like behaviours increased with children's early-life mosquito repellents exposure dose. CONCLUSIONS Early-life exposure to mosquito repellents is linked with an elevated risk of ADHD-like behaviours in children, with a sensitive period identified during 1-3 years old.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Weiwen Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Xinyu Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Zixing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Xinyu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| |
Collapse
|
7
|
English CD, Ivantsova E, Avidan L, Kazi K, Valle EMA, Konig I, Martyniuk CJ. Neurotoxicity assessment of the herbicide pethoxamid in zebrafish (Danio rerio) embryos/larvae. Neurotoxicol Teratol 2024; 104:107369. [PMID: 38964665 DOI: 10.1016/j.ntt.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Pethoxamid, a member of the chloroacetamide herbicide family, is a recently approved chemical for pre- or post-emergence weed control; however, toxicity data for sublethal effects in aquatic organisms exposed to pethoxamid are non-existent in literature. To address this, we treated zebrafish embryos/larvae to pethoxamid over a 7-day period post-fertilization and evaluated several toxicological endpoints associated with oxidative stress and neurotoxicity. Continuous pethoxamid exposure did not affect survival nor hatch success in embryos/larvae for 7 days up to 1000 μg L-1. Exposure to pethoxamid did not affect embryonic ATP-linked respiration, but it did reduce non-mitochondrial respiration at the highest concentration tested. We also noted a significant increase in both apoptosis and levels of reactive oxygen species (ROS) in larvae zebrafish following exposure to pethoxamid. Increases in apoptosis and ROS, however, were not correlated with any altered gene expression pattern for apoptotic and oxidative damage response transcripts. To assess neurotoxicity potential, we measured behavior and several transcripts implicated in neural processes in the central nervous system. While locomotor activity of larval zebrafish was affected by pethoxamid exposure (hyperactivity was observed at concentrations below 1 μg L-1, and hypoactivity was noted at higher exposures to 10 and 100 μg L-1 pethoxamid), there were no effects on steady state mRNA abundance for neurotoxicity-related transcripts tested. This data contributes to knowledge regarding exposure risks for chloroacetamide-based herbicides and is the first study investigating sublethal toxicity for this newly registered herbicide.
Collapse
Affiliation(s)
- Cole D English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Lev Avidan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kira Kazi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Eliana Maira Agostini Valle
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Campus Diadema, Brazil
| | - Isaac Konig
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, FL 32611, USA.
| |
Collapse
|
8
|
Švara A, Sun H, Fei Z, Khan A. Chromosome-level phased genome assembly of "Antonovka" identified candidate apple scab-resistance genes highly homologous to HcrVf2 and HcrVf1 on linkage group 1. G3 (BETHESDA, MD.) 2023; 14:jkad253. [PMID: 37936323 PMCID: PMC10755186 DOI: 10.1093/g3journal/jkad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Apple scab, a fungal disease caused by Venturia inaequalis, leads to losses in both yield and fruit quality of apples (Malus domestica Borkh.). Most commercial apple cultivars, including those containing the well-characterized Rvi6-scab-resistance locus on linkage group (LG) 1, are susceptible to scab. HcrVf2 and HcrVf1 are considered the main paralogs of the Rvi6 locus. The major apple scab-resistance loci Vhc1 in "Honeycrisp" and Rvi17 in "Antonovka," were identified in close proximity to HcrVf2. In this study, we used long-read sequencing and in silico gene sequence characterization to identify candidate resistance genes homologous to HcrVf2 and HcrVf1 in Honeycrisp and Antonovka. Previously published chromosome-scale phased assembly of Honeycrisp and a newly assembled phased genome of Antonovka 172670-B were used to identify HcrVf2 and HcrVf1 homologs spanning Vhc1 and Rvi17 loci. In combination with 8 available Malus assemblies, 43 and 46 DNA sequences highly homologous to HcrVf2 and HcrVf1, respectively, were identified on LG 1 and 6, with identity and coverage ranging between 87-95 and 81-95%, respectively. Among these homologs, 2 candidate genes in Antonovka and Honeycrisp haplome A are located in close physical proximity to the scab-resistance marker Ch-Vf1 on LG 1. They showed the highest identity and coverage (95%) of HcrVf2 and only minor changes in the protein motifs. They were identical by state between each other, but not with HcrVf2. This study offers novel genomic resources and insights into the Vhc1 and Rvi17 loci on LG 1 and identifies candidate genes for further resistance characterization.
Collapse
Affiliation(s)
- Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
9
|
Docea AO, Cirstea AE, Cercelaru L, Drocas AI, Dinca V, Mesnage R, Marginean C, Radu A, Popa DG, Rogoveanu O, Mitrut R, Antoniou MN, Tsatsakis A, Hernández AF, Calina D. Effect of perinatal exposure to glyphosate and its mixture with 2,4-D and dicamba on rat dam kidney and thyroid function and offspring's health. ENVIRONMENTAL RESEARCH 2023; 237:116908. [PMID: 37597833 DOI: 10.1016/j.envres.2023.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The increasing use of the herbicide mixture of glyphosate, dicamba and 2-4-D to deal with glyphosate-resistant weeds raises concerns regarding human health and environmental risks. This study aimed to evaluate the effects of developmental exposure to glyphosate and a herbicide mixture containing glyphosate, dicamba and 2-4-D on rat dams' kidney and thyroid function and offspring's health. Pregnant Wistar rats were exposed from day-6 of gestation till weaning to regulatory relevant doses of glyphosate corresponding to the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day), and the no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day), and to a mixture of glyphosate, dicamba and 2,4-D all at the EU ADI (0.5, 0.002 and 0.3 mg/kg bw/day) respectively. After weaning the dams were sacrificed and blood and organs were collected. The pups' health was assessed by measuring viability, gestational and anogenital indices. Perinatal exposure to GLY alone and the herbicide mixture resulted in anti-androgenic effects in male offspring. In dams, exposure to glyphosate resulted in kidney glomerular and tubular dysfunction as well as increased thyroid hormone levels in a dose-dependent manner. Furthermore, exposure to the herbicide mixture resulted in effects similar to those observed with glyphosate at the NOAEL, suggesting at least an additive effect of the herbicide mixture at doses individually considered safe for humans.
Collapse
Affiliation(s)
- Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Andrei Eugen Cirstea
- Doctoral School, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Liliana Cercelaru
- Department of Anatomy and Embryology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Andrei Ioan Drocas
- Department of Urology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Viorica Dinca
- Doctoral School, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Robin Mesnage
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Cristina Marginean
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Antonia Radu
- Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Dragos George Popa
- Department of Plastic Surgery, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Otilia Rogoveanu
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098, Bucharest, Romania
| | - Michael N Antoniou
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; Health Research Institute of Granada (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
10
|
Xiao S, Cui J, Chen A, Hou H, Yao J, Cao Y, Fang Y, Liu X, Zhou Z, Liu D, Wang P. Thyroid Dysfunction Induced by Fungicide Famoxadone Exposure Contributes to Nonalcoholic Fatty Liver Disease in Male Mice: In Vivo, In Vitro, and In Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14881-14891. [PMID: 37749806 DOI: 10.1021/acs.est.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Thyroid dysfunction has become a serious public health problem, which is considered a trigger of nonalcoholic fatty liver disease (NAFLD). Pesticide exposure could contribute to thyroid dysfunction and NAFLD, but the relationship between these factors remains unclear. In this study, the effects of subchronic famoxadone exposure on thyroid and liver at no observed adverse effect level (NOEL) related concentrations were investigated using in vivo, in vitro, and in silico models. Famoxadone caused hepatic steatosis, lipid metabolism disorder, and liver oxidative stress and induced NAFLD in male mice. The suppression of hepatic fatty acid β-oxidation was the key factor of NAFLD, which was highly associated with hypothalamic-pituitary-thyroid (HPT) axis hormones disorder. Famoxadone disrupted thyroid hormone biosynthesis by causing thyroid follicle aberrations and abnormal HPT axis-related gene expression. In vitro studies confirmed that famoxadone inhibited the transport of thyroxine (T4) into hepatocytes and the conversion of T4 to triiodothyronine (T3). In silico studies verified that famoxadone interfered with the binding of thyroid hormones to proteins mediating thyroid hormone transport, conversion, and activation. This study comprehensively reported the association between NAFLD and thyroid dysfunction caused by famoxadone, providing new perspectives for the health risk evaluation of pesticides with a similar structure in mammals.
Collapse
Affiliation(s)
- Shouchun Xiao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Jingna Cui
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Aisong Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Haonan Hou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Jianing Yao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Yue Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Yaofeng Fang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Otitoju OB, Alfred MO, Ogunlaja OO, Olorunnisola CG, Olukanni OD, Ogunlaja A, Omorogie MO, Unuabonah EI. Pollution and risk assessment of phenolic compounds in drinking water sources from South-Western Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76798-76817. [PMID: 37246181 DOI: 10.1007/s11356-023-27622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
This study reports the occurrence and risk assessment of 2,4-dinitrophenol (2,4-DNP), phenol (PHE), and 2,4,6-trichlorophenol (2,4,6-TCP) in drinking water sources in three south-western States in Nigeria (Osun, Oyo, and Lagos). Groundwater (GW) and surface water (SW) were collected during dry and rainy seasons of a year. The detection frequency of the phenolic compounds followed the trend Phenol > 2,4-DNP > 2,4,6-TCP. The mean concentrations of 2,4-DNP, Phenol, and 2,4,6-TCP in GW/SW samples from Osun State were 639/553 μg L-1, 261/262 μg L-1, and 169/131 μg L-1 during the rainy season and 154/7 μg L-1, 78/37 μg L-1, and 123/15 μg L-1 during the dry season, respectively. In Oyo State, the mean concentrations were 165/391 μg L-1 for 2,4-DNP and 71/231 μg L-1 for Phenol in GW/SW samples, respectively, during the rainy season. Generally, in the dry season, these values decreased. In any case, these concentrations are higher than those previously reported in water from other countries. The concentration of 2,4-DNP in water posed serious ecological risks to Daphnia on the acute scale while it was algae on the chronic scale. Estimated daily intake and hazard quotient calculations suggest that 2,4-DNP and 2,4,6-TCP in water pose serious toxicity concerns to humans. Additionally, the concentration of 2,4,6-TCP in water from Osun State in both seasons of the year and in both groundwater and surface water poses significant carcinogenic risks to persons ingesting water from these sources in the State. Every exposure group studied were at risk from ingesting these phenolic compounds in water. However, this risk decreased with increasing age of the exposure group. Results from the principal component analysis indicate that 2,4-DNP in water samples is from an anthropogenic source different from that for Phenol and 2,4,6-TCP. There is a strong need to treat water from GW and SW systems in these States before ingesting while assessing their quality regularly.
Collapse
Affiliation(s)
- Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Ede, Nigeria
| | - Moses O Alfred
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Ede, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, PMB 230, Osun State, Ede, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Ede, Nigeria
| | - Martins O Omorogie
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Ede, Nigeria
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Ede, Nigeria.
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Ede, Nigeria.
| |
Collapse
|
12
|
Rangel-Peña UJ, Zárate-Hernández LA, Camacho-Mendoza RL, Gómez-Castro CZ, González-Montiel S, Pescador-Rojas M, Meneses-Viveros A, Cruz-Borbolla J. Conceptual DFT, machine learning and molecular docking as tools for predicting LD 50 toxicity of organothiophosphates. J Mol Model 2023; 29:217. [PMID: 37380915 DOI: 10.1007/s00894-023-05630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
CONTEXT Several descriptors from conceptual density functional theory (cDFT) and the quantum theory of atoms in molecules (QTAIM) were utilized in Random Forest (RF), LASSO, Ridge, Elastic Net (EN), and Support Vector Machines (SVM) methods to predict the toxicity (LD50) of sixty-two organothiophosphate compounds. The A-RF-G1 and A-RF-G2 models were obtained using the RF method, yielding statistically significant parameters with good performance, as indicated by R2 values for the training set (R2Train) and R2 values for the test set (R2Test), around 0.90. METHODS The molecular structure of all organothiophosphates was optimized via the range-separated hybrid functional ωB97XD with the 6-311 + + G** basis set. Seven hundred and eighty-seven descriptors have been processed using a variety of machine learning algorithms: RF LASSO, Ridge, EN and SVM to generate a predictive model. The properties were obtained with Multiwfn, AIMALL and VMD programs. Docking simulations were performed by using AutoDock 4.2 and LigPlot + programs. All the calculations in this work are carried out in Gaussian 16 program package.
Collapse
Affiliation(s)
- Uriel J Rangel-Peña
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Luis A Zárate-Hernández
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Rosa L Camacho-Mendoza
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Carlos Z Gómez-Castro
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Simplicio González-Montiel
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | | | - Amilcar Meneses-Viveros
- Departamento de Computación, CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de Mexico, 07360, México
| | - Julián Cruz-Borbolla
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México.
| |
Collapse
|
13
|
Huang K, Fei J, Zhang Z, Kong R, Li M, Zhang Y, Liu C. Exposure to environmentally relevant concentrations of TnBP results in tissue-specific bio-accumulation and inhibits growth of silver carp (Hypophthalmichthys molitrix). CHEMOSPHERE 2023; 334:138972. [PMID: 37230301 DOI: 10.1016/j.chemosphere.2023.138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Tri-n-butyl phosphate (TnBP) is commonly used as flame retardant and rubber plasticizer, and has been widely detected in aquatic organisms and natural waters. However, the potential toxicity of TnBP in fish remains unclear. In the present study, silver carp (Hypophthalmichthys molitrix) larvae were treated with environmentally relevant concentrations (100 or 1000 ng/L) of TnBP for 60 d and then they were depurated in clean water for 15 d, and the accumulation and depuration of the chemical in six tissues of silver carp were measured. Furthermore, effects on growth were evaluated and potential molecular mechanisms were explored. Results indicated that TnBP could be rapidly accumulated and depurated in silver carp tissues. In addition, the bio-accumulation of TnBP displayed tissue-specificity, where intestine contained the greatest and vertebra had the smallest level of TnBP. Furthermore, exposure to environmentally relevant concentrations of TnBP led to time- and concentration-dependent growth inhibition of silver carp, even though TnBP was completely depurated in tissues. Mechanistic studies suggested that exposure to TnBP up- and down-regulated the expression of ghr and igf1 in liver, respectively, and increased GH contents in plasma of silver carp. TnBP exposure also up-regulated the expression of ugt1ab and dio2 in liver, as well as decreased T4 contents in plasma of silver carp. Our findings provide direct evidence of health hazards of TnBP to fish in natural waters, calling for more attention of environmental risks of TnBP in aquatic environment.
Collapse
Affiliation(s)
- Kai Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Jia D, Miao W, Rui Y, Chen Y, Liang W, Yi Z. Thyroid hormone transporters binding affinity of methoxypoly chlorinated biphenyls: Insights from molecular simulations and fluorescence competitive binding experiment. Int J Biol Macromol 2023; 231:123224. [PMID: 36649871 DOI: 10.1016/j.ijbiomac.2023.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Triiodothyronine (T3) and thyroxine (T4) are essential for regulating cell metabolic rate and promoting the development and differentiation of brain tissue, especially in fetuses and newborns. In particular, it has been proved that MeO-PCBs have high binding to thyroid hormone transporters and can competitively bind to thyroid carrier proteins, thus destroying the transport of the thyroid hormone. Fluorescence competition binding experiments and docking results showed that the binding affinity decreased with the increase in number of chlorine atoms of MeO-PCBs. The interaction mechanism of MeO-PCBs with thyroid transporter (TTR) and thyroid binding globulin (TBG) was compared by computational simulation and the binding free energies were calculated by the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Electrostatic potential analysis, Hirshfeld surface analysis and electron density difference maps confirmed the existence of electrostatic interactions. Secondly, noncovalent interaction (NCI) analysis further indicated that the main driving force for the combination of MeO-PCBs to TTR and TBG were electrostatic interaction and van der Waals interaction. The conformational changes of the protein after binding were studied by a molecular dynamic simulation.
Collapse
Affiliation(s)
- Dan Jia
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wangli Miao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuefan Rui
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yanting Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wenhui Liang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
15
|
Sharma P, Bano A, Yadav S, Singh SP. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 2023. [DOI: 10.1007/s11244-023-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
16
|
Magnuson JT, Fuller N, McGruer V, Huff Hartz KE, Acuña S, Whitledge GW, Lydy MJ, Schlenk D. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120938. [PMID: 36572271 DOI: 10.1016/j.envpol.2022.120938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Projected water temperature increases based on predicted climate change scenarios and concomitant pesticide exposure raises concern about the responses of aquatic organisms. To better understand the effect of pesticide mixtures and influence of water temperature to fish, juvenile Chinook salmon (Oncorhynchus tshawytscha) were dietarily exposed to a mixture of legacy and current use pesticides (p,p'-DDE, bifenthrin, chlorpyrifos, esfenvalerate, and fipronil) at concentrations detected from field-collected prey items in the Sacramento-San Joaquin Delta, California (Delta) and exposed under current and predicted future water temperature scenarios, 11, 14, or 17 °C, for 14 days. The expression of a subset of genes (deiodinase 2-dio2, gonadotropin releasing hormone 2-gnrh2, and catechol-o-methyltransferase-comt) involved in neuroendocrine, dopaminergic, and olfactory function previously shown to be altered by individual pesticide exposures germane to this study were determined and olfactory function assessed using a Y-maze behavioral assay. When total body burdens of pesticides were measured, a significant decrease in dio2 expression was observed in Chinook salmon exposed at 14 °C compared to fish kept at 11 °C. Increases in gnrh2 expression were also observed in fish exposed to 14 °C. Similarly, increases in comt expression was noted at 14 and 17 °C. Additionally, altered expression of all transcripts was observed, showing interactions between temperature and individual pesticide concentrations. Chinook salmon spent significantly more time actively avoiding the odorant arm at baseline conditions of 11 °C in the Y-maze. At higher temperatures, Chinook spent significantly more time not making a choice between the odorant or clean arm following exposure to the low pesticide mixture, relative to 11 °C. These results suggest that dietary exposure to pesticide mixtures can potentially induce neuroendocrine effects and behavior. Impaired olfactory responses exhibited by Chinook salmon could have implications for predator avoidance in the wild under increased temperature scenarios and impact populations in the future.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, United States
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
18
|
Andersen HR, David A, Freire C, Fernández MF, D'Cruz SC, Reina-Pérez I, Fini JB, Blaha L. Pyrethroids and developmental neurotoxicity - A critical review of epidemiological studies and supporting mechanistic evidence. ENVIRONMENTAL RESEARCH 2022; 214:113935. [PMID: 35870501 DOI: 10.1016/j.envres.2022.113935] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pyrethroid metabolites are widely detectable in urine from the general population, including pregnant women and children. Pyrethroids are neurotoxic and suggested endocrine disruptors. Exposure during vulnerable developmental time windows may have long-term impacts on neurodevelopment. OBJECTIVE To evaluate the epidemiological evidence for neurodevelopmental effects related to prenatal and childhood pyrethroid exposure in a systematic review and to assess biological plausibility by evaluating mechanistic evidence. METHODS We searched PubMed and Web of Science up to September 1, 2021 and included original studies published in English in which pyrethroid exposure was measured or estimated during pregnancy or childhood and associations with neurodevelopmental outcomes in the children were investigated. The Navigation Guide Systematic Review Methodology was used to evaluate the epidemiological evidence. For mechanistic evidence, we focused on relevant key events (KEs) suggested in Adverse Outcome Pathways (AOPs) using the OECD-supported AOP-wiki platform. A systematic search combining the KEs with pyrethroids, including 26 individual compounds, was performed in the ToxCast database. RESULTS Twenty-five epidemiological studies met the inclusion criteria, 17 presented findings on prenatal exposure, 10 on childhood exposure and two on both exposure windows. The overall body of evidence was rated as "moderate quality" with "sufficient evidence" for an association between prenatal pyrethroid exposure and adverse neurodevelopment. For childhood exposure, the overall rating was "low quality" with "limited evidence" because of cross-sectional study design. Regarding mechanistic evidence, we found that pyrethroids are able to interfere with neurodevelopmental KEs included in established AOPs for adverse neurodevelopmental. The evidence was strongest for interference with thyroid hormone (TH) function. CONCLUSION Pyrethroids are probably human developmental neurotoxicants and adverse impacts of pyrethroid exposure on neurodevelopment are likely at exposure levels occurring in the general population. Preventive measures to reduce exposure among pregnant women and children are warranted.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERSP), Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERSP), Spain; Biomedical Research Center (CIBM); School of Medicine, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Shereen Cynthia D'Cruz
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Iris Reina-Pérez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERSP), Spain; Biomedical Research Center (CIBM); School of Medicine, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Jean-Baptiste Fini
- Unité PhyMA laboratory, Adaptation du Vivant Department, UMR 7221 MNHN/CNRS, Sorbonne Université, Paris, 75005, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
19
|
Carlson JM, Janulewicz PA, Kleinstreuer NC, Heiger-Bernays W. Impact of High-Throughput Model Parameterization and Data Uncertainty on Thyroid-Based Toxicological Estimates for Pesticide Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5620-5631. [PMID: 35446564 PMCID: PMC9070357 DOI: 10.1021/acs.est.1c07143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/23/2023]
Abstract
Chemical-induced alteration of maternal thyroid hormone levels may increase the risk of adverse neurodevelopmental outcomes in offspring. US federal risk assessments rely almost exclusively on apical endpoints in animal models for deriving points of departure (PODs). New approach methodologies (NAMs) such as high-throughput screening (HTS) and mechanistically informative in vitro human cell-based systems, combined with in vitro to in vivo extrapolation (IVIVE), supplement in vivo studies and provide an alternative approach to calculate/determine PODs. We examine how parameterization of IVIVE models impacts the comparison between IVIVE-derived equivalent administered doses (EADs) from thyroid-relevant in vitro assays and the POD values that serve as the basis for risk assessments. Pesticide chemicals with thyroid-based in vitro bioactivity data from the US Tox21 HTS program were included (n = 45). Depending on the model structure used for IVIVE analysis, up to 35 chemicals produced EAD values lower than the POD. A total of 10 chemicals produced EAD values higher than the POD regardless of the model structure. The relationship between IVIVE-derived EAD values and the in vivo-derived POD values is highly dependent on model parameterization. Here, we derive a range of potentially thyroid-relevant doses that incorporate uncertainty in modeling choices and in vitro assay data.
Collapse
Affiliation(s)
- Jeffrey M. Carlson
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| | - Patricia A. Janulewicz
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| | - Nicole C. Kleinstreuer
- Division
of Intramural Research, Biostatistics and Computational Biology Branch,
and National Toxicology Program Interagency Center for the Evaluation
of Alternative Toxicological Methods, National
Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, North Carolina 27709, United States
| | - Wendy Heiger-Bernays
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
20
|
Corrales Vargas A, Peñaloza Castañeda J, Rietz Liljedahl E, Mora AM, Menezes-Filho JA, Smith DR, Mergler D, Reich B, Giffin A, Hoppin JA, Lindh CH, van Wendel de Joode B. Exposure to common-use pesticides, manganese, lead, and thyroid function among pregnant women from the Infants' Environmental Health (ISA) study, Costa Rica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151288. [PMID: 34756903 PMCID: PMC9162492 DOI: 10.1016/j.scitotenv.2021.151288] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/03/2021] [Accepted: 10/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Pesticides and metals may disrupt thyroid function, which is key to fetal brain development. OBJECTIVES To evaluate if current-use pesticide exposures, lead and excess manganese alter free thyroxine (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) concentrations in pregnant women from the Infants' Environmental Health Study (ISA). METHODS At enrollment, we determined women's (n = 400) specific-gravity corrected urinary pesticide (μg/L) metabolite concentrations of mancozeb (ethylene thiourea (ETU)), pyrimethanil, thiabendazole, chlorpyrifos, synthetic pyrethroids, and 2,4-D. We also measured manganese hair (MnH) (μg/g) and blood (MnB) (μg/L), and blood lead (PbB) (μg/L) concentrations. To detect an immediate and late effect on thyroid homeostasis, we determined TSH, FT4 and FT3 in serum obtained at the same visit (n = 400), and about ten weeks afterwards (n = 245). We assessed associations between exposures and outcomes with linear regression and general additive models, Bayesian multivariate linear regression, and Bayesian kernel machine regression. RESULTS About 80%, 94%, and 100% of the women had TSH, FT4, and FT3 within clinical reference ranges, respectively. Women with higher urinary ETU, and pyrimethanil-metabolites, had lower FT4: β = -0.79 (95%CI = -1.51, -0.08) and β = -0.29 (95%CI = -0.62, -0.03), respectively, for each tenfold increase in exposure. MnB was positively associated with FT4 (β = 0.04 (95%CI = 0.00, 0.07 per 1 μg/L increase), and women with high urinary pyrethroid-metabolite concentrations had decreased TSH (non-linear effects). For the late-effect analysis, metabolites of pyrethroids and chlorpyrifos, as well as MnH, and PbB were associated decreased TSH, or increased FT4 and/or FT3. DISCUSSION Mancozeb (ETU) and pyrimethanil may inhibit FT4 secretion (hypothyroidism-like effect), while chlorpyrifos, pyrethroids, MnB, MnH, PbB and Mn showed hyperthyroidism-like effects. Some effects on thyroid homeostasis seemed to be immediate (mancozeb (ETU), pyrimethanil, MnB), others delayed (chlorpyrifos, MnH, PbB), or both (pyrethroids), possibly reflecting different mechanisms of action.
Collapse
Affiliation(s)
- Andrea Corrales Vargas
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Jorge Peñaloza Castañeda
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Emelie Rietz Liljedahl
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Ana María Mora
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; Center for Environmental Research and Children's Health (CERCH), University of California at Berkeley, United States
| | - Jose Antonio Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n Campus Universitário de Ondina, 40170-115 Salvador, Bahia, Brazil
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Donna Mergler
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (CINBIOSE), Université du Québec à Montréal, Montreal, Canada
| | - Brian Reich
- Department of Statistics, North Carolina State University, United States; Center for Human Health and the Environment, North Carolina State University, United States
| | - Andrew Giffin
- Department of Statistics, North Carolina State University, United States; Center for Human Health and the Environment, North Carolina State University, United States
| | - Jane A Hoppin
- Center for Human Health and the Environment, North Carolina State University, United States; Department of Biological Sciences, North Carolina State University, United States
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Berna van Wendel de Joode
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
21
|
Yang F, Cui Y, Yu H, Guo Y, Cheng Y, Yao W, Xie Y. Identifying potential thyroid hormone disrupting effects among diphenyl ether structure pesticides and their metabolites in silico. CHEMOSPHERE 2022; 288:132575. [PMID: 34656618 DOI: 10.1016/j.chemosphere.2021.132575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The environmental and dietary pesticide exposures can cause thyroid hormones (THs) disorders, which are associated with the high incidence of thyroid diseases worldwide. The structures of diphenyl ether pesticides and their metabolites are very similar to the structure of THs. Based on this, in silico molecular simulation approaches were used to predict, screen, evaluate and identify the binding interactions of 98 diphenyl ether structure pesticides and their metabolites (DEPMs) with 10 THs related proteins in the study. The research results indicated that these DEPMs such as fluoroglycofen (FOG), rafoxanide, diclofop, ethoxyfen and difenopenten were considered to have the greater potentials to interfere with the related proteins of THs biosynthesis, blood transport, receptor binding and metabolism. And FOG can interact with thyroid hormone receptor beta (TRβ) to form non-bond interactions. Furthermore, the results of molecular dynamics simulations showed that there were strong and stable interactions between FOG and TRβ. These results suggested that the herbicide FOG was likely to disturb THs nuclear receptor. And benzene rings and hydrophobic groups might be the characteristic chemical functional groups for DEPMs to disrupt TRβ. The relevant results of this study can be used to provide references for environmental toxicology evaluation, food safety risk assessment, and formulation and revision of pesticides and their metabolites residue limits in agricultural products and food.
Collapse
Affiliation(s)
- Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot, 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yiwen Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot, 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot, 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China.
| |
Collapse
|
22
|
Krier J, Singh RR, Kondić T, Lai A, Diderich P, Zhang J, Thiessen PA, Bolton EE, Schymanski EL. Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. ENVIRONMENT INTERNATIONAL 2022; 158:106885. [PMID: 34560325 PMCID: PMC8688306 DOI: 10.1016/j.envint.2021.106885] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available) information about many of them is a huge challenge for environmental sciences, engineering, and regulation. Suspect screening based on high-resolution liquid chromatography-mass spectrometry (LC-HRMS) has enormous potential to help characterize the presence of these chemicals in our environment, enabling the detection of known and newly emerging pollutants, as well as their potential transformation products (TPs). Here, suspect list creation (focusing on pesticides relevant for Luxembourg, incorporating data sources in 4 languages) was coupled to an automated retrieval of related TPs from PubChem based on high confidence suspect hits, to screen for pesticides and their TPs in Luxembourgish river samples. A computational workflow was established to combine LC-HRMS analysis and pre-screening of the suspects (including automated quality control steps), with spectral annotation to determine which pesticides and, in a second step, their related TPs may be present in the samples. The data analysis with Shinyscreen (https://gitlab.lcsb.uni.lu/eci/shinyscreen/), an open source software developed in house, coupled with custom-made scripts, revealed the presence of 162 potential pesticide masses and 96 potential TP masses in the samples. Further identification of these mass matches was performed using the open source approach MetFrag (https://msbi.ipb-halle.de/MetFrag/). Eventual target analysis of 36 suspects resulted in 31 pesticides and TPs confirmed at Level-1 (highest confidence), and five pesticides and TPs not confirmed due to different retention times. Spatio-temporal analysis of the results showed that TPs and pesticides followed similar trends, with a maximum number of potential detections in July. The highest detections were in the rivers Alzette and Mess and the lowest in the Sûre and Eisch. This study (a) added pesticides, classification information and related TPs into the open domain, (b) developed automated open source retrieval methods - both enhancing FAIRness (Findability, Accessibility, Interoperability and Reusability) of the data and methods; and (c) will directly support "L'Administration de la Gestion de l'Eau" on further monitoring steps in Luxembourg.
Collapse
Affiliation(s)
- Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| | - Randolph R Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| | - Todor Kondić
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg; Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany.
| | - Philippe Diderich
- Water Management Agency, Ministry of the Environment, Climate and Sustainable Development, 1 Avenue du Rock'n'roll, Luxembourg.
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| |
Collapse
|
23
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
24
|
Romano RM, de Oliveira JM, de Oliveira VM, de Oliveira IM, Torres YR, Bargi-Souza P, Martino Andrade AJ, Romano MA. Could Glyphosate and Glyphosate-Based Herbicides Be Associated With Increased Thyroid Diseases Worldwide? Front Endocrinol (Lausanne) 2021; 12:627167. [PMID: 33815286 PMCID: PMC8018287 DOI: 10.3389/fendo.2021.627167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of thyroid diseases raises a series of questions about what the main predisposing factors are nowadays. If dietary restriction of iodine was once a major global health concern, today, the processes of industrialization of food and high exposure to a wide variety of environmental chemicals may be affecting, directly or indirectly, thyroid function. The homeostasis of hypothalamus-pituitary-thyroid (HPT) axis is finely regulated through the negative feedback mechanism exerted by thyroid hormones. Allostatic mechanisms are triggered to adjust the physiology of HPT axis in chronic conditions. Glyphosate and glyphosate-based herbicides are pesticides with controversial endocrine disrupting activities and only few studies have approached their effects on HPT axis and thyroid function. However, glyphosate has an electrophilic and nucleophilic zwitterion chemical structure that may affect the mechanisms involved in iodide oxidation and organification, as well as the oxidative phosphorylation in the ATP synthesis. Thus, in this review, we aimed to: (1) discuss the critical points in the regulation of HPT axis and thyroid hormones levels balance, which may be susceptible to the toxic action of glyphosate and glyphosate-based herbicides, correlating the molecular mechanisms involved in glyphosate toxicity described in the literature that may, directly or indirectly, be associated to the higher incidence of thyroid diseases; and (2) present the literature regarding glyphosate toxicity in HPT axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
25
|
Ramos RL, Moreira VR, Lebron YAR, Santos AV, Santos LVS, Amaral MCS. Phenolic compounds seasonal occurrence and risk assessment in surface and treated waters in Minas Gerais-Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115782. [PMID: 33120340 DOI: 10.1016/j.envpol.2020.115782] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This study provided a monitoring of phenolic compounds occurrence in a river and in its treated water by a conventional water treatment plant (WTP) throughout a year-period, in Minas Gerais - Brazil. Furthermore, the environmental risk (hazard quotient - HQ), the human health risk (margin of exposure - MOE), and the cancer risk were calculated for the compounds. The results indicated that sixteen out of the seventeen investigated phenolic compounds were detected at some point during the sampling campaign. The most frequent compounds in the raw surface water were 2,3,4-trichlorophenol (234TCP), 2,4-dimethylphenol (24DMP), and 4-nitrophenol (4NP), whereas in treated water were 4NP and bisphenol A (BPA). In addition, the highest total concentration values were corelated to the months in which there was less precipitation, demonstrating that the presence of this micropollutants may be subject to seasonality. From the treated water results, it was not possible to state the efficiency of the conventional WTP in eliminating the phenols, since in some samples the phenolic compounds were totally removed and in others their increase or formation occurred. Regarding to the risk assessments, most of the evaluated compounds were considered highly toxic to some trophic level and posed a significant human health risk. Additionally, the risk reduction of phenolics using conventional WTP was low. The sixteen phenols contamination in surface and drinking waters appears to be subject to seasonality. Besides that, an alarming risk for environment and human health was identified.
Collapse
Affiliation(s)
- Ramatisa L Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Victor R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Yuri A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Amanda V Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Míriam C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Skalny A, Aschner M, Paoliello M, Santamaria A, Nikitina N, Rejniuk V, Jiang Y, Rocha J, Tinkov A. Endocrine-disrupting activity of mancozeb. ARHIV ZA FARMACIJU 2021; 71:491-507. [PMID: 35990020 PMCID: PMC9390121 DOI: 10.5937/arhfarm71-34359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
The objective of the present study was to review the existing data on the mechanisms involved in the endocrine disrupting activity of mancozeb (MCZ) in its main targets, including thyroid and gonads, as well as other endocrine tissues that may be potentially affected by MCZ. MCZ exposure was shown to interfere with thyroid functioning through impairment of thyroid hormone synthesis due to inhibition of sodium-iodine symporter (NIS) and thyroid peroxidase (TPO) activity, as well as thyroglobulin expression. Direct thyrotoxic effect may also contribute to thyroid pathology upon MCZ exposure. Gonadal effects of MCZ involve inhibition of sex steroid synthesis due to inhibition of P450scc (CYP11A1), as well as 3β-HSD and 17β-HSD. In parallel with altered hormone synthesis, MCZ was shown to down-regulate androgen and estrogen receptor signaling. Taken together, these gonad-specific effects result in development of both male and female reproductive dysfunction. In parallel with clearly estimated targets for MCZ endocrine disturbing activity, namely thyroid and gonads, other endocrine tissues may be also involved. Specifically, the fungicide was shown to affect cortisol synthesis that may be mediated by modulation of CYP11B1 activity. Moreover, MCZ exposure was shown to interfere with PPARγ signaling, being a key regulator of adipogenesis. The existing data also propose that endocrine-disrupting effects of MCZ exposure may be mediated by modulation of hypothalamus-pituitary-target axis. It is proposed that MCZ neurotoxicity may at least partially affect central mechanisms of endocrine system functioning. However, further studies are required to unravel the mechanisms of MCZ endocrine disrupting activity and overall toxicity.
Collapse
Affiliation(s)
- Anatoly Skalny
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Monica Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Natalia Nikitina
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Vladimir Rejniuk
- Golikov Research Center of Toxicology, Saint Petersburg 192019, Russia
| | - Yueming Jiang
- Department of Toxicology,School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - João Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey Tinkov
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
- Yaroslavl State University, Yaroslavl 150000, Russia
| |
Collapse
|
27
|
García Ríos A, Martínez AS, Londoño ÁL, Restrepo B, Landázuri P. Determination of organochlorine and organophosphorus residues in surface waters from the coffee zone in Quindío, Colombia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:968-973. [PMID: 32897838 DOI: 10.1080/03601234.2020.1802185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to identify organochlorine (OC) and organophosphorus (OP) pesticides levels in water samples collected in secondary water bodies in agricultural area planted with coffee and plantain. A descriptive cross-sectional study was carried out. A validated method for microwave-assisted extraction and gas chromatography with electron microcapture detector (MAE-GC-μECD) was used to analyze pesticide residues in samples. The determinations were based on certified reference material, Organochlorine Pesticide Mix AB #3, Canadian Drinking Organophosphorus Pesticides Mix, and pentachloronitrobenzene (ISTD) Internal Standard Mix 508.1. Pesticide residues were found in 81.3% of the samples, including OCs: 4.4'-DDT (38%), endosulfan II (19.7%), endosulfan sulfate, and endrin (11.7% and 8.8%), and others identified as 4.4'-DDE, Delta-HCB, parathion, chlorpyrifos, endrin aldehyde, heptachlor, heptachlor epoxide, endrin ketone, and methoxychlor. Parathion and/or chlorpyrifos were found in 5.8-8% of samples; the water bodies most heavily affected were those in Filandia and Quimbaya in which 100% of samples were contaminated, followed by those in Calarcá, Córdoba, Pijao, and Génova, with contamination found in over 75% of samples. The results indicated that surface waters from Quindío municipalities are contaminated with pesticide residues hazardous to human health, which are still in use despite being either restricted or prohibited.
Collapse
Affiliation(s)
- Alejandro García Ríos
- Grupo de plaguicidas y Salud Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Ariel S Martínez
- Grupo de plaguicidas y Salud Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Ángela L Londoño
- Grupo de Salud Pública. Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Beatriz Restrepo
- Grupo de Investigación en Enfermedades Cardiovasculares y Metabólicas-GECAVYME, Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Patricia Landázuri
- Grupo de Investigación en Enfermedades Cardiovasculares y Metabólicas-GECAVYME, Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|