1
|
Yarmohammadi H, Sepahi AA, Hamidi-fard M, Aghasadeghi M, Bahramali G. Development of a novel bivalent vaccine candidate against hepatitis A virus and rotavirus using reverse vaccinology and immunoinformatics. J Virus Erad 2025; 11:100578. [PMID: 40034561 PMCID: PMC11875822 DOI: 10.1016/j.jve.2024.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 03/05/2025] Open
Abstract
The hepatitis A virus (HAV) and rotavirus are mainly transmitted through fecal-oral and person-to-person contact, and cause severe gastrointestinal complications and liver disease. This work used reverse vaccinology and immunoinformatic methods to create a novel bivalent vaccine against rotavirus and HAV. The amino acid sequences of HAV-rotavirus proteins (VP1 and VP8∗) were retrieved from the GenBank database. Various computational approaches were employed to predict highly conserved regions and the most immunogenic B-cell and T-cell epitopes of VP8 and VP1 of rotavirus and HAV proteins in both humans and BALB/c. Moreover, the predicted fusion protein was analyzed regarding primary and secondary structures and homology validation. In this study, we used two highly conserved peptide sequences of VP8 and VP1 of rotavirus and HAV that induce T and B cell immunogenicity. According to T-cell epitope prediction, this area comprises 2713 antigenic peptides for HLA class II and 30 HLA class I antigenic peptides, both of which are virtually entirely conserved in the Iranian population. In this study, validation as well as analysis of the secondary and three-dimensional structure of the VP8∗-rotavirus + AAY + HAV-VP1 fusion protein, with the aim of designing a multi-epitope vaccine with different receptors. TLR 3, 4 high immunogenic binding ability with immunological properties and interaction between multi-epitope target and TLR were predicted, and it is expected that the target fusion protein has stable antigenic potency and compatible half-life. The above is suggested as a universal vaccination program.
Collapse
Affiliation(s)
- Hassan Yarmohammadi
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Wang Y, Guo H, Lu Y, Yang W, Li T, Ji X. Crystal structure and nucleic acid binding mode of CPV NSP9: implications for viroplasm in Reovirales. Nucleic Acids Res 2024; 52:11115-11127. [PMID: 39287123 PMCID: PMC11472163 DOI: 10.1093/nar/gkae803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cytoplasmic polyhedrosis viruses (CPVs), like other members of the order Reovirales, produce viroplasms, hubs of viral assembly that shield them from host immunity. Our study investigates the potential role of NSP9, a nucleic acid-binding non-structural protein encoded by CPVs, in viroplasm biogenesis. We determined the crystal structure of the NSP9 core (NSP9ΔC), which shows a dimeric organization topologically similar to the P9-1 homodimers of plant reoviruses. The disordered C-terminal region of NSP9 facilitates oligomerization but is dispensable for nucleic acid binding. NSP9 robustly binds to single- and double-stranded nucleic acids, regardless of RNA or DNA origin. Mutagenesis studies further confirmed that the dimeric form of NSP9 is critical for nucleic acid binding due to positively charged residues that form a tunnel during homodimerization. Gel migration assays reveal a unique nucleic acid binding pattern, with the sequential appearance of two distinct complexes dependent on protein concentration. The similar gel migration pattern shared by NSP9 and rotavirus NSP3, coupled with its structural resemblance to P9-1, hints at a potential role in translational regulation or viral genome packaging, which may be linked to viroplasm. This study advances our understanding of viroplasm biogenesis and Reovirales replication, providing insights into potential antiviral drug targets.
Collapse
Affiliation(s)
- Yeda Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yuhao Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Wanbin Yang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Tinghan Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
3
|
Barua SR, Das T, Rakib TM, Nath BK, Gupta SD, Sarker S, Chowdhury S, Raidal SR, Das S. Complete genome constellation of a dominant Bovine rotavirus genotype circulating in Bangladesh reveals NSP4 intragenic recombination with human strains. Virology 2024; 598:110195. [PMID: 39089050 DOI: 10.1016/j.virol.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.
Collapse
Affiliation(s)
- Shama Ranjan Barua
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh; Department of Livestock Services, Ministry of Fisheries and Livestock, Bangladesh
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD-4814, Australia
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia.
| |
Collapse
|
4
|
Yang H, Fan X, Mao X, Yu B, He J, Yan H, Wang J. The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets. J Anim Sci Biotechnol 2024; 15:61. [PMID: 38698473 PMCID: PMC11067158 DOI: 10.1186/s40104-024-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
Collapse
Affiliation(s)
- Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China.
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| |
Collapse
|
5
|
Adamczyk K, Rubbenstroth D, Ledwoń A, Sapierzyński R, Szeleszczuk P. The first confirmed cases of pigeon rotavirus A (RVA) infection in domestic pigeons (Columba livia) in Poland. J Vet Res 2024; 68:55-61. [PMID: 38525231 PMCID: PMC10960255 DOI: 10.2478/jvetres-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/26/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Although the presence of rotaviruses in pigeon samples has been reported since the 1980s, its importance as an aetiological agent of the "classical" young pigeon disease (YPD) was not proven until 2020, when the Henle-Koch postulates were confirmed for pigeon-type rotavirus A (RVA) genotype G18P(17). Material and Methods From 2011 to 2020, archived liver samples from 117 pigeons submitted by 74 individual lofts were tested for the presence of pigeon-type RVA using a VP6-specific RT-qPCR test. For four positive racing pigeons, a more detailed necropsy and histopathological analysis was performed. Results Indicators of an acute RVA infection were found in 24 out of 117 (20.5%) samples tested, the earliest in 2014. Necropsies of the four selected RVA-positive pigeons showed changes mainly in the liver, spleen and kidneys similar to those described by other researchers. The histopathological examination revealed mainly hyperaemia and necrosis in the liver, as well as mononuclear cell infiltrates in these organs. Conclusion Pigeon-type RVA is also a cause of YPD in Poland and is a serious challenge for racing pigeon breeders and veterinarians, especially during the training and flights of young pigeons.
Collapse
Affiliation(s)
- Krzysztof Adamczyk
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493Greifswald - Insel Riems, Germany
| | - Aleksandra Ledwoń
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776Warszawa, Poland
| |
Collapse
|
6
|
Banerjee S, Sarkar R, Mukherjee A, Mitra S, Gope A, Chawla-Sarkar M. Rotavirus-induced lncRNA SLC7A11-AS1 promotes ferroptosis by targeting cystine/glutamate antiporter xCT (SLC7A11) to facilitate virus infection. Virus Res 2024; 339:199261. [PMID: 37923170 PMCID: PMC10684390 DOI: 10.1016/j.virusres.2023.199261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Rotavirus (RV) is the primary etiological agent of virus-associated gastroenteritis in infants, causing 200,000 childhood death annually. Despite the availability of vaccines, rotaviral diarrhea continues to be a severe issue in underdeveloped nations in Asia and Africa. The situation demands continual studies on host-rotavirus interactions to understand disease pathogenesis and develop effective antiviral therapeutics. Long non-coding RNAs (lncRNAs), which are a subset of non-coding RNAs of more than 200 nucleotides in length, are reported to play a regulatory function in numerous viral infections. Virus infection often alters the host transcriptome including lncRNA that are differentially expressed either to play an antiviral role or to be advantageous towards virus propagation. In the current study, qPCR array-based expression profiling of host lncRNAs was performed in rotavirus-infected HT-29 cells that identified the lncRNA SLC7A11-AS1 to be upregulated during RV infection. Knockdown of SLC7A11-AS1 conspicuously reduced RV titers implying its pro-viral significance. RV-induced SLC7A11-AS1 downregulates the gene SLC7A11/xCT that encodes the light chain subunit of the system XC- cystine-glutamate exchange transporter, leading to decrease in intracellular glutathione level and increase in lipid peroxidation, which are signature features of ferroptotic pathway. Ectopic expression of xCT also abrogated RV infection by reversing the virus optimized levels of intracellular GSH and lipid ROS levels. Cumulatively, the study reveals that RV infection triggers ferroptotic cell death via SLC7A11-AS1/xCT axis to facilitate its own propagation.
Collapse
Affiliation(s)
- Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India.
| |
Collapse
|
7
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Yi B, Deng Q, Guo C, Li X, Wu Q, Zha R, Wang X, Lu J. Evaluating the zoonotic potential of RNA viromes of rodents provides new insight into rodent-borne zoonotic pathogens in Guangdong, China. One Health 2023; 17:100631. [PMID: 38024253 PMCID: PMC10665145 DOI: 10.1016/j.onehlt.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Emerging and re-emerging infectious diseases have been on the rise, with a significant proportion being zoonotic. Rodents, as the natural reservoirs of numerous diverse zoonotic viruses, pose a substantial threat to human health. To investigate the diversity of known and unknown viruses harbored by rodents in Guangdong (southern province of China), we conducted a comprehensive analysis of viral genomes through metagenomic sequencing of organs from 194 rodents. Our analysis yielded 2163 viral contigs that were assigned to 25 families known to infect a wide range of hosts, including vertebrates, invertebrates, amoebas, and plants. The viral compositions vary considerably among different organs, but not in rodent species. We also assessed and prioritized zoonotic potential of those detected viruses. Ninety-two viral species that are either known to infect vertebrates and invertebrates or only vertebrates were identified, among which 21 are considered high-risk to humans. The high-risk viruses included members of the Hantavirus, Picobirnaviruses, Astroviruses and Pestivirus. The phylogenetic trees of four zoonotic viruses revealed features of novel viral genomes that seem to fit evolutionarily into a zone of viruses that potentially pose a risk of transmission to humans. Recognizing that zoonotic diseases are a One Health issue, we approached the problem of identifying the zoonotic risk from rodent-transmitted disease in the Guangdong province by performing next-generation sequencing to look for potentially zoonotic viruses in these animals.
Collapse
Affiliation(s)
- Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiang Deng
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York 10032, USA
| | - Xiaokang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Renyun Zha
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xianhua Wang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou 571199, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
9
|
Phan T, Hikita T, Okitsu S, Akari Y, Komoto S, Hayakawa S, Ushijima H. Whole genome sequencing and genomic characterization of a DS-1-like G2P[4] group A rotavirus in Japan. Virus Genes 2023; 59:688-692. [PMID: 37405556 DOI: 10.1007/s11262-023-02018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
After rotavirus was discovered in 1973, it became the leading pathogen in causing acute gastroenteritis in humans worldwide. In this study, we performed whole genome sequencing and genomic characterization of a DS-1-like G2P[4] group A rotavirus in feces of a Japanese child with acute gastroenteritis who was fully Rotarix® vaccinated. The genomic investigation determined a genomic constellation G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of this rotavirus strain. Its antigenic epitopes of the VP7 and VP4 proteins had significant mismatches compared with the vaccine strains. Our study is the latest attempt to investigate the evolution of the VP7 and VP4 genes of emerging G2P[4] rotavirus in Japan.
Collapse
Affiliation(s)
- Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shoko Okitsu
- Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yuki Akari
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of One Health, Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Yamani LN, Utsumi T, Doan YH, Fujii Y, Dinana Z, Wahyuni RM, Gunawan E, Soegijanto S, Athiyyah AF, Sudarmo SM, Ranuh RG, Darma A, Soetjipto, Juniastuti, Bawono RG, Matsui C, Deng L, Abe T, Shimizu H, Ishii K, Katayama K, Lusida MI, Shoji I. Complete genome analyses of G12P[8] rotavirus strains from hospitalized children in Surabaya, Indonesia, 2017-2018. J Med Virol 2023; 95:e28485. [PMID: 36625390 DOI: 10.1002/jmv.28485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Rotavirus A (RVA) is a major viral cause of acute gastroenteritis (AGE) worldwide. G12 RVA strains have emerged globally since 2007. There has been no report of the whole genome sequences of G12 RVAs in Indonesia. We performed the complete genome analysis by the next-generation sequencing of five G12 strains from hospitalized children with AGE in Surabaya from 2017 to 2018. All five G12 strains were Wa-like strains (G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1) and were clustered into lineage-III of VP7 gene phylogenetic tree. STM430 sample was observed as a mixed-infection between G12 and G1 strains: G12/G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. A phylogenetic tree analysis revealed that all five Indonesian G12 strains (SOEP379, STM371, STM413, STM430, and STM433) were genetically close to each other in all 11 genome segments with 98.0%-100% nucleotide identities, except VP3 and NSP4 of STM430, suggesting that these strains have originated from a similar ancestral G12 RVA. The VP3 and NSP4 genome segments of STM430-G12P[8] were separated phylogenetically from those of the other four G12 strains, probably due to intra-genotype reassortment between the G12 and G1 Wa-like strains. The change from G12P[6] lineage-II in 2007 to G12P[8] lineage-III 2017-2018 suggests the evolution and diversity of G12 RVAs in Indonesia over the past approximately 10 years.
Collapse
Affiliation(s)
- Laura Navika Yamani
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Epidemiology, Biostatistics, Population Studies and Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Takako Utsumi
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yen Hai Doan
- Laboratory VIII, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Zayyin Dinana
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rury Mega Wahyuni
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Emily Gunawan
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soegeng Soegijanto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Alpha Fardah Athiyyah
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Andy Darma
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Soetjipto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Juniastuti
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rheza Gandi Bawono
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Maria Inge Lusida
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Laboratory of Viral Diarrhea, Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
11
|
Evolution of Animal South American RVA Told by the NSP4 Gene E12 Genotype. Viruses 2022; 14:v14112506. [PMID: 36423115 PMCID: PMC9698066 DOI: 10.3390/v14112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Rotavirus A (RVA) possesses a genome of 11 double-stranded (ds) RNA segments, and each segment encodes one protein, with the exception of segment 11. NSP4 is a non-structural multifunctional protein encoded by segment 10 that defines the E-genotype. From the 31 E-genotypes described, genotype E12 has been described in Argentina, Uruguay, Paraguay, and Brazil in RVA strains infecting different animal species and humans. In this work, we studied the evolutionary relationships of RVA strains carrying the E12 genotype in South America using phylogenetic and phylodynamic approaches. We found that the E12 genotype has a South American origin, with a guanaco (Lama guanicoe) strain as natural host. Interestingly, all the other reported RVA strains carrying the E12 genotype in equine, bovine, caprine, and human strains are related to RVA strains of camelid origin. The evolutionary path and genetic footprint of the E12 genotype were reconstructed starting with the introduction of non-native livestock species into the American continent with the Spanish conquest in the 16th century. The imported animal species were in close contact with South American camelids, and the offspring were exposed to the native RVA strains brought from Europe and the new RVA circulating in guanacos, resulting in the emergence of new RVA strains in the current lineages' strongly species-specific adaption. In conclusion, we proposed the NSP4 E12 genotype as a genetic geographic marker in the RVA strains circulating in different animal species in South America.
Collapse
|
12
|
Kumar D, Shepherd FK, Springer NL, Mwangi W, Marthaler DG. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022; 11:pathogens11101078. [PMID: 36297136 PMCID: PMC9607047 DOI: 10.3390/pathogens11101078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers’ mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55108, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Douglas G. Marthaler
- Indical Inc., 1317 Edgewater Dr #3722, Orlando, FL 32804, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| |
Collapse
|
13
|
Genome Sequence of Rotavirus A from a Florida Racing Pigeon ( Columba livia domestica). Microbiol Resour Announc 2022; 11:e0114921. [PMID: 35286160 PMCID: PMC9022510 DOI: 10.1128/mra.01149-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete coding sequence of a rotavirus A strain was determined from a dead racing pigeon in Florida. It was found to be most closely related to a rotavirus A strain isolated from a dead racing pigeon in California.
Collapse
|
14
|
Wu FT, Liu LTC, Jiang B, Kuo TY, Wu CY, Liao MH. Prevalence and diversity of rotavirus A in pigs: Evidence for a possible reservoir in human infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105198. [PMID: 34968762 DOI: 10.1016/j.meegid.2021.105198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Rotavirus A (RVA) are a group of diverse viruses causing acute gastroenteritis (AGE) in humans and animals. Zoonotic transmission is an important mechanism for rotavirus evolution and strain diversity in humans, but the extent of pigs as a major reservoir for human infection is not clear. METHODS AND FINDINGS We have surveyed 153 pig farms across Taiwan with a total of 4588 porcine stool samples from three age groups from 2014 to 2017. Nursing piglets (less than one month of age) had higher detection rate for rotavirus than older age groups. Five VP7 (G) genotypes and 5 VP4 (P) genotypes were found in a total of 14 different G/P genotype combinations. In addition, porcine RVA strains had 2 NSP4 (E) genotypes and 3 VP6 (I) genotypes. A P[3]-like genotype was also discovered among strains collected in 2016 and 2017. CONCLUSIONS Most of the genes from Taiwanese porcine strains clustered with each other and the lineages formed by these strains were distinct from the sequences of numerous regional variants or globally circulating porcine strains, suggesting an independent evolutionary history for Taiwanese rotavirus genotypes. The close relationship among porcine RVA strains and some unique porcine-like genotypes detected sporadically among human children in swine farms illustrates that pigs might serve as a reservoir for potential zoonotic transmission and novel genotype evolution in Taiwan's insular environment.
Collapse
Affiliation(s)
- Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan.
| | - Luke Tzu-Chi Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ting-Yu Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ching-Yi Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ming-Huei Liao
- College of Veterinary Medicine, National Pingtung University of Science Technology, Taiwan; Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taiwan
| |
Collapse
|
15
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
16
|
Bravo JPK, Bartnik K, Venditti L, Acker J, Gail EH, Colyer A, Davidovich C, Lamb DC, Tuma R, Calabrese AN, Borodavka A. Structural basis of rotavirus RNA chaperone displacement and RNA annealing. Proc Natl Acad Sci U S A 2021; 118:e2100198118. [PMID: 34615715 PMCID: PMC8521686 DOI: 10.1073/pnas.2100198118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 01/13/2023] Open
Abstract
Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.
Collapse
Affiliation(s)
- Jack P K Bravo
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Kira Bartnik
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Luca Venditti
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, European Molecular Biology Laboratory (EMBL) Australia, Clayton, VIC 3800, Australia
| | - Alice Colyer
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, European Molecular Biology Laboratory (EMBL) Australia, Clayton, VIC 3800, Australia
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich, Centre for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| |
Collapse
|
17
|
Lanjanian H, Nematzadeh S, Hosseini S, Torkamanian-Afshar M, Kiani F, Moazzam-Jazi M, Aydin N, Masoudi-Nejad A. High-throughput analysis of the interactions between viral proteins and host cell RNAs. Comput Biol Med 2021; 135:104611. [PMID: 34246161 PMCID: PMC8252845 DOI: 10.1016/j.compbiomed.2021.104611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023]
Abstract
RNA-protein interactions of a virus play a major role in the replication of RNA viruses. The replication and transcription of these viruses take place in the cytoplasm of the host cell; hence, there is a probability for the host RNA-viral protein and viral RNA-host protein interactions. The current study applies a high-throughput computational approach, including feature extraction and machine learning methods, to predict the affinity of protein sequences of ten viruses to three categories of RNA sequences. These categories include RNAs involved in the protein-RNA complexes stored in the RCSB database, the human miRNAs deposited at the mirBase database, and the lncRNA deposited in the LNCipedia database. The results show that evolution not only tries to conserve key viral proteins involved in the replication and transcription but also prunes their interaction capability. These proteins with specific interactions do not perturb the host cell through undesired interactions. On the other hand, the hypermutation rate of NSP3 is related to its affinity to host cell RNAs. The Gene Ontology (GO) analysis of the miRNA with affiliation to NSP3 suggests that these miRNAs show strongly significantly enriched GO terms related to the known symptoms of COVID-19. Docking and MD simulation study of the obtained miRNA through high-throughput analysis suggest a non-coding RNA (an RNA antitoxin, ToxI) as a natural aptamer drug candidate for NSP5 inhibition. Finally, a significant interplay of the host RNA-viral protein in the host cell can disrupt the host cell's system by influencing the RNA-dependent processes of the host cells, such as a differential expression in RNA. Furthermore, our results are useful to identify the side effects of mRNA-based vaccines, many of which are caused by the off-label interactions with the human lncRNAs.
Collapse
Affiliation(s)
- Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajjad Nematzadeh
- Department of Computer Technologies, Beykent University, Istanbul, Turkey; Department of Computer Engineering, Faculty of Electrical and Electronics, Yildiz Technical University, Istanbul, Turkey.
| | - Shadi Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Torkamanian-Afshar
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Nisantasi University, Faculty of Engineering and Architecture, Department of Computer Engineering, Turkey.
| | - Farzad Kiani
- Department of Software Engineering, Engineering and Natural Sciences Faculty, Istinye University, Istanbul, Turkey.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nizamettin Aydin
- Department of Computer Engineering, Faculty of Electrical and Electronics, Yildiz Technical University, Istanbul, Turkey.
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. http://lbb.ut.ac.ir/
| |
Collapse
|
18
|
Uprety T, Sreenivasan CC, Hause BM, Li G, Odemuyiwa SO, Locke S, Morgan J, Zeng L, Gilsenan WF, Slovis N, Metcalfe L, Carter CN, Timoney P, Horohov D, Wang D, Erol E, Adam E, Li F. Identification of a Ruminant Origin Group B Rotavirus Associated with Diarrhea Outbreaks in Foals. Viruses 2021; 13:1330. [PMID: 34372536 PMCID: PMC8310321 DOI: 10.3390/v13071330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Equine rotavirus group A (ERVA) is one of the most common causes of foal diarrhea. Starting in February 2021, there was an increase in the frequency of severe watery to hemorrhagic diarrhea cases in neonatal foals in Central Kentucky. Diagnostic investigation of fecal samples failed to detect evidence of diarrhea-causing pathogens including ERVA. Based on Illumina-based metagenomic sequencing, we identified a novel equine rotavirus group B (ERVB) in fecal specimens from the affected foals in the absence of any other known enteric pathogens. Interestingly, the protein sequence of all 11 segments had greater than 96% identity with group B rotaviruses previously found in ruminants. Furthermore, phylogenetic analysis demonstrated clustering of the ERVB with group B rotaviruses of caprine and bovine strains from the USA. Subsequent analysis of 33 foal diarrheic samples by RT-qPCR identified 23 rotavirus B-positive cases (69.69%). These observations suggest that the ERVB originated from ruminants and was associated with outbreaks of neonatal foal diarrhea in the 2021 foaling season in Kentucky. Emergence of the ruminant-like group B rotavirus in foals clearly warrants further investigation due to the significant impact of the disease in neonatal foals and its economic impact on the equine industry.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Solomon O. Odemuyiwa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Stephan Locke
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Jocelynn Morgan
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Li Zeng
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | | | - Nathan Slovis
- Hagyard Equine Medical Institute, Lexington, KY 40511, USA;
| | - Laurie Metcalfe
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA; (W.F.G.); (L.M.)
| | - Craig N. Carter
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Peter Timoney
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - David Horohov
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Erdal Erol
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Emma Adam
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| |
Collapse
|
19
|
Abstract
Group A rotaviruses (RVAs) are the major cause of severe acute gastroenteritis (AGE) in children under 5 years of age, annually resulting in nearly 130,000 deaths worldwide. Social conditions in developing countries that contribute to decreased oral rehydration and vaccine efficacy and the lack of approved antiviral drugs position RVA as a global health concern. In this minireview, we present an update in the field of antiviral compounds, mainly in relation to the latest findings in RVA virion structure and the viral replication cycle. In turn, we attempt to provide a perspective on the possible treatments for RVA-associated AGE, with special focus on novel approaches, such as those representing broad-spectrum therapeutic options. In this context, the modulation of host factors, lipid droplets, and the viral polymerase, which is highly conserved among AGE-causing viruses, are analyzed as possible drug targets.
Collapse
|
20
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
21
|
Lakatos K, McAdams D, White JA, Chen D. Formulation and preclinical studies with a trivalent rotavirus P2-VP8 subunit vaccine. Hum Vaccin Immunother 2020; 16:1957-1968. [PMID: 31995444 PMCID: PMC7482676 DOI: 10.1080/21645515.2019.1710412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023] Open
Abstract
More effective rotavirus vaccines are essential for preventing extensive diarrheal morbidity and mortality in children under five years of age in low-resource regions. Nonreplicating rotavirus vaccines (NRRV) administered parenterally provide an alternate vaccination method to the current licensed oral vaccine. Live attenuated vaccines and may generate increased efficacy in low-resource settings because the parenteral administration route bypasses some of the challenges associated with oral administration, including differences in intestinal environments. Work described here supports development of a trivalent NRRV vaccine for parenteral administration to avoid complications of the gastrointestinal route. Recombinant VP8* subunit proteins representing some of the most prevalent strains of rotavirus infecting humans - DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) - were combined with an aluminum adjuvant and the P2 epitope of tetanus toxoid to enhance the immune response to this NRRV antigen. Vaccine formulation development included selection of aluminum hydroxide (Alhydrogel®) as an appropriate adjuvant as well as an optimal buffer to maintain antigen stability and optimize antigen binding to the adjuvant. Characterization assays were used to select the lead vaccine formulation and monitor formulation stability. The NRRV liquid formulation was stable for one year at 2°C to 8°C and four weeks at 37°C. Immunogenicity of the NRRV formulation was evaluated using a guinea pig model, where we demonstrated that the adjuvant provided a 20-fold increase in neutralization titer against a homologous antigen and that the P2-fusion also enhanced the serum neutralizing antibody responses. This vaccine candidate is currently being evaluated in human clinical trials.
Collapse
Affiliation(s)
- Kyle Lakatos
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - David McAdams
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Jessica A. White
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Dexiang Chen
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| |
Collapse
|
22
|
Shams S, Mousavi Nasab SD, Heydari H, Tafaroji J, Ahmadi N, Shams Afzali E. Detection and characterization of rotavirus G and P types from children with acute gastroenteritis in Qom, central Iran. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:S128-S133. [PMID: 33585014 PMCID: PMC7881410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022]
Abstract
AIM The aim of the study is to estimate the burden of Rotavirus gastroenteritis as well as predominant genotypes of Rotavirus among children less than 5 years of age referring to Pediatric University Hospital in Qom, Iran. BACKGROUND Gastroenteritis is the fourth most common cause of death and accounts for 16% of all deaths in children <5 years of age worldwide. METHODS During two years, 130 patients referring to a pediatric hospital were enrolled in this study. After RNA extraction, Rotaviruses were detected by the VP6 gene. Then, G-typing (G1, G2, G3, G4, G8, G9, and G12) and P-typing (P4, P6, and P8) were performed using RT-PCR and specific primers. RESULTS The results of the PCR revealed that from a total of 130 patients, 22 cases (16.9%) showed positive VP6 by RT-PCR. G1 was mostly the predominant serotype (27%), accounting for 22% of all VP7-positive isolates, followed by G9 (18%), G2 (9%), G3 (9%), and G4 (9%). None of the strains revealed the presence of G8 genotype (0%), and 5 specimens (23%) were non-typable. The frequency of P typing was P8 (50%), P6 (23%), P4 (14%), and 3 samples were P-non-typable (13%), respectively. The dominant G-P combination was G1 [8] (32%). CONCLUSION Such studies based on typing methods assists in the Rotavirus vaccine introduction by policymakers and design of new effective vaccines.
Collapse
Affiliation(s)
- Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences. Qom, Iran
| | - Seyed Dawood Mousavi Nasab
- Department of Research and Development, Pasteur Institute of Iran, Tehran, Iran
- Viral vaccine research center, Pasteur institute of Iran
| | - Hosein Heydari
- Pediatric Medicine Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Javad Tafaroji
- Pediatric Medicine Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Shams Afzali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Islam A, Hossain ME, Haider N, Rostal MK, Mukharjee SK, Ferdous J, Miah M, Rahman M, Daszak P, Rahman MZ, Epstein JH. Molecular characterization of group A rotavirus from rhesus macaques (Macaca mulatta) at human-wildlife interfaces in Bangladesh. Transbound Emerg Dis 2019; 67:956-966. [PMID: 31765042 DOI: 10.1111/tbed.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023]
Abstract
Group A rotavirus (RVA) is an important cause of diarrhoea in people, especially children, and animals globally. Due to the segmented nature of the RVA genome, animal RVA strains have the potential to adapt to the human host through reassortment with other co-infecting human viruses. Macaques share food and habitat with people, resulting in close interaction between these two species. This study aimed to detect and characterize RVA in rhesus macaques (Macaca mulatta) in Bangladesh. Faecal samples (N = 454) were collected from apparently healthy rhesus macaques from nine different sites in Bangladesh between February and March 2013. The samples were tested by one-step, real-time, reverse transcriptase-polymerase chain reaction (PCR). Four percent of samples (n = 20; 95% CI 2.7%-6.7%) were positive for RVA. RVA positive samples were further characterized by nucleotide sequence analysis of two structural protein gene fragments, VP4 (P genotype) and VP7 (G genotype). G3, G10, P[3] and P[15] genotypes were identified and were associated as G3P[3], G3P[15] and G10P[15]. The phylogenetic relationship between macaque RVA strains from this study and previously reported human strains indicates possible transmission between humans and macaques in Bangladesh. To our knowledge, this is the first report of detection and characterization of rotaviruses in rhesus macaques in Bangladesh. These data will not only aid in identifying viral sharing between macaques, human and other animals, but will also improve the development of mitigation measures for the prevention of future rotavirus outbreaks.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, USA.,Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, Vic., Australia
| | - Mohammad Enayet Hossain
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Najmul Haider
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | | | - Sanjoy Kumar Mukharjee
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY, USA.,Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Mohammed Ziaur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
24
|
Fujii Y, Oda M, Somura Y, Shinkai T. Molecular Characteristics of Novel Mono-Reassortant G9P[8] Rotavirus A Strains Possessing the NSP4 Gene of the E2 Genotype Detected in Tokyo, Japan. Jpn J Infect Dis 2019; 73:26-35. [PMID: 31564695 DOI: 10.7883/yoken.jjid.2019.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rotavirus A (RVA) has been detected in patients with gastroenteritis even after vaccine introduction in Japan. To investigate circulating RVA strains, RVA-positive stool specimens obtained in Tokyo in 2017 and 2018 were analyzed using next-generation sequencing. A total of 50 and 21 RVA samples were obtained in 2017 and 2018, respectively. In 2017, G2P[4] (40.0%) was the most prevalent strain, followed by G3P[8] (DS-1-like) (28.0%), G8P[8] (10.0%), G3P[8] (Wa-like) (8.0%), G9P[8]-E1 (8.0%), and mixed infection (6.0%). In 2018, G3P[8] (DS-1-like) (28.6%) and G9P[8]-E2 (28.6%) were the most prevalent strains, followed by G9P[8]-E1 (19.0%), G2P[4] (9.5%), G8P[8] (9.5%), and mixed infection (4.8%). Six G9P[8]-E2 strains detected in 2018 showed an atypical genotype constellation (G9P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1), which had not been reported previously. Phylogenetic analyses suggested that the RVA virus was generated by inter-genogroup reassortment between commonly circulating G9P[8] and G2P[4] strains in Japan. The G9P[8] strain seemed to be reassorted with only the NSP4 gene of the E2 genotype of the G2P[4] strain. Since this newly-emerged G9P[8]-E2 virus was detected in different locations in Tokyo, the virus appears to have already begun to spread to a wider area.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases
| | - Mayuko Oda
- Division of Virology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health
| | - Yoshiko Somura
- Division of Virology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health
| | - Takayuki Shinkai
- Division of Virology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health
| |
Collapse
|
25
|
Rotavirus Double Infection Model to Study Preventive Dietary Interventions. Nutrients 2019; 11:nu11010131. [PMID: 30634561 PMCID: PMC6357201 DOI: 10.3390/nu11010131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are the main cause of acute diarrhea among young children worldwide with an increased frequency of reinfection. Several life style factors, such as dietary components, may influence such processes by affecting the outcome of the first rotavirus infection and therefore having a beneficial impact on the anti-rotavirus immune responses during any subsequent reinfections. The aim of this research was to develop a double-infection model in rat that mimics real-life clinical scenarios and would be useful in testing whether nutritional compounds can modulate the rotavirus-associated disease and immune response. Three experimental designs and a preventive dietary-like intervention were conducted in order to achieve a differential response in the double-infected animals compared to the single-infected ones and to study the potential action of a modulatory agent in early life. Diarrhea was only observed after the first infection, with a reduction of fecal pH and fever. After the second infection an increase in body temperature was also found. The immune response against the second infection was regulated by the preventive effect of the dietary-like intervention during the first infection in terms of specific antibodies and DTH. A rotavirus-double-infection rat model has been developed and is suitable for use in future preventive dietary intervention studies.
Collapse
|
26
|
Ghosh S, Malik YS, Kobayashi N. Therapeutics and Immunoprophylaxis Against Noroviruses and Rotaviruses: The Past, Present, and Future. Curr Drug Metab 2018; 19:170-191. [PMID: 28901254 PMCID: PMC5971199 DOI: 10.2174/1389200218666170912161449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 03/19/2017] [Indexed: 12/20/2022]
Abstract
Background: Noroviruses and rotaviruses are important viral etiologies of severe gastroenteritis. Noroviruses are the primary cause of nonbacterial diarrheal outbreaks in humans, whilst rotaviruses are a major cause of childhood diarrhea. Although both enteric pathogens substantially impact human health and economies, there are no approved drugs against noroviruses and rotaviruses so far. On the other hand, whilst the currently licensed rotavirus vaccines have been successfully implemented in over 100 countries, the most advanced norovirus vaccine has recently completed phase-I and II trials. Methods: We performed a structured search of bibliographic databases for peer-reviewed research litera-ture on advances in the fields of norovirus and rotavirus therapeutics and immunoprophylaxis. Results: Technological advances coupled with a proper understanding of viral morphology and replication over the past decade has facilitated pioneering research on therapeutics and immunoprophylaxis against noroviruses and rotaviruses, with promising outcomes in human clinical trials of some of the drugs and vaccines. This review focuses on the various developments in the fields of norovirus and rotavirus thera-peutics and immunoprophylaxis, such as potential antiviral drug molecules, passive immunotherapies (oral human immunoglobulins, egg yolk and bovine colostral antibodies, llama-derived nanobodies, and anti-bodies expressed in probiotics, plants, rice grains and insect larvae), immune system modulators, probiot-ics, phytochemicals and other biological substances such as bovine milk proteins, therapeutic nanoparti-cles, hydrogels and viscogens, conventional viral vaccines (live and inactivated whole virus vaccines), and genetically engineered viral vaccines (reassortant viral particles, virus-like particles (VLPs) and other sub-unit recombinant vaccines including multi-valent viral vaccines, edible plant vaccines, and encapsulated viral particles). Conclusions: This review provides important insights into the various approaches to therapeutics and im-munoprophylaxis against noroviruses and rotaviruses..
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies.,Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yashpal Singh Malik
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
27
|
Struzik J, Szulc-Dąbrowska L. Manipulation of Non-canonical NF-κB Signaling by Non-oncogenic Viruses. Arch Immunol Ther Exp (Warsz) 2018; 67:41-48. [PMID: 30196473 PMCID: PMC6433803 DOI: 10.1007/s00005-018-0522-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Nuclear factor (NF)-κB is a major regulator of antiviral response. Viral pathogens exploit NF-κB activation pathways to avoid cellular mechanisms that eliminate the infection. Canonical (classical) NF-κB signaling, which regulates innate immune response, cell survival and inflammation, is often manipulated by viral pathogens that can counteract antiviral response. Oncogenic viruses can modulate not only canonical, but also non-canonical (alternative) NF-κB activation pathways. The non-canonical NF-κB signaling is responsible for adaptive immunity and plays a role in lymphoid organogenesis, B cell development, as well as bone metabolism. Thus, non-canonical NF-κB activation has been linked to lymphoid malignancies. However, some data strongly suggest that the non-canonical NF-κB activation pathway may also function in innate immunity and is modulated by certain non-oncogenic viruses. Collectively, these findings show the importance of studying the impact of different groups of viral pathogens on alternative NF-κB activation. This mini-review focuses on the influence of non-oncogenic viruses on the components of non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| |
Collapse
|
28
|
Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev Med Virol 2018; 28:e2003. [PMID: 30156344 DOI: 10.1002/rmv.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
Abstract
Since its discovery 40 years ago, rotavirus (RV) is considered to be a major cause of infant and childhood morbidity and mortality particularly in developing countries. Nearly every child in the world under 5 years of age is at the risk of RV infection. It is estimated that 90% of RV-associated mortalities occur in developing countries of Africa and Asia. Two live oral vaccines, RotaTeq (RV5, Merck) and Rotarix (RV1, GlaxoSmithKline) have been successfully deployed to scale down the disease burden in Europe and America, but they are less effective in Africa and Asia. In April 2009, the World Health Organization recommended the inclusion of RV vaccination in national immunization programs of all countries with great emphasis in developing countries. To date, 86 countries have included RV vaccines into their national immunization programs including 41 Global Alliance for Vaccines and Immunization eligible countries. The predominant RV genotypes circulating all over the world are G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8], while G12[P6] and G12[P8] are emerging genotypes. On account of the segmented genome, RV shows an enormous genetic diversity that leads to the evolution of new genotypes that can influence the efficacy of current vaccines. The current need is for a global RV surveillance program to monitor the prevalence and antigenic variability of new genotypes to formulate future vaccine development planning. In this review, we will summarize the previous and recent insights into RV structure, classification, and epidemiology and current status of RV vaccination around the globe and will also cover the status of RV research and vaccine policy in Pakistan.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kwe Claude Yinda
- Rega Institute, Laboratory of Clinical and Epidemiological Virology, University of Leuven, Leuven, Belgium
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Sattar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
29
|
Reovirus Nonstructural Protein σNS Acts as an RNA Stability Factor Promoting Viral Genome Replication. J Virol 2018; 92:JVI.00563-18. [PMID: 29769334 DOI: 10.1128/jvi.00563-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022] Open
Abstract
Viral nonstructural proteins, which are not packaged into virions, are essential for the replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. The reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, the activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered, using in vitro and cell-based RNA degradation experiments, that σNS increases the RNA half-life. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases the viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication.IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the family Reoviridae encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different viruses in the family Reoviridae diverge in primary sequence, they are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the family Reoviridae assort and replicate their genomes.
Collapse
|
30
|
Rigo-Adrover MDM, van Limpt K, Knipping K, Garssen J, Knol J, Costabile A, Franch À, Castell M, Pérez-Cano FJ. Preventive Effect of a Synbiotic Combination of Galacto- and Fructooligosaccharides Mixture With Bifidobacterium breve M-16V in a Model of Multiple Rotavirus Infections. Front Immunol 2018; 9:1318. [PMID: 29942312 PMCID: PMC6004411 DOI: 10.3389/fimmu.2018.01318] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022] Open
Abstract
Rotavirus (RV) causes morbidity and mortality among infants worldwide, and there is evidence that probiotics and prebiotics can have a positive influence against infective processes such as that due to RV. The aim of this study was to evidence a preventive role of one prebiotic mixture (of short-chain galactooligosaccharide/long-chain fructooligosaccharide), the probiotic Bifidobacterium breve M-16V and the combination of the prebiotic and the probiotic, as a synbiotic, in a suckling rat double-RV infection model. Hyperimmune bovine colostrum was used as protection control. The first infection was induced with RV SA11 and the second one with EDIM. Clinical variables and immune response were evaluated after both infections. Dietary interventions ameliorated clinical symptoms after the first infection. The prebiotic and the synbiotic significantly reduced viral shedding after the first infection, but all the interventions showed higher viral load than in the RV group after the second infection. All interventions modulated ex vivo antibody and cytokine production, gut wash cytokine levels and small intestine gene expression after both infections. In conclusion, a daily supplement of the products tested in this preclinical model is highly effective in preventing RV-induced diarrhea but allowing the boost of the early immune response for a future immune response against reinfection, suggesting that these components may be potential agents for modulating RV infection in infants.
Collapse
Affiliation(s)
- Maria Del Mar Rigo-Adrover
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| | | | - Karen Knipping
- Nutricia Research, Utrecht, Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Nutricia Research, Utrecht, Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jan Knol
- Nutricia Research, Utrecht, Netherlands
| | - Adele Costabile
- Health Sciences Research Centre, Life Science Department, Whitelands College, University of Roehampton, London, United Kingdom
| | - Àngels Franch
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| | - Margarida Castell
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| | - Francisco José Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| |
Collapse
|
31
|
Zhou Y, Geng P, Liu Y, Wu J, Qiao H, Xie Y, Yin N, Chen L, Lin X, Liu Y, Yi S, Zhang G, Li H, Sun M. Rotavirus-encoded virus-like small RNA triggers autophagy by targeting IGF1R via the PI3K/Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis 2017; 1864:60-68. [PMID: 29017894 DOI: 10.1016/j.bbadis.2017.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/04/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus-host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Panpan Geng
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Yalin Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Hongtu Qiao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Yuping Xie
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Na Yin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Linlin Chen
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Yang Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Shan Yi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Guangming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China.
| | - Maosheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
32
|
Feng H, Li X, Song W, Duan M, Chen H, Wang T, Dong J. Oral Administration of a Seed-based Bivalent Rotavirus Vaccine Containing VP6 and NSP4 Induces Specific Immune Responses in Mice. FRONTIERS IN PLANT SCIENCE 2017; 8:910. [PMID: 28620404 PMCID: PMC5449476 DOI: 10.3389/fpls.2017.00910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Rotavirus is the leading cause of severe diarrheal disease among newborns. Plant-based rotavirus vaccines have been developed in recent years and have been proven to be effective in animal models. In the present study, we report a bivalent vaccine candidate expressing rotavirus subunits VP6 and NSP4 fused with the adjuvant subunit B of E. coli heat-labile enterotoxin (LTB) in maize seeds. The RT-PCR and Western blot results showed that VP6 and LTB-NSP4 antigens were expressed and accumulated in maize seeds. The expression levels were as high as 0.35 and 0.20% of the total soluble protein for VP6 and LTB-NSP4, respectively. Oral administration of transgenic maize seeds successfully stimulated systemic and mucosal responses, with high titers of serum IgG and mucosal IgA antibodies, even after long-term storage. This study is the first to use maize seeds as efficient generators for the development of a bivalent vaccine against rotavirus.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
33
|
|
34
|
|
35
|
Sahmani M, Azari S, Tebianian M, Gheibi N, Pourasgari F. Higher Expression Level and Lower Toxicity of Genetically Spliced Rotavirus NSP4 in Comparison to the Full-Length Protein in E. coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:50-57. [PMID: 28959326 DOI: 10.15171/ijb.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Rotavirus group A (RVA) is recognized as a major cause of severe gastroenteritis in children and new-born animals. Nonstructural protein 4 (NSP4) is responsible for the enterotoxic activity of these viruses in the villus epithelial cells. Amino acids 114-135 of NSP4 are known to form the diarrhea-inducing region of this viral enterotoxin. Therefore, developing an NSP4 lacking the enterotoxin domain could result in the introduction of a new subunit vaccine against rotaviruses in both humans and animals. OBJECTIVES The aim of this study is the evaluation of rotavirus A NSP4 expression in E. coli expression system before and after removal of the diarrhea-inducing domain, which is the first step towards further immunological studies of the resulting protein. MATERIALS AND METHODS Splicing by overlap extension (SOEing) PCR was used to remove the diarrhea-inducing sequence from the NSP4 cDNA. Both the full-length (FL-NSP4) and the spliced (S-NSP4) cDNA amplicons were cloned into pET-32c and pGEX-6P-2. Expression levels of the recombinant proteins were evaluated in E. coli BL21 (DE3) by Western blot analysis. In addition, the toxicity of pET plasmids bearing the S-NSP4 and FL-NSP4 fragments was investigated by plasmid stability test. RESULTS For FL-NSP4, protein expression was detected for the strain containing the pGEX:FL-NSP4 plasmid, but not for the strain carrying pET:FL-NSP4. Hourly sampling up to 3 h showed that the protein production decreased by time. In contrast, expression of S-NSP4 was detected for pET:S-NSP4 strain, but not for pGEX:S-NSP4. Plasmid stability test showed that pET:S-NSP4 recombinant plasmid was almost stable, while pET:FL-NSP4 was unstable. CONCLUSIONS This is the first report of production of rotavirus NSP4 lacking the diarrhea-inducing domain (S-NSP4). SNSP4 shows less toxicity in this expression system and potentially could be a promising goal for rotavirus immunological and vaccine studies in the future.
Collapse
Affiliation(s)
- Mehdi Sahmani
- Department of Clinical Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Siavash Azari
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
36
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
37
|
Zhou Y, Wu J, Geng P, Kui X, Xie Y, Zhang L, Liu Y, Yin N, Zhang G, Yi S, Li H, Sun M. MicroRNA profile analysis of host cells before and after wild human rotavirus infection. J Med Virol 2016; 88:1497-510. [PMID: 26890217 DOI: 10.1002/jmv.24500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 01/05/2023]
Abstract
Rotavirus infection is an important cause of acute gastroenteritis in children, but the interaction between rotavirus and host cells is not completely understood. We isolated a wildtype (wt) rotavirus strain, ZTR-68(P [8] G1), which is derived from an infant with diarrhea in southwest China in 2010. In this study, we investigated host cellular miRNA expression profiles changes in response to ZTR-68 in early stage of infection to investigate the role of miRNAs upon rotavirus infection. Differentially expressed miRNAs were identified by deep sequencing and qRT-PCR and the function of their targets predicted by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. A total of 36 candidate miRNAs were identified. Comparative analysis indicated that 29 miRNAs were significantly down-regulated and 7 were up-regulated after infection. The data were provided contrasting the types of microRNAs in two different permissive cell lines (HT29 and MA104). The target assays results showed that mml-miR-7 and mml-miR-125a are involved in anti-rotavirus and virus-host interaction in host cells. These results offer clues for identifying potential candidates in vector-based antiviral strategies. J. Med. Virol. 88:1497-1510, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Panpan Geng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Xiang Kui
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Yuping Xie
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Lei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Yaling Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Na Yin
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Guangming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Shan Yi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Maosheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
38
|
Zeller M, Donato C, Trovão NS, Cowley D, Heylen E, Donker NC, McAllen JK, Akopov A, Kirkness EF, Lemey P, Van Ranst M, Matthijnssens J, Kirkwood CD. Genome-Wide Evolutionary Analyses of G1P[8] Strains Isolated Before and After Rotavirus Vaccine Introduction. Genome Biol Evol 2015; 7:2473-83. [PMID: 26254487 PMCID: PMC4607516 DOI: 10.1093/gbe/evv157] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotaviruses are the most important etiological agent of acute gastroenteritis in young children worldwide. Among the first countries to introduce rotavirus vaccines into their national immunization programs were Belgium (November 2006) and Australia (July 2007). Surveillance programs in Belgium (since 1999) and Australia (since 1989) offer the opportunity to perform a detailed comparison of rotavirus strains circulating pre- and postvaccine introduction. G1P[8] rotaviruses are the most prominent genotype in humans, and a total of 157 G1P[8] rotaviruses isolated between 1999 and 2011 were selected from Belgium and Australia and their complete genomes were sequenced. Phylogenetic analysis showed evidence of frequent reassortment among Belgian and Australian G1P[8] rotaviruses. Although many different phylogenetic subclusters were present before and after vaccine introduction, some unique clusters were only identified after vaccine introduction, which could be due to natural fluctuation or the first signs of vaccine-driven evolution. The times to the most recent common ancestors for the Belgian and Australian G1P[8] rotaviruses ranged from 1846 to 1955 depending on the gene segment, with VP7 and NSP4 resulting in the most recent estimates. We found no evidence that rotavirus population size was affected after vaccine introduction and only six amino acid sites in VP2, VP3, VP7, and NSP1 were identified to be under positive selective pressure. Continued surveillance of G1P[8] strains is needed to determine long-term effects of vaccine introductions, particularly now rotavirus vaccines are implemented in the national immunization programs of an increasing number of countries worldwide.
Collapse
Affiliation(s)
- Mark Zeller
- Laboratory of Clinical Virology, University of Leuven, Leuven, Belgium
| | - Celeste Donato
- Enteric Virus Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia Department of Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Nídia Sequeira Trovão
- Laboratory Evolutionary and Computational Virology, University of Leuven, Leuven, Belgium
| | - Daniel Cowley
- Enteric Virus Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Elisabeth Heylen
- Laboratory of Clinical Virology, University of Leuven, Leuven, Belgium
| | - Nicole C Donker
- Enteric Virus Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | | | - Asmik Akopov
- Laboratory Evolutionary and Computational Virology, University of Leuven, Leuven, Belgium
| | | | - Philippe Lemey
- Laboratory Evolutionary and Computational Virology, University of Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, University of Leuven, Leuven, Belgium
| | | | - Carl D Kirkwood
- Enteric Virus Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia Department of Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
39
|
Moutelíková R, Prodělalová J, Dufková L. Diversity of VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of porcine rotavirus C: phylogenetic analysis and description of potential new VP7, VP4, VP6, and NSP4 genotypes. Arch Virol 2015; 160:1715-27. [PMID: 25951969 DOI: 10.1007/s00705-015-2438-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Rotavirus C (RVC) is a cause of gastroenteritis in swine and has a worldwide distribution. A total of 448 intestinal or faecal samples from pigs of all ages were tested for viruses causing gastroenteritis. RVC was detected in 118 samples (26.3%). To gain information on virus diversity, the complete coding nucleotide sequences of the VP7, VP4, VP6, NSP2, NSP4, and NSP5 genes of seven RVC strains were determined. Phylogenetic analysis of VP7 nucleotide sequence divided studied Czech strains into six G genotypes (G1, G3, G5-G7, and a newly described G10 genotype) based on an 85% identity cutoff value at the nucleotide level. Analysis of the VP4 gene revealed low nucleotide sequence identities between two Czech strains and other porcine (72.2-75.3%), bovine (74.1-74.6%), and human (69.1-69.3%) RVC strains. Thus, we propose that those two Czech porcine strains comprise a new RVC VP4 genotype, P8. Analysis of the VP6 gene showed 79.9-86.8% similarity at the nucleotide level between the Czech strains and other porcine RVC strains. According to the 87% identity cutoff value, we propose the existence of three new RVC VP6 genotypes, I8-I10. Analysis of the NSP4 gene divided porcine RVC strains into two clusters (the E1 genotype and the new E4 genotype, based on an 85% nucleotide sequence identity cutoff value). Our results indicate a degree of high genetic heterogeneity, not only in the variable VP7 and VP4 genes encoding the outer capsid proteins, but also in more-conserved genes encoding the inner capsid protein VP6 and the non-structural proteins NSP2, NSP4, and NSP5. This emphasizes the need for a whole-genome-sequence-based classification system.
Collapse
Affiliation(s)
- Romana Moutelíková
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic,
| | | | | |
Collapse
|
40
|
Badillo-Godinez O, Gutierrez-Xicotencatl L, Plett-Torres T, Pedroza-Saavedra A, Gonzalez-Jaimes A, Chihu-Amparan L, Maldonado-Gama M, Espino-Solis G, Bonifaz LC, Esquivel-Guadarrama F. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine 2015; 33:4228-37. [PMID: 25850020 DOI: 10.1016/j.vaccine.2015.03.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/15/2023]
Abstract
Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent.
Collapse
Affiliation(s)
- O Badillo-Godinez
- Laboratorio de Inmunidad Viral, Facultad de Medicina, UAEM, Cuernavaca, MOR, Mexico; Facultad de Ciencias, UAEM, Cuernavaca, MOR, Mexico
| | | | - T Plett-Torres
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | | | | | - L Chihu-Amparan
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | - M Maldonado-Gama
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | - G Espino-Solis
- Instituto de Biotecnologia, UNAM, Cuernavaca, MOR, Mexico
| | - L C Bonifaz
- Unidad de Inmunohistoquimica, CMN, Hospital Siglo XXI, IMSS, Mexico, D.F., Mexico
| | - F Esquivel-Guadarrama
- Laboratorio de Inmunidad Viral, Facultad de Medicina, UAEM, Cuernavaca, MOR, Mexico.
| |
Collapse
|
41
|
Ndze VN, Esona MD, Achidi EA, Gonsu KH, Dóró R, Marton S, Farkas S, Ngeng MB, Ngu AF, Obama-Abena MT, Bányai K. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes. INFECTION GENETICS AND EVOLUTION 2014; 28:537-60. [DOI: 10.1016/j.meegid.2014.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/17/2022]
|
42
|
Hokororo A, Kidenya BR, Seni J, Mapaseka S, Mphahlele J, Mshana SE. Predominance of rotavirus G1[P8] genotype among under-five children with gastroenteritis in Mwanza, Tanzania. J Trop Pediatr 2014; 60:393-6. [PMID: 24859323 PMCID: PMC4481713 DOI: 10.1093/tropej/fmu028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We analyzed stool samples from underfives with gastroenteritis for rotavirus infection between January 2010 and June 2011. A total of 393 stool specimens were examined for rotavirus infection using enzyme-linked immunosorbent assay (ELISA). Hundred selected positive specimens were genotyped using multiplex polymerase chain reaction. Out of 393 underfives, 194 (49.4%) had rotavirus infection, with 96.9% of infected underfives being <2 years. Underfives infected with rotavirus had prolonged hospital stay than those without rotavirus infection (P = 0.0001). G1 was the most predominant G type (59%) followed by G8 (13%) while P[8] was the most predominant P type (25%). In single-type infection, common G-P combinations were G1P[8] (24%) and G1P[6] (17%). Common mixed infections were G1/G8 (16%) and P4/P8 (13%). G1 genotype is common among underfives with gastroenteritis in Mwanza. Diversity of genotypes causing gastroenteritis in Mwanza necessitates a continuous surveillance after the introduction of RotaRix® vaccine.
Collapse
Affiliation(s)
- Adolfine Hokororo
- Department of Pediatrics and Child Health Bugando Medical Centre, P.O.Box 1370, Mwanza, Tanzania
| | - Benson R. Kidenya
- Department of Biochemistry and Molecular Biology Catholic University of Health and Allied Sciences, P.O.Box 1464, Mwanza, Tanzania
| | - Jeremiah Seni
- Department of Microbiology and Immunology Catholic University of Health and Allied Sciences, P.O.Box 1464, Mwanza, Tanzania
| | - Seheri Mapaseka
- Department of Virology, University of Limpopo, College of Health and Allied Sciences, P.O.Box 173, Limpopo, South Africa
| | - Jeffrey Mphahlele
- Department of Virology, University of Limpopo, College of Health and Allied Sciences, P.O.Box 173, Limpopo, South Africa
| | - Stephen E. Mshana
- Department of Microbiology and Immunology Catholic University of Health and Allied Sciences, P.O.Box 1464, Mwanza, Tanzania
| |
Collapse
|
43
|
Jeong S, Than VT, Lim I, Kim W. Whole-genome analysis of a rare human Korean G3P rotavirus strain suggests a complex evolutionary origin potentially involving reassortment events between feline and bovine rotaviruses. PLoS One 2014; 9:e97127. [PMID: 24818762 PMCID: PMC4018271 DOI: 10.1371/journal.pone.0097127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
A rare human rotavirus, G3P[9] strain RVA/Human-tc/KOR/CAU12-2-51/2013/G3P[9], was isolated from the stool of a 9-year-old female hospitalized with acute watery diarrhea in August 2012 in South Korea using a cell culture system, and its genome was analyzed. The complete genomic constellation of the CAU12-2-51 strain revealed a novel genotype constellation for human rotavirus, G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. Phylogenetic analysis revealed that the CAU12-2-51 strain originated from feline- and bovine-like reassortment strains. The genes encoding VP4, VP7, NSP1, NSP3, NSP4, and NSP5 were related to human/feline-like and feline rotavirus strains, whereas the remaining five genes encoding VP1, VP2, VP3, VP6, and NSP2 were related to the human/bovine-like and bovine rotavirus strains. This novel strain was identified for the first time, providing evidence of feline/bovine-to-human transmission of rotavirus. The data presented herein provide information regarding rotavirus diversity and evolution.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Van Thai Than
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Inseok Lim
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
44
|
Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures. J Virol 2014; 88:5543-58. [PMID: 24599996 DOI: 10.1128/jvi.00041-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3' consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence.
Collapse
|
45
|
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol J 2013; 10:336. [PMID: 24220211 PMCID: PMC3924327 DOI: 10.1186/1743-422x-10-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
Background Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction. Methods A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study. Results Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea. Conclusions These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.
Collapse
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
46
|
Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J Virol 2013; 87:13579-88. [PMID: 24109210 DOI: 10.1128/jvi.02629-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rotavirus nonstructural protein 4 (NSP4) induces dramatic changes in cellular calcium homeostasis. These include increased endoplasmic reticulum (ER) permeability, resulting in decreased ER calcium stores and activation of plasma membrane (PM) calcium influx channels, ultimately causing a 2- to 4-fold elevation in cytoplasmic calcium. Elevated cytoplasmic calcium is absolutely required for virus replication, but the underlying mechanisms responsible for calcium influx remain poorly understood. NSP4 is an ER-localized viroporin, whose activity depletes ER calcium, which ultimately leads to calcium influx. We hypothesized that NSP4-mediated depletion of ER calcium activates store-operated calcium entry (SOCE) through activation of the ER calcium sensor stromal interaction molecule 1 (STIM1). We established and used a stable yellow fluorescent protein-expressing STIM1 cell line (YFP-STIM1) as a biosensor to assess STIM1 activation (puncta formation) by rotavirus infection and NSP4 expression. We found that STIM1 is constitutively active in rotavirus-infected cells and that STIM1 puncta colocalize with the PM-localized Orai1 SOCE calcium channel. Expression of wild-type NSP4 activated STIM1, resulting in PM calcium influx, but an NSP4 viroporin mutant failed to induce STIM1 activation and did not activate the PM calcium entry pathway. Finally, knockdown of STIM1 significantly reduced rotavirus yield, indicating STIM1 plays a critical role in virus replication. These data demonstrate that while rotavirus may ultimately activate multiple calcium channels in the PM, calcium influx is predicated on NSP4 viroporin-mediated activation of STIM1 in the ER. This is the first report of viroporin-mediated activation of SOCE, reinforcing NSP4 as a robust model to understand dysregulation of calcium homeostasis during virus infections.
Collapse
|
47
|
Rotavirus NSP4 Triggers Secretion of Proinflammatory Cytokines from Macrophages via Toll-Like Receptor 2. J Virol 2013; 87:11160-7. [PMID: 23926349 DOI: 10.1128/jvi.03099-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nonstructural protein 4 (NSP4), encoded by rotavirus, exhibits various properties linked to viral pathogenesis, including enterotoxic activity. A recent study (O. V. Kavanagh et al., Vaccine 28:3106-3111, 2010) indicated that NSP4 also has adjuvant properties, suggesting a possible role in the innate immune response to rotavirus infection. We report here that NSP4 purified from the medium of rotavirus-infected Caco-2 cells triggers the secretion of proinflammatory cytokines from macrophage-like THP-1 cells and nitric oxide from murine RAW 264.7 cells. Secretion is accompanied by the stimulation of p38 and JNK mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB. NSP4 triggered the secretion of cytokines from murine macrophages derived from wild-type but not MyD88(-/-) or Toll-like receptor 2 (TLR2(-/-)) mice and induced secretion of interleukin-8 (IL-8) from human embryonic kidney cells transfected with TLR2 but not TLR4. Our studies identify NSP4 as a pathogen-associated molecular pattern (PAMP) encoded by rotavirus and provide a mechanism for the production of proinflammatory cytokines associated with the clinical symptoms of infection in humans and animals.
Collapse
|
48
|
Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain. J Virol 2013; 87:9813-21. [PMID: 23824805 DOI: 10.1128/jvi.01146-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotavirus nonstructural protein NSP1 can inhibit expression of interferon (IFN) and IFN-stimulated gene products by inducing proteasome-mediated degradation of IFN-regulatory factors (IRFs), including IRF3, IRF5, and IRF7. All IRF proteins share an N-terminal DNA-binding domain (DBD), and IRF3, IRF5, and IRF7 contain a similar C-proximal IRF association domain (IAD) that mediates IRF dimerization. An autoinhibitory domain (ID) at the extreme C terminus interacts with the IAD, burying residues necessary for IRF dimerization. Phosphorylation of serine/threonine residues in the ID induces charge repulsions that unmask the IAD, enabling IRF dimerization and subsequent nuclear translocation. To define the region of IRF proteins targeted for degradation by NSP1, we generated IRF3 and IRF7 truncation mutants and transiently expressed each with simian SA11-4F NSP1. These assays indicated that the IAD represented a necessary and sufficient target for degradation. Because NSP1 did not mediate degradation of truncated forms of the IAD, NSP1 likely requires a structurally intact IAD for recognition and targeting of IRF proteins. IRF9, which contains an IAD-like region that directs interactions with signal inducer and activator of transcription (STAT) proteins, was also targeted for degradation by NSP1, while IRF1, which lacks an IAD, was not. Analysis of mutant forms of IRF3 unable to undergo dimerization or that were constitutively dimeric showed that both were targeted for degradation by NSP1. These results indicate that SA11-4F NSP1 can induce degradation of inactive and activated forms of IAD-containing IRF proteins (IRF3 to IRF9), allowing a multipronged attack on IFN-based pathways that promote antiviral innate and adaptive immune responses.
Collapse
|