1
|
Sherman MB, Smith TJ. Cryogenic Electron Microscopy of Rift Valley Fever Virus. Methods Mol Biol 2025; 2893:57-72. [PMID: 39671030 DOI: 10.1007/978-1-0716-4338-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Rift Valley fever virus (RVFV) is an important livestock and human pathogen. It is also a potential bioweapon owing to its ability to spread by aerosols. It is an enveloped virus containing surface protrusions composed of two viral glycoproteins, Gc and Gn; the viral core contains ribonucleoprotein complexes. We describe the use of cryogenic electron microscopy (Cryo-EM) of single particles to visualize the three-dimensional (3D) organization of RVFV. The spherical RVFV virions have a diameter of 100 nm with icosahedral symmetry (T = 12) and 720 prominent protrusions on their surface.In this chapter we describe the general protocols to prepare virus suspensions for Cryo-EM, image acquisition of virus particles embedded in vitreous water, and their image processing. Because of RVFV being classified as a BSL3 and potentially as a select agent, we also describe the protocol of performing Cryo-EM grid preparation and imaging in our Cryo-EM BSL3 containment, along with the general etiquette of using BSL3 containment for research, including entry into containment, dressing up for work there, manipulation with the agent, grid preparation, transfer of the frozen grids into a microscope, etc., waste disposal, and finally exit from the containment. The microscope decontamination with ClO2 is briefly described as well because that technique is not widely used in the Cryo-EM field.
Collapse
Affiliation(s)
- Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Peterl S, Wachsmuth-Melm M, Chlanda P. Sample Preparation for Cryo-Electron Tomography of Influenza A Virus and Infected Cells. Methods Mol Biol 2025; 2890:169-184. [PMID: 39890727 DOI: 10.1007/978-1-0716-4326-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza A virus (IAV) replication within host cells relies on tightly controlled, dynamic interactions between viral and cellular components. Yet we have a limited understanding of the viral replication cycle at molecular resolution. Electron microscopy of resin-embedded samples has traditionally been employed to investigate viral replication in cells. However, this technique relies on chemical fixation of samples, dehydration, and resin embedding, which leads to loss of molecular details. Cryo-electron tomography emerged as an indispensable tool enabling the exploration of viral replication within vitrified samples, providing an unperturbed environment. Here, we provide a sample preparation protocol for in vitro and cellular cryo-electron tomography of isolated IAV, as well as for cryo-focused ion beam milling of IAV-infected cells at different stages of infection. The emphasis of this chapter is on infection conditions, grid handling, and adaptation of microscopy settings to the individual sample while adhering to biosafety regulations.
Collapse
Affiliation(s)
- Sarah Peterl
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.
- BioQuant, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Zhou Q, Lok SM. Visualizing the virus world inside the cell by cryo-electron tomography. J Virol 2024; 98:e0108523. [PMID: 39494908 PMCID: PMC11650999 DOI: 10.1128/jvi.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Structural studies on purified virus have revealed intricate architectures, but there is little structural information on how viruses interact with host cells in situ. Cryo-focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) have emerged as revolutionary tools in structural biology to visualize the dynamic conformational of viral particles and their interactions with host factors within infected cells. Here, we review the state-of-the-art cryo-ET technique for in situ viral structure studies and highlight exemplary studies that showcase the remarkable capabilities of cryo-ET in capturing the dynamic virus-host interaction, advancing our understanding of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Qunfei Zhou
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Coulibaly F. Cryo-EM vs. Disease X. Cell 2024; 187:5497-5499. [PMID: 39366340 DOI: 10.1016/j.cell.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024]
Abstract
In this issue of Cell, Penzes et al. describe the use of cryo-EM to identify the cause of a mysterious disease affecting farmed superworms across the US. The study illustrates the power of ex vivo cryo-EM, which uses amplification-free samples to advance at once diagnostic, DNA packaging mechanism, and preventative measures.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular BIology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Van Veen D, Galaz-Montoya JG, Shen L, Baldwin P, Chaudhari AS, Lyumkis D, Schmid MF, Chiu W, Pauly J. Missing Wedge Completion via Unsupervised Learning with Coordinate Networks. Int J Mol Sci 2024; 25:5473. [PMID: 38791508 PMCID: PMC11121946 DOI: 10.3390/ijms25105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cryogenic electron tomography (cryoET) is a powerful tool in structural biology, enabling detailed 3D imaging of biological specimens at a resolution of nanometers. Despite its potential, cryoET faces challenges such as the missing wedge problem, which limits reconstruction quality due to incomplete data collection angles. Recently, supervised deep learning methods leveraging convolutional neural networks (CNNs) have considerably addressed this issue; however, their pretraining requirements render them susceptible to inaccuracies and artifacts, particularly when representative training data is scarce. To overcome these limitations, we introduce a proof-of-concept unsupervised learning approach using coordinate networks (CNs) that optimizes network weights directly against input projections. This eliminates the need for pretraining, reducing reconstruction runtime by 3-20× compared to supervised methods. Our in silico results show improved shape completion and reduction of missing wedge artifacts, assessed through several voxel-based image quality metrics in real space and a novel directional Fourier Shell Correlation (FSC) metric. Our study illuminates benefits and considerations of both supervised and unsupervised approaches, guiding the development of improved reconstruction strategies.
Collapse
Affiliation(s)
- Dave Van Veen
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Jesús G. Galaz-Montoya
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; (J.G.G.-M.); (W.C.)
| | - Liyue Shen
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Philip Baldwin
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Genetics, The Salk Institute of Biological Sciences, La Jolla, CA 92037, USA;
| | | | - Dmitry Lyumkis
- Department of Genetics, The Salk Institute of Biological Sciences, La Jolla, CA 92037, USA;
- Graduate School of Biological Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; (J.G.G.-M.); (W.C.)
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Pauly
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
6
|
Van Veen D, Galaz-Montoya JG, Shen L, Baldwin P, Chaudhari AS, Lyumkis D, Schmid MF, Chiu W, Pauly J. Missing Wedge Completion via Unsupervised Learning with Coordinate Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589090. [PMID: 38712113 PMCID: PMC11071277 DOI: 10.1101/2024.04.12.589090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cryogenic electron tomography (cryoET) is a powerful tool in structural biology, enabling detailed 3D imaging of biological specimens at a resolution of nanometers. Despite its potential, cryoET faces challenges such as the missing wedge problem, which limits reconstruction quality due to incomplete data collection angles. Recently, supervised deep learning methods leveraging convolutional neural networks (CNNs) have considerably addressed this issue; however, their pretraining requirements render them susceptible to inaccuracies and artifacts, particularly when representative training data is scarce. To overcome these limitations, we introduce a proof-of-concept unsupervised learning approach using coordinate networks (CNs) that optimizes network weights directly against input projections. This eliminates the need for pretraining, reducing reconstruction runtime by 3 - 20× compared to supervised methods. Our in silico results show improved shape completion and reduction of missing wedge artifacts, assessed through several voxel-based image quality metrics in real space and a novel directional Fourier Shell Correlation (FSC) metric. Our study illuminates benefits and considerations of both supervised and unsupervised approaches, guiding the development of improved reconstruction strategies.
Collapse
Affiliation(s)
- Dave Van Veen
- Dept. of Electrical Engineering, Stanford University
| | | | - Liyue Shen
- Dept. of Electrical and Computer Engineering, University of Michigan
| | - Philip Baldwin
- Dept. of Biochemistry and Molecular Pharmacology, Baylor College of Medicine
- Dept. of Genetics, The Salk Institute for Biological Sciences
| | | | - Dmitry Lyumkis
- Dept. of Genetics, The Salk Institute for Biological Sciences
- Graduate School of Biological Sciences, University of California San Diego
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory
| | - Wah Chiu
- Dept. of Bioengineering, Stanford University
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory
- Dept. of Microbiology and Immunology, Stanford University
| | - John Pauly
- Dept. of Electrical Engineering, Stanford University
| |
Collapse
|
7
|
Erdmann M, Hodgson L, Webb I, Davidson AD, Verkade P. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) culture and sample preparation for correlative light electron microscopy. Methods Cell Biol 2024; 187:99-116. [PMID: 38705632 DOI: 10.1016/bs.mcb.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative Light Electron Microscopy (CLEM) is a powerful technique to investigate the ultrastructure of specific cells and organelles at sub-cellular resolution. Transmission Electron Microscopy (TEM) is particularly useful to the field of virology, given the small size of the virion, which is below the limit of detection by light microscopy. Furthermore, viral infection results in the rearrangement of host organelles to form spatially defined compartments that facilitate the replication of viruses. With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there has been great interest to study the viral replication complex using CLEM. In this chapter we provide an exemplary workflow describing the safe preparation and processing of cells grown on coverslips and infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lorna Hodgson
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Isobel Webb
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
8
|
Asarnow D, Becker VA, Bobe D, Dubbledam C, Johnston JD, Kopylov M, Lavoie NR, Li Q, Mattingly JM, Mendez JH, Paraan M, Turner J, Upadhye V, Walsh RM, Gupta M, Eng ET. Recent advances in infectious disease research using cryo-electron tomography. Front Mol Biosci 2024; 10:1296941. [PMID: 38288336 PMCID: PMC10822977 DOI: 10.3389/fmolb.2023.1296941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.
Collapse
Affiliation(s)
- Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vada A. Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Charlie Dubbledam
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jake D. Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Nathalie R. Lavoie
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, United States
| | - Qiuye Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob M. Mattingly
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Joshua H. Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jack Turner
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology and Harvard Medical School, Boston, MA, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
9
|
Ferron F, Lescar J. The Phlebovirus Ribonucleoprotein: An Overview. Methods Mol Biol 2024; 2824:259-280. [PMID: 39039418 DOI: 10.1007/978-1-0716-3926-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In negative strand RNA viruses, ribonucleoproteins, not naked RNA, constitute the template used by the large protein endowed with polymerase activity for replicating and transcribing the viral genome. Here we give an overview of the structures and functions of the ribonucleoprotein from phleboviruses. The nucleocapsid monomer, which constitutes the basic structural unit, possesses a flexible arm allowing for a conformational switch between a closed monomeric state and the formation of a polymeric filamentous structure competent for viral RNA binding and encapsidation in the open state of N. The modes of N-N oligomerization as well as interactions with vRNA are described. Finally, recent advances in tomography open exciting perspectives for a more complete understanding of N-L interactions and the design of specific antiviral compounds.
Collapse
Affiliation(s)
- François Ferron
- Aix Marseille Univ, CNRS - Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR7257, Marseille, France.
- European Virus Bioinformatics Center, Jena, Germany.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, Singapore, Singapore.
| |
Collapse
|
10
|
Zimmermann L, Zhao X, Makroczyova J, Wachsmuth-Melm M, Prasad V, Hensel Z, Bartenschlager R, Chlanda P. SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle. Nat Commun 2023; 14:7894. [PMID: 38036567 PMCID: PMC10689437 DOI: 10.1038/s41467-023-43666-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus replication is associated with the remodeling of cellular membranes, resulting in the formation of double-membrane vesicles (DMVs). A DMV-spanning pore was identified as a putative portal for viral RNA. However, the exact components and the structure of the SARS-CoV-2 DMV pore remain to be determined. Here, we investigate the structure of the DMV pore by in situ cryo-electron tomography combined with subtomogram averaging. We identify non-structural protein (nsp) 3 and 4 as minimal components required for the formation of a DMV-spanning pore, which is dependent on nsp3-4 proteolytic cleavage. In addition, we show that Mac2-Mac3-DPUP-Ubl2 domains are critical for nsp3 oligomerization and crown integrity which influences membrane curvature required for biogenesis of DMVs. Altogether, SARS-CoV-2 nsp3-4 have a dual role by driving the biogenesis of replication organelles and assembly of DMV-spanning pores which we propose here to term replicopores.
Collapse
Affiliation(s)
- Liv Zimmermann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Xiaohan Zhao
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, 2780-157, Oeiras, Portugal
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|