1
|
Wang YT, Branche E, Xie J, McMillan RE, Ana-Sosa-Batiz F, Lu HH, Li QH, Clark AE, Valls Cuevas JM, Viramontes KM, Garretson AF, Dos Santos Alves RP, Heinz S, Benner C, Carlin AF, Shresta S. Zika but not Dengue virus infection limits NF-κB activity in human monocyte-derived dendritic cells and suppresses their ability to activate T cells. Nat Commun 2025; 16:2695. [PMID: 40133263 PMCID: PMC11937581 DOI: 10.1038/s41467-025-57977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Understanding flavivirus immunity is critical for the development of pan-flavivirus vaccines. Dendritic cells (DC) coordinate antiviral innate and adaptive immune responses, and they can be targeted by flaviviruses as a mechanism of immune evasion. Using an unbiased genome-wide approach designed to specifically identify flavivirus-modulated pathways, we found that, while dengue virus (DENV) robustly activates DCs, Zika virus (ZIKV) causes minimal activation of genes involved in DC activation, maturation, and antigen presentation, reducing cytokine secretion and the stimulation of allogeneic and peptide-specific T cell responses. Mechanistically, ZIKV inhibits DC maturation by suppressing NF-κB p65 recruitment and the subsequent transcription of proinflammatory and DC maturation-related genes. Thus, we identify a divergence in the effects of ZIKV and DENV on the host T cell response, highlighting the need to factor such differences into the design of anti-flavivirus vaccines.
Collapse
Affiliation(s)
- Ying-Ting Wang
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Emilie Branche
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jialei Xie
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E McMillan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | | | - Hsueh-Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | - Alex E Clark
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joan M Valls Cuevas
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Karla M Viramontes
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Aaron F Garretson
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Sven Heinz
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Khanra M, Ghosh I, Khatun S, Ghosh N, Gayen S. Dengue virus-host interactions: Structural and mechanistic insights for future therapeutic strategies. J Struct Biol 2025; 217:108196. [PMID: 40090430 DOI: 10.1016/j.jsb.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Dengue pathogen, transmitted by mosquitoes, poses a growing threat as it is capable of inflicting severe illness in humans. Around 40% of the global population is currently affected by the virus, resulting in thousands of fatalities each year. The genetic blueprint of the virus comprises 10 proteins. Three proteins serve as structural components: the capsid (C), the precursor of the membrane protein (PrM/M), and the envelope protein (E). The other proteins serve as non-structural (NS) proteins, consisting of NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. The virus relies on these NS proteins to expropriate host proteins for its replication. During their intracellular replication, these viruses engage with numerous host components and exploit the cellular machinery for tasks such as entry into various organs, propagation, and transmission. This review explores mainly the relationship between dengue viral protein and host proteins elucidating the development of viral-host interactions. These relationships between the virus and the host give important information on the processes behind viral replication and the etiology of disease, which in turn facilitates the creation of more potent treatment strategies.
Collapse
Affiliation(s)
- Moumita Khanra
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Indrani Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, Nagraik R, Kumar V, Pandey S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. BIOSENSORS 2023; 13:202. [PMID: 36831968 PMCID: PMC9953454 DOI: 10.3390/bios13020202] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/25/2023]
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Collapse
Affiliation(s)
- Akash Kumaran
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nathan Jude Serpes
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Tisha Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Vaneet Kumar
- Department of Natural Science, CT University, Ludhiana 142024, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
4
|
Branche E, Wang YT, Viramontes KM, Valls Cuevas JM, Xie J, Ana-Sosa-Batiz F, Shafee N, Duttke SH, McMillan RE, Clark AE, Nguyen MN, Garretson AF, Crames JJ, Spann NJ, Zhu Z, Rich JN, Spector DH, Benner C, Shresta S, Carlin AF. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun 2022; 13:5341. [PMID: 36097162 PMCID: PMC9465152 DOI: 10.1038/s41467-022-33041-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/29/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of Zika virus (ZIKV) as a global health threat has highlighted the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV infects dendritic cells (DC), which have pivotal functions in activating innate and adaptive antiviral responses; however, the mechanisms by which DC function is subverted to establish ZIKV infection are unclear. Here we develop a genomics profiling method that enables discrete analysis of ZIKV-infected versus neighboring, uninfected primary human DCs to increase the sensitivity and specificity with which ZIKV-modulated pathways can be identified. The results show that ZIKV infection specifically increases the expression of genes enriched for lipid metabolism-related functions. ZIKV infection also increases the recruitment of sterol regulatory element-binding protein (SREBP) transcription factors to lipid gene promoters, while pharmacologic inhibition or genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus identify SREBP2-activated transcription as a mechanism for promoting ZIKV infection amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Emilie Branche
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Joan M Valls Cuevas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jialei Xie
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fernanda Ana-Sosa-Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Rachel E McMillan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Aaron F Garretson
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jan J Crames
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Nathan J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Deborah H Spector
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
So RWL, Chung SW, Lau HHC, Watts JJ, Gaudette E, Al-Azzawi ZAM, Bishay J, Lin LTW, Joung J, Wang X, Schmitt-Ulms G. Application of CRISPR genetic screens to investigate neurological diseases. Mol Neurodegener 2019; 14:41. [PMID: 31727120 PMCID: PMC6857349 DOI: 10.1186/s13024-019-0343-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome-scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing. The emphasis here will be on design considerations and concepts underlying this methodology. We will highlight groundbreaking studies in the CRISPR-Cas9 functional genetics field and discuss strengths and limitations of this technology for neurological disease applications. Finally, we will provide practical guidance on navigating the many choices that need to be made when implementing a CRISPR-Cas9 functional genetic screen for the study of neurological diseases.
Collapse
Affiliation(s)
- Raphaella W. L. So
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Sai Wai Chung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Heather H. C. Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Jeremy J. Watts
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Erin Gaudette
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Zaid A. M. Al-Azzawi
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Jossana Bishay
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Lilian Tsai-Wei Lin
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Julia Joung
- Departments of Biological Engineering and Brain and Cognitive Science, and McGovern Institute for Brain Research at MIT, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Xinzhu Wang
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| |
Collapse
|
6
|
Kim J, Koo BK, Yoon KJ. Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses 2019; 11:v11020124. [PMID: 30704043 PMCID: PMC6409779 DOI: 10.3390/v11020124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pathologies induced by viral infections have undergone extensive study, with traditional model systems such as two-dimensional (2D) cell cultures and in vivo mouse models contributing greatly to our understanding of host-virus interactions. However, the technical limitations inherent in these systems have constrained efforts to more fully understand such interactions, leading to a search for alternative in vitro systems that accurately recreate in vivo physiology in order to advance the study of viral pathogenesis. Over the last decade, there have been significant technological advances that have allowed researchers to more accurately model the host environment when modeling viral pathogenesis in vitro, including induced pluripotent stem cells (iPSCs), adult stem-cell-derived organoid culture systems and CRISPR/Cas9-mediated genome editing. Such technological breakthroughs have ushered in a new era in the field of viral pathogenesis, where previously challenging questions have begun to be tackled. These include genome-wide analysis of host-virus crosstalk, identification of host factors critical for viral pathogenesis, and the study of viral pathogens that previously lacked a suitable platform, e.g., noroviruses, rotaviruses, enteroviruses, adenoviruses, and Zika virus. In this review, we will discuss recent advances in the study of viral pathogenesis and host-virus crosstalk arising from the use of iPSC, organoid, and CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|