1
|
Šudomová M, Hassan STS. Herpesvirus Diseases in Humans and Animals: Recent Developments, Challenges, and Charting Future Paths. Pathogens 2023; 12:1422. [PMID: 38133305 PMCID: PMC10745940 DOI: 10.3390/pathogens12121422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Herpesviruses, a family of enveloped DNA viruses, pose significant threats to both humans and animals [...].
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
2
|
Casper C, Corey L, Cohen JI, Damania B, Gershon AA, Kaslow DC, Krug LT, Martin J, Mbulaiteye SM, Mocarski ES, Moore PS, Ogembo JG, Phipps W, Whitby D, Wood C. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. NPJ Vaccines 2022; 7:108. [PMID: 36127367 PMCID: PMC9488886 DOI: 10.1038/s41541-022-00535-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.
Collapse
Affiliation(s)
- Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave. East, Suite 400, Seattle, WA, 98102, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6134, 50 South Drive, MSC8007, Bethesda, MD, 20892-8007, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center & Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Anne A Gershon
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY10032, US
| | - David C Kaslow
- PATH Essential Medicines, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, HHS, 9609 Medical Center Dr, Rm. 6E118 MSC 3330, Bethesda, MD, 20892, USA
| | | | - Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
3
|
Generation of Premature Termination Codon (PTC)-Harboring Pseudorabies Virus (PRV) via Genetic Code Expansion Technology. Viruses 2022; 14:v14030572. [PMID: 35336979 PMCID: PMC8950157 DOI: 10.3390/v14030572] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite many efforts and diverse approaches, developing an effective herpesvirus vaccine remains a great challenge. Traditional inactivated and live-attenuated vaccines always raise efficacy or safety concerns. This study used Pseudorabies virus (PRV), a swine herpes virus, as a model. We attempted to develop a live but replication-incompetent PRV by genetic code expansion (GCE) technology. Premature termination codon (PTC) harboring PRV was successfully rescued in the presence of orthogonal system MbpylRS/tRNAPyl pair and unnatural amino acids (UAA). However, UAA incorporating efficacy seemed extremely low in our engineered PRV PTC virus. Furthermore, we failed to establish a stable transgenic cell line containing orthogonal translation machinery for PTC virus replication, and we demonstrated that orthogonal tRNAPyl is a key limiting factor. This study is the first to demonstrate that orthogonal translation system-mediated amber codon suppression strategy could precisely control PRV-PTC engineered virus replication. To our knowledge, this is the first reported PTC herpesvirus generated by GCE technology. Our work provides a proof-of-concept for generating UAAs-controlled PRV-PTC virus, which can be used as a safe and effective vaccine.
Collapse
|
4
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
5
|
Li D, Baloch Z, Zhao Y, Bai L, Wang X, Wang G, Zhang AM, Lan K, Xia X. Establishment of Tree Shrew Animal Model for Kaposi's Sarcoma-Associated Herpesvirus (HHV-8) Infection. Front Microbiol 2021; 12:710067. [PMID: 34603235 PMCID: PMC8481836 DOI: 10.3389/fmicb.2021.710067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the most common cause of Kaposi's sarcoma (KS) and other malignant growths in humans. However, the lack of a KSHV-infected small animal model has hampered understanding of the mechanisms of KSHV infection, virus replication, pathogenesis, and persistence. This study was designed to explore the susceptibility of tree shrews as a possible KSHV-infected small animal model. A recombinant GFP (latent)/RFP (lytic)-positive rKSHV.219 strain was used to infect primary cells cultured from different tissues of tree shrews as an in vitro model and adult tree shrews as an in vivo model. KSHV latent nuclear antigen (LANA) and DNA were successfully detected in primary cells of tree shrews. Among them, tree shrew kidney epithelial cells (TSKEC) were the most susceptible cells to KSHV infection compared to other cells. KSHV genomic DNA, mRNA, and KSHV-specific proteins were readily detected in the TSKEC cultured up to 32 dpi. Moreover, KSHV DNA and mRNA transcription were also readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of tree shrews infected with KSHV. Haematoxylin and eosin (HE) staining showed lymphocyte infiltration, lymphoid tissue focal aggregation, alveolar wall thickening, hepatocyte edema, hepatic necrosis in the spleen, lung, and liver of KSHV-infected animals. Additionally, immune-histochemical (IHC) staining showed that LANA or ORF62-positive cells were present in the spleen, lung, liver, and kidney of KSHV-infected tree shrews. Here, we have successfully established in vitro and in vivo KSHV latent infection in tree shrews. This small animal model is not only useful for studying the pathogenesis of KSHV in vivo but can also be a useful model to study transmission routes of viral infection and a useful platform to characterize the novel therapeutics against KSHV.
Collapse
Affiliation(s)
- Daoqun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xing Wang
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Gang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Angius F, Ingianni A, Pompei R. Human Herpesvirus 8 and Host-Cell Interaction: Long-Lasting Physiological Modifications, Inflammation and Related Chronic Diseases. Microorganisms 2020; 8:E388. [PMID: 32168836 PMCID: PMC7143610 DOI: 10.3390/microorganisms8030388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/13/2023] Open
Abstract
Oncogenic and latent-persistent viruses belonging to both DNA and RNA groups are known to cause serious metabolism alterations. Among these, the Human Herpesvirus 8 (HHV8) infection induces stable modifications in biochemistry and cellular metabolism, which in turn affect its own pathological properties. HHV8 enhances the expression of insulin receptors, supports the accumulation of neutral lipids in cytoplasmic lipid droplets and induces alterations in both triglycerides and cholesterol metabolism in endothelial cells. In addition, HHV8 is also known to modify immune response and cytokine production with implications for cell oxidative status (i.e., reactive oxygen species activation). This review underlines the recent findings regarding the role of latent and persistent HHV8 viral infection in host physiology and pathogenesis.
Collapse
|
7
|
Human DNA tumor viruses and oncogenesis. Anim Biotechnol 2020. [PMCID: PMC7329114 DOI: 10.1016/b978-0-12-811710-1.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA tumor viruses induce tumors in animals and humans by transforming the infected host cells. These oncogenic viruses encode viral proteins, which deregulate the integrated framework of host cellular processes, while preventing cell death. Studies revealed newer insights as to how specific tumor targets could be modulated for tumor therapy.
Collapse
|
8
|
Mulama DH, Mutsvunguma LZ, Totonchy J, Ye P, Foley J, Escalante GM, Rodriguez E, Nabiee R, Muniraju M, Wussow F, Barasa AK, Ogembo JG. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits. Vaccine 2019; 37:4184-4194. [PMID: 31201053 DOI: 10.1016/j.vaccine.2019.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.
Collapse
Affiliation(s)
- David H Mulama
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Biological Sciences Department, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Peng Ye
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joslyn Foley
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gabriela M Escalante
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ramina Nabiee
- Chapman University, School of Pharmacy, Irvine, CA, United States
| | - Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Felix Wussow
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Anne K Barasa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States.
| |
Collapse
|
9
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
10
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
11
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
12
|
Etta EM, Alayande DP, Mavhandu-Ramarumo LG, Gachara G, Bessong PO. HHV-8 Seroprevalence and Genotype Distribution in Africa, 1998⁻2017: A Systematic Review. Viruses 2018; 10:E458. [PMID: 30150604 PMCID: PMC6164965 DOI: 10.3390/v10090458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Human herpes virus type 8 (HHV-8) is the causative agent of Kaposi's sarcoma (KS). We systematically reviewed literature published between 1998 and 2017, according to the PRISMA guidelines, to understand the distribution of HHV-8 infection in Africa. More than two-thirds (64%) of studies reported on seroprevalence and 29.3% on genotypes; 9.5% were on both seroprevalence and genotypes. About 45% of African countries had data on HHV-8 seroprevalence exclusively, and more than half (53%) had data on either seroprevalence or genotypes. Almost half (47%) of the countries had no data on HHV-8 infection. There was high heterogeneity in the types of tests and interpretation algorithms used in determining HHV-8 seropositivity across the different studies. Generally, seroprevalence ranged from 2.0% in a group of young children in Eritrea to 100% in a small group of individuals with KS in Central African Republic, and in a larger group of individuals with KS in Morocco. Approximately 16% of studies reported on children. Difference in seroprevalence across the African regions was not significant (95% CI, χ² = 0.86; p = 0.35), although specifically a relatively significant level of infection was observed in HIV-infected children. About 38% of the countries had data on K1 genotypes. K1 genotypes A, A5, B, C, F and Z occurred at frequencies of 5.3%, 26.3%, 42.1%, 18.4%, 5.3% and 2.6%, respectively. Twenty-three percent of the countries had data for K15 genotypes, and genotypes P, M and N occurred at frequencies of 52.2%, 39.1%, and 8.7%, respectively. Data on HHV-8 inter-genotype recombinants in Africa are scanty. HHV-8 may be endemic in the entire Africa continent but there is need for a harmonized testing protocol for a better understanding of HHV-8 seropositivity. K1 genotypes A5 and B, and K15 genotypes P and M, from Africa, should be considered in vaccine design efforts.
Collapse
Affiliation(s)
- Elizabeth M Etta
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou 0950, South Africa.
| | - Doyinmola P Alayande
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou 0950, South Africa.
| | | | - George Gachara
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi 34556-00100, Kenya.
| | - Pascal O Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou 0950, South Africa.
| |
Collapse
|
13
|
Billon E, Stoppa AM, Mescam L, Bocci M, Monneur A, Perrot D, Bertucci F. Reversible rituximab-induced rectal Kaposi's sarcoma misdiagnosed as ulcerative colitis in a patient with HIV-negative follicular lymphoma. Clin Sarcoma Res 2018; 8:11. [PMID: 29992013 PMCID: PMC5994652 DOI: 10.1186/s13569-018-0097-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
Background Kaposi’s sarcoma is a low-grade mesenchymal angioproliferative tumor, most commonly observed in immunocompromised individuals, such as HIV-infected patients. Iatrogenic Kaposi’s sarcoma occurs in patients undergoing immunosuppressive therapies. Rituximab is a chimeric monoclonal antibody targeted against the pan B cell marker CD20. Because of its immunosuppressive effects through reduction of mature B-cells, it may exacerbate Kaposi’s sarcoma in HIV-positive patients. Rituximab-related Kaposi’s sarcomas have been previously reported in only two HIV-negative patients and were treated surgically. Case presentation Here, we report on a Kaposi’s sarcoma that developed under rituximab treatment in a HIV-negative 55-year-old patient treated for follicular lymphoma. The lesion developed during the maintenance rituximab therapy at the rectal level with an aspect of apparent ulcerative colitis, without any cutaneous lesion. The premature stop of rituximab led to the complete regression of Kaposi’s sarcoma, without any additional specific treatment. Conclusions To our knowledge, this is the third case of Kaposi’s sarcoma diagnosed under rituximab in a HIV-negative patient, the first one at the rectal level and the first one that completely regresses after stop of rituximab. This case raises awareness of iatrogenic Kaposi’s sarcoma in HIV-negative patients treated with rituximab, and further highlights the importance of immunosuppression in the pathophysiology of disease.
Collapse
Affiliation(s)
- Emilien Billon
- 1INSERM UMR1068, CNRS UMR725, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, 232 Bd de Sainte-Marguerite, 13009 Marseille, France
| | - Anne-Marie Stoppa
- 2Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Lena Mescam
- 3Department of Pathology, Institut Paoli-Calmettes, Marseille, France
| | - Massimo Bocci
- 4Department of Digestive Endoscopy Centre Hospitalier Edmond Garcin, Aubagne, France
| | - Audrey Monneur
- 1INSERM UMR1068, CNRS UMR725, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, 232 Bd de Sainte-Marguerite, 13009 Marseille, France
| | - Delphine Perrot
- 1INSERM UMR1068, CNRS UMR725, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, 232 Bd de Sainte-Marguerite, 13009 Marseille, France.,French Sarcoma Group, Paris, France
| | - François Bertucci
- 1INSERM UMR1068, CNRS UMR725, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, 232 Bd de Sainte-Marguerite, 13009 Marseille, France.,5Faculty of Medicine, Aix-Marseille University, Marseille, France.,French Sarcoma Group, Paris, France
| |
Collapse
|
14
|
Du Y, Xin L, Shi Y, Zhang TH, Wu NC, Dai L, Gong D, Brar G, Shu S, Luo J, Reiley W, Tseng YW, Bai H, Wu TT, Wang J, Shu Y, Sun R. Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science 2018; 359:290-296. [PMID: 29348231 DOI: 10.1126/science.aan8806] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
In conventional attenuated viral vaccines, immunogenicity is often suboptimal. Here we present a systematic approach for vaccine development that eliminates interferon (IFN)-modulating functions genome-wide while maintaining virus replication fitness. We applied a quantitative high-throughput genomics system to influenza A virus that simultaneously measured the replication fitness and IFN sensitivity of mutations across the entire genome. By incorporating eight IFN-sensitive mutations, we generated a hyper-interferon-sensitive (HIS) virus as a vaccine candidate. HIS virus is highly attenuated in IFN-competent hosts but able to induce transient IFN responses, elicits robust humoral and cellular immune responses, and provides protection against homologous and heterologous viral challenges. Our approach, which attenuates the virus and promotes immune responses concurrently, is broadly applicable for vaccine development against other pathogens.
Collapse
Affiliation(s)
- Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA. .,Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing 102206, China
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Nicholas C Wu
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Sara Shu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Jiadi Luo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.,Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410005, China
| | | | - Yen-Wen Tseng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Hongyan Bai
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing 102206, China
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Jieru Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing 102206, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA. .,Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Barasa AK, Ye P, Phelps M, Arivudainambi GT, Tison T, Ogembo JG. BALB/c mice immunized with a combination of virus-like particles incorporating Kaposi sarcoma-associated herpesvirus (KSHV) envelope glycoproteins gpK8.1, gB, and gH/gL induced comparable serum neutralizing antibody activity to UV-inactivated KSHV. Oncotarget 2018; 8:34481-34497. [PMID: 28404899 PMCID: PMC5470984 DOI: 10.18632/oncotarget.15605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is estimated to account for over 44,000 new cases of Kaposi sarcoma annually, with 84% occurring in Africa, where the virus is endemic. To date, there is no prophylactic vaccine against KSHV. KSHV gpK8.1, gB, and gH/gL glycoproteins, implicated in the virus entry into host cells, are attractive vaccine targets for eliciting potent neutralizing antibodies (nAbs) against virus infection. We incorporated gpK8.1, gB, or gH/gL on the surface of virus-like particles (VLPs) and characterized these VLPs for their composition, size, and functionality. To determine which viral glycoprotein(s) elicit the most effective serum-nAbs, we immunized BALB/c mice with gpK8.1, gB, or gH/gL VLPs individually or in combination. Neutralizing antibody assay revealed that sera from mice immunized with the VLPs inhibited KSHV infection of HEK-293 cells in a dose-dependent manner. As a single immunogen, gpK8.1 VLPs stimulated comparable nAb activity to that of UV-inactivated KSHV (UV-KSHV). In contrast, UV-KSHV stimulated higher titers of nAb compared to gB (p = 0.0316) or gH/gL (p = 0.0486). Mice immunized with the combination of gB and gH/gL VLPs had a better nAb response than those immunized with either gB (p = 0.0268), or gH/gL (p = 0.0397) as single VLP immunogens. Immunization with any VLP combination stimulated comparable nAb activity to UV-KSHV serum. Our data provide the first evidence that KSHV gpK8.1, gB, and gH/gL glycoproteins can be incorporated onto the surface of VLPs and used as prophylactic vaccine candidates, with potential to prevent KSHV infection.
Collapse
Affiliation(s)
- Anne K Barasa
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Peng Ye
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Meredith Phelps
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Timelia Tison
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Javier Gordon Ogembo
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
16
|
Fujiwara S. Animal Models of Human Gammaherpesvirus Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:413-436. [PMID: 29896678 DOI: 10.1007/978-981-10-7230-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Humans are the only natural host of both Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), and this strict host tropism has hampered the development of animal models of these human gammaherpesviruses. To overcome this difficulty and develop useful models for these viruses, three main approaches have been employed: first, experimental infection of laboratory animals [mainly new-world non-human primates (NHPs)] with EBV or KSHV; second, experimental infection of NHPs (mainly old-world NHPs) with EBV- or KSHV-related gammaherpesviruses inherent to respective NHPs; and third, experimental infection of humanized mice, i.e., immunodeficient mice engrafted with functional human cells or tissues (mainly human immune system components) with EBV or KSHV. These models have recapitulated diseases caused by human gammaherpesviruses, their asymptomatic persistent infections, as well as both innate and adaptive immune responses to them, facilitating the development of novel therapeutic and prophylactic measures against these viruses.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan. .,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Lieten S, Goossens A, Nguyen S, Gutermuth J, Mets T, Beyer I. A twenty-year evolution of a Kaposi's sarcoma. Eur Geriatr Med 2017. [DOI: 10.1016/j.eurger.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rochford R, Korir A, Newton R. Viral-associated malignancies in Africa: are viruses 'infectious traces' or 'dominant drivers'? Curr Opin Virol 2016; 20:28-33. [PMID: 27551983 DOI: 10.1016/j.coviro.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/24/2022]
Abstract
Since the discovery of Epstein-Barr virus (EBV) the first human virus associated with cancer in 1964, the number of human malignancies associated with viruses has grown. A review of cancer incidence reveals substantial variation in the incidence of such cancers around the world. In some parts of Africa, the majority of cancers are caused by infectious agents. However, there remain huge challenges in measuring the burden of cancer, especially in sub-Saharan Africa. Despite this limitation, it is clear that viral-associated malignancies are key drivers of cancer incidence rates in Africa. Prevention is available through vaccination for some but development of vaccines for others remains an important the goal.
Collapse
Affiliation(s)
| | - Anne Korir
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Newton
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda; University of York, UK
| |
Collapse
|
19
|
Iatrogenic Kaposi's sarcoma following therapy for rheumatoid arthritis. Postepy Dermatol Alergol 2016; 33:149-51. [PMID: 27279826 PMCID: PMC4884783 DOI: 10.5114/ada.2016.59163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/23/2015] [Indexed: 12/12/2022] Open
|
20
|
High Prevalence of Human Herpesvirus 8 Infection in Diabetes Type 2 Patients and Detection of a New Virus Subtype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:41-51. [PMID: 27864801 DOI: 10.1007/5584_2016_73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The prevalence of Human Herpesvirus 8 (HHV8) DNA and antiviral antibodies in Diabetes type 2 (DM2) and control subjects was studied, in order to confirm a possible link between DM2 and HHV8 infection. The HHV8-DNA from diabetic patients was typed for detecting possible genomic differences with known HHV8 reference viruses.DM2 patients and healthy controls were examined for the presence of HHV8 DNA into the peripheral blood lymphocytes. Both anti-lytic and latent phase antibodies were detected in HHV8 positive and negative diabetic patients, as well in a number of controls. The HHV8 ORF K1 and ORF 26 genes from DM2 patients were typed and matched to reference strains.A significant prevalence of HHV8 DNA in DM2 subjects versus healthy controls was detected (about 58 % against 27 %). Anti-lytic phase, but not anti-latent phase antibodies, were significantly increased in DM2 patients versus controls. In addition, about 30 % of HHV8 strains isolated from DM2 lymphocytes showed consistent differences in the ORF 26 gene sequence, so that a new HHV8 subtype was proposed. These findings give additional support to the hypothesis that HHV8 could be considered an additional risk factor for DM2 onset.
Collapse
|
21
|
Current strategies for prevention of oral manifestations of human immunodeficiency virus. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 121:29-38. [PMID: 26679357 DOI: 10.1016/j.oooo.2015.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Strategies to prevent new-onset and recurrent oral manifestations of human immunodeficiency virus (HIV), including fungal, viral, neoplastic, and idiopathic mucosal diseases and destructive periodontal conditions, are poorly understood. STUDY DESIGN A structured review of the English language literature in PubMed through March 2015 was conducted to identify current prevention strategies for initial and recurrent oral manifestations of HIV. RESULTS Pharmacologic approaches, including combination antiretroviral therapy or other targeted therapies for prevention of oropharyngeal candidiasis, orolabial herpes, oral hairy leukoplakia, oral Kaposi sarcoma, linear gingival erythema and necrotizing ulcerative periodontitis were found. Nonpharmacologic approaches for prevention of oropharyngeal candidiasis, orolabial herpes, oral hairy leukoplakia, and necrotizing ulcerative periodontitis are presented. CONCLUSIONS Current strategies for the prevention of oral manifestations of HIV include pharmacologic and nonpharmacologic therapies. Immune reconstitution inflammatory syndrome, future vaccine therapy for pathogens causing oral mucosal disease, and the possible role of oral inflammatory disease prevention in controlling HIV disease progression are discussed.
Collapse
|
22
|
Gillet L, Frederico B, Stevenson PG. Host entry by gamma-herpesviruses--lessons from animal viruses? Curr Opin Virol 2015; 15:34-40. [PMID: 26246389 DOI: 10.1016/j.coviro.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
The oncogenicity of gamma-herpesviruses (γHVs) motivates efforts to control them and their persistence makes early events key targets for intervention. Human γHVs are often assumed to enter naive hosts orally and infect B cells directly. However, neither assumption is supported by direct evidence, and vaccination with the Epstein-Barr virus (EBV) gp350, to block virion binding to B cells, failed to reduce infection rates. Thus, there is a need to re-evaluate assumptions about γHV host entry. Given the difficulty of analysing early human infections, potentially much can be learned from animal models. Genomic comparisons argue that γHVs colonized mammals long before humans speciation, and so that human γHVs are unlikely to differ dramatically in behaviour from those of other mammals. Murid Herpesvirus-4 (MuHV-4), which like EBV and the Kaposi's Sarcoma-associated Herpesvirus (KSHV) persists in memory B cells, enters new hosts via olfactory neurons and exploits myeloid cells to spread. Integrating these data with existing knowledge of human and veterinary γHVs suggests a new model of host entry, with potentially important implications for infection control.
Collapse
Affiliation(s)
- Laurent Gillet
- Immunology/Vaccinology, Faculty of Veterinary Medicine, FARAH, University of Liège, Belgium.
| | - Bruno Frederico
- Cancer Research UK, Lincoln's Inn Fields, London, United Kingdom
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, University of Queensland and Royal Children's Hospital, Brisbane, Australia
| |
Collapse
|
23
|
Olp LN, Minhas V, Gondwe C, Kankasa C, Wojcicki J, Mitchell C, West JT, Wood C. Effects of Antiretroviral Therapy on Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Transmission Among HIV-Infected Zambian Children. J Natl Cancer Inst 2015; 107:djv189. [PMID: 26185193 DOI: 10.1093/jnci/djv189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The risk of Kaposi's sarcoma-associated herpesvirus (KSHV) acquisition among children is increased by HIV infection. Antiretroviral therapy (ART) was recently made widely available to HIV-infected children in Zambia. However, the impact of early ART on KSHV transmission to HIV-infected children is unknown. METHODS We enrolled and followed a cohort of 287 HIV-exposed, KSHV-negative children under 12 months of age from Lusaka, Zambia, to identify KSHV seroconversion events. Potential factors associated with KSHV infection-with an emphasis on HIV, ART, and immunological measures-were assessed through structured questionnaires and blood analyses. Incidence rate, Kaplan-Meier, and multivariable Cox regression models were used to assess differences in time to event (KSHV seroconversion) between groups. All statistical tests were two-sided. RESULTS During follow-up, 151 (52.6%) children underwent KSHV seroconversion. Based on 3552 months of follow-up, we observed similar KSHV incidence rates between HIV-infected and uninfected children. Among HIV-infected children, ART-naïve children had statistically significantly increased risk of KSHV acquisition (adjusted hazard ratio [AHR] = 5.04, 95% confidence interval [CI] = 2.36 to 10.80, P < .001). Time-updated CD4(+) T-cell percentage was also statistically significantly associated with risk of KSHV acquisition (AHR = 0.82, 95% CI = 0.74 to 0.92, P < .001), such that each 5% increase of CD4(+) T-cells represented an 18% decrease in risk of acquiring KSHV. CONCLUSIONS Our data suggest that early ART and prevention of immune suppression reduce the risk of KSHV acquisition among HIV-infected children in an area where both viruses are highly endemic. This study highlights the importance of programs in Africa to provide children with ART immediately after HIV infection is diagnosed.
Collapse
Affiliation(s)
- Landon N Olp
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - Veenu Minhas
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - Clement Gondwe
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - Chipepo Kankasa
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - Janet Wojcicki
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - Charles Mitchell
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - John T West
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM)
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE (LNO, VM, JTW); Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia (CG, CK); Department of Pediatrics and Department of Nutrition, University of California, San Francisco, CA (JW); Department of Pediatric Immunology/Infectious Diseases, University of Miami School of Medicine, Miami, FL (CM); Nebraska Center for Virology and School of Biological Sciences (CW) and Department of Biochemistry (CW), University of Nebraska-Lincoln, Lincoln, NE. Current affiliation: Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha NE (VM).
| |
Collapse
|
24
|
Coen N, Duraffour S, Snoeck R, Andrei G. KSHV targeted therapy: an update on inhibitors of viral lytic replication. Viruses 2014; 6:4731-59. [PMID: 25421895 PMCID: PMC4246246 DOI: 10.3390/v6114731] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing.
Collapse
Affiliation(s)
- Natacha Coen
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Sophie Duraffour
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Bohlius J, Valeri F, Maskew M, Prozesky H, Garone D, Sengayi M, Fox MP, Davies MA, Egger M. Kaposi's Sarcoma in HIV-infected patients in South Africa: Multicohort study in the antiretroviral therapy era. Int J Cancer 2014; 135:2644-52. [PMID: 24729433 DOI: 10.1002/ijc.28894] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022]
Abstract
The incidence of Kaposi's Sarcoma (KS) is high in South Africa but the impact of antiretroviral therapy (ART) is not well defined. We examined incidence and survival of KS in HIV-infected patients enrolled in South African ART programs. We analyzed data of three ART programs: Khayelitsha township and Tygerberg Hospital programs in Cape Town and Themba Lethu program in Johannesburg. We included patients aged >16 years. ART was defined as a regimen of at least three drugs. We estimated incidence rates of KS for patients on ART and not on ART. We calculated Cox models adjusted for age, sex and time-updated CD4 cell counts and HIV-1 RNA. A total of 18,254 patients (median age 34.5 years, 64% female, median CD4 cell count at enrolment 105 cells/μL) were included. During 37,488 person-years follow-up 162 patients developed KS. The incidence was 1,682/100,000 person-years (95% confidence interval [CI] 1,406-2,011) among patients not receiving ART and 138/100,000 person-years (95% CI 102-187) among patients on ART. The adjusted hazard ratio comparing time on ART with time not on ART was 0.19 (95% CI 0.13-0.28). Low CD4 cell counts (time-updated) and male sex were also associated with KS. Estimated survival of KS patients at one year was 72.2% (95% CI 64.9-80.2) and higher in men than in women. The incidence of KS is substantially lower on ART than not on ART. Timely initiation of ART is essential to prevent KS and KS-associated morbidity and mortality in South Africa and other regions in Africa with a high burden of HIV.
Collapse
Affiliation(s)
- Julia Bohlius
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rohner E, Wyss N, Trelle S, Mbulaiteye SM, Egger M, Novak U, Zwahlen M, Bohlius J. HHV-8 seroprevalence: a global view. Syst Rev 2014; 3:11. [PMID: 24521144 PMCID: PMC3925012 DOI: 10.1186/2046-4053-3-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/21/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human herpes virus 8 (HHV-8) is the underlying infectious cause of Kaposi sarcoma (KS) and other proliferative diseases; that is, primary effusion lymphoma and multicentric Castleman disease. In regions with high HHV-8 seroprevalence in the general population, KS accounts for a major burden of disease. Outside these endemic regions, HHV-8 prevalence is high in men who have sex with men (MSM) and in migrants from endemic regions. We aim to conduct a systematic literature review and meta-analysis in order 1) to define the global distribution of HHV-8 seroprevalence (primary objective) and 2) to identify risk factors for HHV-8 infection, with a focus on HIV status (secondary objective). METHODS/DESIGN We will include observational studies reporting data on seroprevalence of HHV-8 in children and/or adults from any region in the world. Case reports and case series as well as any studies with fewer than 50 participants will be excluded. We will search MEDLINE, EMBASE, and relevant conference proceedings without language restriction. Two reviewers will independently screen the identified studies and extract data on study characteristics and quality, study population, risk factors, and reported outcomes, using a standardized form. For the primary objective we will pool the data using a fully bayesian approach for meta-analysis, with random effects at the study level. For the secondary objective (association of HIV and HHV-8) we aim to pool odds ratios for the association of HIV and HHV-8 using a fully bayesian approach for meta-analysis, with random effects at the study level. Sub-group analyses and meta-regression analyses will be used to explore sources of heterogeneity, including factors such as geographical region, calendar years of recruitment, age, gender, ethnicity, socioeconomic status, different risk groups for sexually and parenterally transmitted infections (MSM, sex workers, hemophiliacs, intravenous drug users), comorbidities such as organ transplantation and malaria, test(s) used to measure HHV-8 infection, study design, and study quality. DISCUSSION Using the proposed systematic review and meta-analysis, we aim to better define the global seroprevalence of HHV-8 and its associated risk factors. This will improve the current understanding of HHV-8 epidemiology, and could suggest measures to prevent HHV-8 infection and to reduce its associated cancer burden.
Collapse
Affiliation(s)
- Eliane Rohner
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gisserot O, Romeo E, Boudin L, Tsitsi Nding Tsogou P, Abed S, Bladé JS, de Jauréguiberry JP. [Can we prevent or cure infection-related cancers?]. Rev Med Interne 2013; 35:259-63. [PMID: 24359725 DOI: 10.1016/j.revmed.2013.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023]
Abstract
Infections are an important cause of cancer in the world, representing approximately 16% of the neoplasia. Ten infectious agents have been classified as carcinogens of group I. Four of these pathogens (Helicobacter pylori, hepatitis B and C viruses, and some human papillomavirus) are responsible for 95% of cases of infection-related cancers. The carcinogenesis mechanisms are multiple, either direct via certain proteins from these microorganisms, or more often indirect through chronic inflammation. This allowed to consider prevention of certain cancers, for example with a prophylactic vaccine strategy. Advances were also made in the curative field. However, efforts remain to be done to discover new infectious causes of cancer and refine the understanding of the mechanisms of carcinogenesis, for a better targeting of anticancer therapeutics.
Collapse
Affiliation(s)
- O Gisserot
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France.
| | - E Romeo
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France
| | - L Boudin
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France
| | - P Tsitsi Nding Tsogou
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France
| | - S Abed
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France
| | - J-S Bladé
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France
| | - J-P de Jauréguiberry
- Service de médecine interne-oncologie, hôpital d'instruction des armées Sainte-Anne, BP 600, 83800 Toulon cedex 9, France
| |
Collapse
|