1
|
Li H, Song W, Li Z, Du D, Lü C, Wang Z, He J. Adsorption of As(III) to schwertmannite: impact factors and phase transformation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:122. [PMID: 40111674 DOI: 10.1007/s10653-025-02433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
The phase transformation of Schwertmannite (SCH) can significantly affect the interface behavior and toxic effect of As(III). Previous studies have predominantly focused on pollutants adsorption by SCH on a long-time scale (such as 30 days), without paying attention to the adsorption characteristics within shorter time frames (e.g., within 24 h). This work compared the adsorption characteristics of As(III) on three synthesized SCHs under various environmental conditions. The adsorption of As(III) by M-SCH (SCH synthesized by KMnO4 oxidation method) and Y-SCH (SCH synthesized by ethanol modification method) were governed by physical adsorption, while that of H-SCH (SCH synthesized by H2O2 oxidation method) was dominated by chemisorption. Acidity, selected ions (NO3-, Ca2+, CO32-, and PO43-), fulvic acid (FA), and Sb(III) adversely impacted the As(III) adsorption by SCHs. Furthermore, alkalinity, selected ions and FA induced the phase transformation of SCHs to iron hydroxide, while no transformation was observed in the presence of Sb(III) and Cr(VI). The iron hydroxide observed in this study is presumed to represent an intermediate stage in the transformation of SCH into goethite. These findings enhance our comprehension of the transformation process of SCH to goethite and provide scientific insights for SCH utilization in immobilizing As(III) in water.
Collapse
Affiliation(s)
- Hao Li
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Wenjie Song
- School of Traffic and Environment, Pioneer College, Inner Mongolia University, Hohhot, 010000, Inner Mongolia, China
| | - Zhichao Li
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Dagula Du
- Environmental Supervision Technical Support Center of Inner Mongolia, Hohhot, 010011, Inner Mongolia, China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Zhongli Wang
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Jiang He
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
2
|
Saykally RJ. Autobiography of Richard J. Saykally. J Phys Chem A 2025; 129:645-649. [PMID: 39844683 DOI: 10.1021/acs.jpca.4c08426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Affiliation(s)
- Richard J Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Levell Z, Yu S, Wang R, Liu Y. What Is the "Other" Site in M-N-C? J Am Chem Soc 2025; 147:603-609. [PMID: 39707967 DOI: 10.1021/jacs.4c12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Single metal atoms embedded in nitrogen-doped graphene (M-N-C) have emerged as a promising catalyst for a wide variety of reactions. In addition to the pyridinic site, there is another site responsible for the catalytic activity, but its structure is under debate. Here, we resolve its structure using first-principles calculations. Using Fe-N-C as a representative example, we systematically explore numerous possible structures and discover a new moiety with comparable energy to the pyridinic. This moiety features a hybrid coordination environment between pyridinic and porphyrinic and is located at the edge of graphene sheets or pores. We further calculate its X-ray absorption spectrum, catalytic thermodynamics for oxygen reduction reaction (ORR), and stability under ORR conditions, all of which support its existence. Lastly, we show that this site also exists in other M-N-C with different M elements. This study uncovers a new and important structure in M-N-C and paves a critical step toward site engineering for improved catalytic performance.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78731, United States
| |
Collapse
|
4
|
Wang J, Cheng Z, Su Y, Wang J, Chen D, Chen J, Wu X, Chen A, Gu Z. Metagenomics and metatranscriptomics insights into microbial enhancement of H 2S removal and CO 2 assimilation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123714. [PMID: 39675328 DOI: 10.1016/j.jenvman.2024.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
This study focuses on the coupled process of bio-enhanced absorption and biodesulfurization for the toxic gas H2S and the greenhouse gas CO2. The results show that on the basis of stabilized absorption of H2S and CO2 by alkaline solution (Stage I), the addition of air-lift bioreactor process solution in the absorption column enhanced their absorption (Stage II). Specifically, at constant inlet concentrations of H₂S and CO₂ of 3% (30,000 ppmv) and 30% (300,000 ppmv), respectively, the outlet gases were primarily H₂S, CO₂, and N₂. And the outlet H2S and CO2 concentrations decreased from 10,038 ± 1166 ppmv and 49,897 ± 2545 ppmv in Stage I to 940 ± 163 ppmv and 21,000 ± 2165 ppmv in Stage II. S0-producing performance (348 ± 20-503 ± 23 mg S/L) and biomass concentration (467 ± 13-677 ± 55 mg/L) in the subsequent bioreactor also increased in response to the enhanced absorption of H2S and CO2. Biologically enhanced H2S and CO2 absorption differs from physicochemical factors in that it depends on several physiological parameters such as microbial community composition and gene expression levels. In this study, the sulfur autotrophic denitrifying bacteria Thioalkalivibrio and Arenimonas had high abundance and activity (abundance: 69.5% and 21.1%, expression: 82.4% and 13.9%), and they were the main contributors to the bio-enhanced absorption of H2S and CO2 in this system. In addition, the main factor for enhanced H2S absorption could be the high expression of sulfide:quinone oxidoreductase (SQR, encoding gene sqr) (45 ± 9 to 821 ± 102 transcripts per million). Enhanced CO2 absorption could have been achieved by the oxidation of more H2S generating more energy to increase the carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, encoding genes rbcLS). Enhanced H2S absorption enhances CO2 absorption and facilitates microbial growth, which in turn benefits the metabolism of H2S, creating a complementary biologically enhanced absorption. This study provides a novel strategy, demonstrating the potential of autotrophic sulfide-oxidizing microorganisms in the simultaneous removal of H₂S and assimilation of CO₂, and offers a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Junjie Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China.
| | - Yunfei Su
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou, 310023, China
| | - Xiaoming Wu
- Ruze Environment Engineerng Ltd., Nantong, Jiangsu, 226001, China
| | - Aobo Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Zhenyu Gu
- Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| |
Collapse
|
5
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
6
|
Martins-Costa MTC, Ruiz-López MF. The Structure of Carbon Dioxide at the Air-Water Interface and its Chemical Implications. Chemistry 2024; 30:e202400825. [PMID: 38838064 DOI: 10.1002/chem.202400825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The efficient reduction of CO2 into valuable products is a challenging task in an international context marked by the climate change crisis and the need to move away from fossil fuels. Recently, the use of water microdroplets has emerged as an interesting reaction media where many redox processes which do not occur in conventional solutions take place spontaneously. Indeed, several experimental studies in microdroplets have already been devoted to study the reduction of CO2 with promising results. The increased reactivity in microdroplets is thought to be linked to unique electrostatic solvation effects at the air-water interface. In the present work, we report a theoretical investigation on this issue for CO2 using first-principles molecular dynamics simulations. We show that CO2 is stabilized at the interface, where it can accumulate, and that compared to bulk water solution, its electron capture ability is larger. Our results suggest that reduction of CO2 might be easier in interface-rich systems such as water microdroplets, which is in line with early experimental data and indicate directions for future laboratory studies. The effect of other relevant factors which could play a role in CO2 reduction potential is discussed.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
7
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Sun W, Kim N, Ebrahim AM, Sharma S, Hollas A, Huang Q, Reed DM, Thomsen EC, Murugesan V, van Buuren A, Wan LF, Lee JRI. Coupled Experimental-Theoretical Characterization of a Carbon Electrode in Vanadium Redox Flow Batteries using X-ray Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8791-8801. [PMID: 38324918 DOI: 10.1021/acsami.3c17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Vanadium redox flow batteries (VRFBs) have emerged as promising solutions for stationary grid energy storage due to their high efficiency, scalability, safety, near room-temperature operation conditions, and the ability to independently size power and energy capacities. The performance of VRFBs heavily relies on the redox couple reactions of V2+/V3+ and VO2+/VO2+ on carbon electrodes. Therefore, a thorough understanding of the surface functionality of carbon electrodes and their propensity for degradation during electrochemical cycles is crucial for designing VRFBs with extended lifespans. In this study, we present a coupled experimental-theoretical approach based on carbon K edge X-ray absorption spectroscopy (XAS) to characterize carbon electrodes prepared under different conditions and identify relevant functional groups that contribute to unique spectroscopic features. Atomic models were created to represent functional groups, such as hydroxyl, carboxyl, methyl, and aldehyde, bonded to carbon atoms in either sp2 or sp3 environments. The interactions between functionalized carbon and various solvated vanadium complexes were modeled using density functional theory. A library of carbon K-edge XAS spectra was generated for distinct carbon atoms in different functional groups, both before and after interacting with solvated vanadium complexes. We demonstrate how these simulated spectra can be used to deconvolve ex situ experimental spectra measured from carbon electrodes and to track changes in the electrode composition following immersion in different electrolytes or extended cycling within a functional VRFB. By doing so, we identify the active species present on the carbon electrodes, which play a crucial role in determining their electrochemical performance.
Collapse
Affiliation(s)
- Wenyu Sun
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Namhoon Kim
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Amani M Ebrahim
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Shubham Sharma
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Aaron Hollas
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qian Huang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M Reed
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edwin C Thomsen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Anthony van Buuren
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Liwen F Wan
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jonathan R I Lee
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
9
|
Devlin SW, Jamnuch S, Xu Q, Chen AA, Qian J, Pascal TA, Saykally RJ. Agglomeration Drives the Reversed Fractionation of Aqueous Carbonate and Bicarbonate at the Air-Water Interface. J Am Chem Soc 2023; 145:22384-22393. [PMID: 37774115 DOI: 10.1021/jacs.3c05093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
In the course of our investigations of the adsorption of ions to the air-water interface, we previously reported the surprising result that doubly charged carbonate anions exhibit a stronger surface affinity than singly charged bicarbonate anions. In contrast to monovalent, weakly hydrated anions, which generally show enhanced concentrations in the interfacial region, multivalent (and strongly hydrated) anions are expected to show a much weaker surface propensity. In the present work, we use resonantly enhanced deep-UV second-harmonic generation spectroscopy to measure the Gibbs free energy of adsorption of both carbonate (CO32-) and bicarbonate (HCO3-) anions to the air-water interface. Contrasting the predictions of classical electrostatic theory and in support of our previous findings from X-ray photoelectron spectroscopy, we find that carbonate anions do indeed exhibit much stronger surface affinity than do the bicarbonate anions. Extensive computer simulations reveal that strong ion pairing of CO32- with the Na+ countercation in the interfacial region results in the formation of near-neutral agglomerate clusters, consistent with a theory of interfacial ion adsorption based on hydration free energy and capillary waves. Simulated X-ray photoelectron spectra predict a 1 eV shift in the carbonate spectra compared to that of bicarbonate, further confirming our experiments. These findings not only advance our fundamental understanding of ion adsorption chemistry but also impact important practical processes such as ocean acidification, sea-spray aerosol chemistry, and mammalian respiration physiology.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Sasawat Jamnuch
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, California 92023, United States
| | - Qiang Xu
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Amanda A Chen
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, California 92023, United States
| | - Jin Qian
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Tod A Pascal
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, California 92023, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92023, United States
- Sustainable Power and Energy Center, University of California San Diego, La Jolla, California 92023, United States
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Guo H, Carbone MR, Cao C, Qu J, Du Y, Bak SM, Weiland C, Wang F, Yoo S, Artrith N, Urban A, Lu D. Simulated sulfur K-edge X-ray absorption spectroscopy database of lithium thiophosphate solid electrolytes. Sci Data 2023; 10:349. [PMID: 37268638 DOI: 10.1038/s41597-023-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
X-ray absorption spectroscopy (XAS) is a premier technique for materials characterization, providing key information about the local chemical environment of the absorber atom. In this work, we develop a database of sulfur K-edge XAS spectra of crystalline and amorphous lithium thiophosphate materials based on the atomic structures reported in Chem. Mater., 34, 6702 (2022). The XAS database is based on simulations using the excited electron and core-hole pseudopotential approach implemented in the Vienna Ab initio Simulation Package. Our database contains 2681 S K-edge XAS spectra for 66 crystalline and glassy structure models, making it the largest collection of first-principles computational XAS spectra for glass/ceramic lithium thiophosphates to date. This database can be used to correlate S spectral features with distinct S species based on their local coordination and short-range ordering in sulfide-based solid electrolytes. The data is openly distributed via the Materials Cloud, allowing researchers to access it for free and use it for further analysis, such as spectral fingerprinting, matching with experiments, and developing machine learning models.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, USA.
| | - Matthew R Carbone
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| | - Chuntian Cao
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Jianzhou Qu
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, USA
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Seong-Min Bak
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Conan Weiland
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| | - Feng Wang
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Shinjae Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Nongnuch Artrith
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, USA.
- Columbia Center for Computational Electrochemistry, Columbia University, New York, New York, 10027, USA.
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| | - Alexander Urban
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, USA.
- Columbia Center for Computational Electrochemistry, Columbia University, New York, New York, 10027, USA.
- Columbia Electrochemical Energy Center, Columbia University, New York, New York, 10027, USA.
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| |
Collapse
|
11
|
Muhunthan P, Paredes Mellone O, Kroll T, Sokaras D, Ihme M. The Local Electronic Structure of Supercritical CO 2 from X-ray Raman Spectroscopy and Atomistic-Scale Modeling. J Phys Chem Lett 2023:4955-4961. [PMID: 37216638 DOI: 10.1021/acs.jpclett.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Supercritical CO2 is encountered in several technical and natural systems related to biology, geophysics, and engineering. While the structure of gaseous CO2 has been studied extensively, the properties of supercritical CO2, particularly close to the critical point, are not well-known. In this work, we combine X-ray Raman spectroscopy, molecular dynamics simulations, and first-principles density functional theory (DFT) calculations to characterize the local electronic structure of supercritical CO2 at conditions around the critical point. The X-ray Raman oxygen K-edge spectra manifest systematic trends associated with the phase change of CO2 and the intermolecular distance. Extensive first-principles DFT calculations rationalize these observations on the basis of the 4sσ Rydberg state hybridization. X-ray Raman spectroscopy is found to be a sensitive tool for characterizing electronic properties of CO2 under challenging experimental conditions and is demonstrated to be a unique probe for studying the electronic structure of supercritical fluids.
Collapse
Affiliation(s)
- Priyanka Muhunthan
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
12
|
Peng L, Guo H, Wu N, Liu Y, Wang M, Liu B, Tian J, Wei X, Yang W. Ratiometric fluorescent sensor based on metal-organic framework for selective and sensitive detection of CO 32. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122844. [PMID: 37196552 DOI: 10.1016/j.saa.2023.122844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Carbonate ion (CO32-) is an anion essential for the maintenance of life activities and is of great importance to human health. Here, a novel ratiometric fluorescent probe Eu/CDs@UiO-66-(COOH)2 (ECU) was prepared by introducing europium ions (Eu3+) and carbon dots (CDs) into the UiO-66-(COOH)2 parent framework under the guidance of a post-synthetic modification strategy and used for the detection of CO32- ion in the aqueous environment. Interestingly, when CO32- ions were added to the ECU suspension, the characteristic emission of carbon dots at 439 nm was significantly enhanced, while the characteristic emission of Eu3+ ions at 613 nm was reduced. Therefore, the detection of CO32- ions can be realized through the peak height ratio of the two emissions. The probe had a low detection limit (about 1.08 μM) and a wide linear range (0-350 μM) for the detection of carbonate. In addition, the presence of CO32- ions can cause a significant ratiometric luminescence response and resulted obvious red-to-blue color shift of the ECU under UV light, which will facilitate visual analysis by the naked eye.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Yinsheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Bingqing Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Jiaying Tian
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
13
|
Li R, Jiang X, Zhou C, Topsakal M, Nykypanchuk D, Attenkofer K, Stacchiola DJ, Hybertsen MS, Stavitski E, Qu X, Lu D, Liu M. Deciphering phase evolution in complex metal oxide thin films via high-throughput materials synthesis and characterization. NANOTECHNOLOGY 2023; 34:125701. [PMID: 36538812 DOI: 10.1088/1361-6528/acad09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.
Collapse
Affiliation(s)
- Ruoshui Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Xuance Jiang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
- Department of Physics, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Chenyu Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Mehmet Topsakal
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Klaus Attenkofer
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Mark S Hybertsen
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Xiaohui Qu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| |
Collapse
|
14
|
Salvitti C, Pepi F, Troiani A, Rosi M, de Petris G. The Peroxymonocarbonate Anion HCO 4- as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO 2. Molecules 2022; 28:132. [PMID: 36615325 PMCID: PMC9822475 DOI: 10.3390/molecules28010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The peroxymonocarbonate anion, HCO4-, the covalent adduct between the carbon dioxide and hydrogen peroxide anion, effectively reacts with SO2 in the gas phase following three oxidative routes. Mass spectrometric and electronic structure calculations show that sulphur dioxide is oxidised through a common intermediate to the hydrogen sulphate anion, sulphur trioxide, and sulphur trioxide anion as primary products through formal HO2-, oxygen atom, and oxygen ion transfers. The hydrogen sulphite anion is also formed as a secondary product from the oxygen atom transfer path. The uncommon nucleophilic behaviour of HCO4- is disclosed by the Lewis acidic properties of SO2, an amphiphilic molecule that forms intermediates with characteristic and diagnostic geometries with peroxymonocarbonate.
Collapse
Affiliation(s)
- Chiara Salvitti
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federico Pepi
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile ed Ambientale, University of Perugia, Via Duranti 93, 06125 Perugia, Italy
| | - Giulia de Petris
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ammonia decomposition to hydrogen technique is an effectively way to solve the problems associated with the storage and transportation of hydrogen, but the development of a high-performance catalyst for ammonia decomposition is a great challenge. Ni species supported on activated attapulgite clay (AATP) is prepared by a homogeneous precipitation method for ammonia decomposition to COx-free H2. The structural properties of the Ni/AATP catalysts are characterized by thermogravimetric analysis, X-ray diffraction, scanning and transmission electron microscopy, H2 temperature-programmed reduction, and N2 sorption technique. It is revealed that the porous structure and high surface area of rod-like symmetric AATP results in highly dispersed NiO particles because the presence of a strong interaction between AATP and NiO particles. In particular, the Si-OH in AATP can react with Ni species, forming Si-O-Ni species at the interface between Ni and AATP. The Ni/AAPT catalysts are used for ammonia decomposition, the 20%-Ni/ATTP catalyst shows a 95.3% NH3 conversion with 31.9 mmol min−1 gcat−1 H2 formation rate at 650 °C. This study opens a new way to utilize natural minerals as an efficient support of catalysts towards ammonia decomposition reaction.
Collapse
|
16
|
Doyen D, Poët M, Jarretou G, Pisani DF, Tauc M, Cougnon M, Argentina M, Bouret Y, Counillon L. Intracellular pH Control by Membrane Transport in Mammalian Cells. Insights Into the Selective Advantages of Functional Redundancy. Front Mol Biosci 2022; 9:825028. [PMID: 35252350 PMCID: PMC8896879 DOI: 10.3389/fmolb.2022.825028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Intracellular pH is a vital parameter that is maintained close to neutrality in all mammalian cells and tissues and acidic in most intracellular compartments. After presenting the main techniques used for intracellular an vesicular pH measurements we will briefly recall the main molecular mechanisms that affect and regulate intracellular pH. Following this we will discuss the large functional redundancy found in the transporters of H+ or acid-base equivalents. For this purpose, we will use mathematical modeling to simulate cellular response to persistent and/or transient acidification, in the presence of different transporters, single or in combination. We will also test the presence or absence of intracellular buffering. This latter section will highlight how modeling can yield fundamental insight into deep biological questions such as the utility of functional redundancy in natural selection.
Collapse
Affiliation(s)
- Denis Doyen
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
- Centre Hospitalier Universitaire de Nice, Service de Médecine Intensive Réanimation, Hôpital Archet 1, Nice, France
| | - Mallorie Poët
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Gisèle Jarretou
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F. Pisani
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Michel Tauc
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mederic Argentina
- Université Côte d’Azur, CNRS, Institut de Physique de Nice, INPHYNI, Nice, France
| | - Yann Bouret
- Centre Hospitalier Universitaire de Nice, Service de Médecine Intensive Réanimation, Hôpital Archet 1, Nice, France
| | - Laurent Counillon
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
- *Correspondence: Laurent Counillon,
| |
Collapse
|
17
|
Gleim J, Lindner J, Voehringer P. Vibrational Relaxation of Carbon Dioxide in Water. J Chem Phys 2022; 156:094505. [DOI: 10.1063/5.0082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeannine Gleim
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Physikalische und Theoretische Chemie, Germany
| | - Jörg Lindner
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Physikalische und Theoretische Chemie, Germany
| | - Peter Voehringer
- Institut fuer Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Physikalische und Theoretische Chemie, Germany
| |
Collapse
|
18
|
Mitev P, Briels WJ, Hermansson K. Space-Resolved OH Vibrational Spectra of the Hydration Shell around CO 2. J Phys Chem B 2021; 125:13886-13895. [PMID: 34927438 PMCID: PMC8724796 DOI: 10.1021/acs.jpcb.1c06123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/01/2021] [Indexed: 11/30/2022]
Abstract
The CO2 molecule is weakly bound in water. Here we analyze the influence of a dissolved CO2 molecule on the structure and OH vibrational spectra of the surrounding water. From the analysis of ab initio molecular dynamics simulations (BLYP-D3) we present static (structure, coordination, H-bonding, tetrahedrality) and dynamical (OH vibrational spectra) properties of the water molecules as a function of distance from the solute. We find a weakly oscillatory variation ("ABBA") in the 'solution minus bulk water' spectrum. The origin of these features can largely be traced back to solvent-solute hard-core interactions which lead to variations in density and tetrahedrality when moving from the solute's vicinity out to the bulk region. The high-frequency peak in the solute-affected spectra is specifically analyzed and found to originate from both water OH groups that fulfill the geometric H-bond criteria, and from those that do not (dangling ones). Effectively, neither is hydrogen-bonded.
Collapse
Affiliation(s)
- Pavlin
D. Mitev
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 538, S-751 21, Uppsala, Sweden
- Uppsala
Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, SE-751 05, Sweden
| | - W. J. Briels
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- IBI-4, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Kersti Hermansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 538, S-751 21, Uppsala, Sweden
| |
Collapse
|
19
|
Roychoudhury S, Zhuo Z, Qiao R, Wan L, Liang Y, Pan F, Chuang YD, Prendergast D, Yang W. Controlled Experiments and Optimized Theory of Absorption Spectra of Li Metal and Salts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45488-45495. [PMID: 34529403 DOI: 10.1021/acsami.1c11970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigation of Li metal and ionic compounds through experimental and theoretical spectroscopy has been of tremendous interest due to their prospective applications in Li-metal and Li-ion batteries. Li K-edge soft X-ray absorption spectroscopy (sXAS) provides the most direct spectroscopic characterization; unfortunately, due to the low core-level energy and the highly reactive surface, Li-K sXAS of Li metal has been extremely challenging, as evidenced by many controversial reports. Here, through controlled and ultra-high energy resolution experiments of two kinds of in situ prepared samples, we report the intrinsic Li-K sXAS of Li-metal that displays a prominent leading peak that has not been revealed before. Furthermore, theoretical simulations show that, due to the low number of valence electrons in Li, the Li-K sXAS is strongly affected by the response of the valence electrons to the core hole. We successfully reproduce the Li-K sXAS by state-of-the-art calculations with considerations of a number of relevant parameters such as temperature, energy resolution, and, especially, contributions from transitions which are forbidden in the single-particle treatment. Such a comparative experimental and theoretical investigation is further extended to a series of Li ionic compounds, which highlight the importance of considering the total and single-particle energies for obtaining an accurate alignment of the spectra. Our work provides the first reliable Li-K sXAS of the Li metal surface with advanced theoretical calculations. The experimental and theoretical results provide a critical benchmark for studying Li chemistry in both metallic and ionic states.
Collapse
Affiliation(s)
- Subhayan Roychoudhury
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Liwen Wan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Yufeng Liang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yi-de Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| |
Collapse
|
20
|
Fluorescein Based Three-channel Probe for the Selective and Sensitive Detection of CO 32- Ions in an Aqueous Environment and Real Water Samples. J Fluoresc 2021; 31:1617-1625. [PMID: 34357494 DOI: 10.1007/s10895-021-02779-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
We have constructed a novel fluorescein-based fluorescent chemosensor, FL-In, functionalised with an indole moiety and capable of sensing by both the optical "turn-on" and electrochemical detection of carbonate ions (CO32-) in aqueous media. The probe exhibits excellent selectivity and a low detection limit (0.27 µM) regarding carbonate ions by a possible coordination and hydrolysis reaction mechanism. The developed probe successfully detected CO32- ions in different samples of water. Also, in a simple filter paper experiment, we documented its ability to allow the monitoring of CO32- with the naked eye.
Collapse
|
21
|
Karuk Elmas SN, Karagoz A, Aydin D, Arslan FN, Sadi G, Yilmaz I. Fabrication and sensing properties of phenolphthalein based colorimetric and turn-on fluorogenic probe for CO 32- detection and its living-cell imaging application. Talanta 2021; 226:122166. [PMID: 33676708 DOI: 10.1016/j.talanta.2021.122166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
Herein, an easy assembled colorimetric and ''turn-on'' fluorescent sensor (probe P4SC) based on phenolphthalein was developed for carbonate ion (CO32-) sensing in a mixture of EtOH/H2O (v/v, 80/20, pH = 7, Britton-Robinson buffer) media. The probe P4SC demonstrated high sensitive and selective monitoring toward CO32- over other competitive anions. Interaction of CO32- with the probe P4SC resulted in a significant increment in emission intensity at λem = 498 nm (λex = 384 nm) due to the strategy of blocking the photo induced electron transfer (PET) mechanism. 1H NMR titration and Job's methods, as well as the theoretical study were carried out to support the probable stoichiometry of the reaction (1:2) between P4SC and CO32-. The binding constant of the probe P4SC with CO32- was calculated as 2.56 × 1010 M-2. The probe P4SC providing rapid response time (~0.5 min) with a satisfactorily low detection limit (14.7 nM) may be useful as a valuable realistic sensor. The imaging studies on the liver cancer cells (HepG2) shows the great potential of the probe P4SC for the sensation of intracellular CO32- anions. Furthermore, the satisfactory recovery and RSD values obtained for water application confirming that the probe P4SC could be applied to sensing of CO32- ion.
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Abdurrahman Karagoz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Fatma Nur Arslan
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Gokhan Sadi
- Department of Biology, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| | - Ibrahim Yilmaz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey.
| |
Collapse
|
22
|
Dupuy R, Richter C, Winter B, Meijer G, Schlögl R, Bluhm H. Core level photoelectron spectroscopy of heterogeneous reactions at liquid-vapor interfaces: Current status, challenges, and prospects. J Chem Phys 2021; 154:060901. [PMID: 33588531 DOI: 10.1063/5.0036178] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid-vapor interfaces, particularly those between aqueous solutions and air, drive numerous important chemical and physical processes in the atmosphere and in the environment. X-ray photoelectron spectroscopy is an excellent method for the investigation of these interfaces due to its surface sensitivity, elemental and chemical specificity, and the possibility to obtain information on the depth distribution of solute and solvent species in the interfacial region. In this Perspective, we review the progress that was made in this field over the past decades and discuss the challenges that need to be overcome for investigations of heterogeneous reactions at liquid-vapor interfaces under close-to-realistic environmental conditions. We close with an outlook on where some of the most exciting and promising developments might lie in this field.
Collapse
Affiliation(s)
- Rémi Dupuy
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Clemens Richter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Bernd Winter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Robert Schlögl
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Hendrik Bluhm
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
23
|
Elizalde-Aguilar L, Domínguez-Aguilar MA, Cabrera-Sierra R, Cervantes-Tobón A, Díaz-Cruz M. Effect of Copper Content on the Corrosion of Carbon Steel in a Sweet Brine. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Liu Y, Fan C, Pu S. A cyclometalated iridium(III) complex-based luminescent probe for HCO3− and CO32− detection and its application by test strips. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
A colorimetric and fluorescent probe based on diarylethene for dual recognition of Cu2+ and CO32- and its application. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Eichhorn J, Reyes-Lillo SE, Roychoudhury S, Sallis S, Weis J, Larson DM, Cooper JK, Sharp ID, Prendergast D, Toma FM. Revealing Nanoscale Chemical Heterogeneities in Polycrystalline Mo-BiVO 4 Thin Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001600. [PMID: 32755006 DOI: 10.1002/smll.202001600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The activity of polycrystalline thin film photoelectrodes is impacted by local variations of the material properties due to the exposure of different crystal facets and the presence of grain/domain boundaries. Here a multi-modal approach is applied to correlate nanoscale heterogeneities in chemical composition and electronic structure with nanoscale morphology in polycrystalline Mo-BiVO4 . By using scanning transmission X-ray microscopy, the characteristic structure of polycrystalline film is used to disentangle the different X-ray absorption spectra corresponding to grain centers and grain boundaries. Comparing both spectra reveals phase segregation of V2 O5 at grain boundaries of Mo-BiVO4 thin films, which is further supported by X-ray photoelectron spectroscopy and many-body density functional theory calculations. Theoretical calculations also enable to predict the X-ray absorption spectral fingerprint of polarons in Mo-BiVO4 . After photo-electrochemical operation, the degraded Mo-BiVO4 films show similar grain center and grain boundary spectra indicating V2 O5 dissolution in the course of the reaction. Overall, these findings provide valuable insights into the degradation mechanism and the impact of material heterogeneities on the material performance and stability of polycrystalline photoelectrodes.
Collapse
Affiliation(s)
- Johanna Eichhorn
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | | | - Subhayan Roychoudhury
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Johannes Weis
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - David M Larson
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jason K Cooper
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ian D Sharp
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, Garching, 85748, Germany
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Francesca M Toma
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
27
|
Kohns M, Lazarou G, Kournopoulos S, Forte E, Perdomo FA, Jackson G, Adjiman CS, Galindo A. Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulphuric, and carbonic acids. Phys Chem Chem Phys 2020; 22:15248-15269. [PMID: 32609107 DOI: 10.1039/c9cp06795g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes. We extend the SAFT-VRE Mie equation of state [D. K. Eriksen et al., Mol. Phys., 2016, 114, 2724-2749] to study aqueous solutions of nitric, sulphuric, and carbonic acids, considering complete and partially dissociated models. In order to incorporate the dissociation equilibria, correlations to experimental data for the relevant thermodynamic equilibrium constants of the dissociation reactions are taken from the literature and are imposed as a boundary condition in the calculations. The models for water, the hydronium ion, and carbon dioxide are treated as transferable and are taken from our previous work. We present new molecular models for nitric acid, and the nitrate, bisulfate, sulfate, and bicarbonate anions. The resulting framework is used to predict a range of phase behaviour and solution properties of the aqueous acids over wide ranges of concentration and temperature, including the degree of dissociation, as well as the activity coefficients of the ionic species, and the activity of water and osmotic coefficient, density, and vapour pressure of the solutions. The SAFT-VRE Mie models obtained in this manner provide a means of elucidating the mechanisms of association and ion pairing in the systems studied, complementing the experimental observations reported in the literature.
Collapse
Affiliation(s)
- Maximilian Kohns
- Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Structure and Physicochemical Properties of Water Treated under Carbon Dioxide with Low-Temperature Low-Pressure Glow Plasma of Low Frequency. WATER 2020. [DOI: 10.3390/w12071920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of water saturated with CO2 with low-temperature, low-pressure glow plasma of low-frequency (GP) produced a series of liquids. Their temperature and intensity of thermal effects non-linearly depended on the treatment time. However, the Raman spectra patterns of the treated water pointed to a specific structure of the water treated for 30 min. The spectra of control, non-treated water saturated with CO2, and such water treated for 15, 60, 90, and 120 min showed that their macrostructure was built mainly by a single donor, and single hydrogen bonded arrangements accompanied, to a certain extent, with free water molecules. The macrostructure of the water treated for 30 min consisted chiefly of tetrahedral and deformed tetrahedral structural units. That water contained long-living free radicals of discussed structure, stabilized in such macrostructure.
Collapse
|
29
|
Jeong S, Heo TW, Oktawiec J, Shi R, Kang S, White JL, Schneemann A, Zaia EW, Wan LF, Ray KG, Liu YS, Stavila V, Guo J, Long JR, Wood BC, Urban JJ. A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH 4) 2 within Reduced Graphene Oxide. ACS NANO 2020; 14:1745-1756. [PMID: 31922396 DOI: 10.1021/acsnano.9b07454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnesium borohydride (Mg(BH4)2, abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH-alpha (α), beta (β), and gamma (γ)-have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum. Specifically, we selectively synthesize the thermodynamically stable α phase and metastable β phase from the γ-phase within the temperature range of 150-180 °C. The relevant underlying phase evolution mechanism is elucidated by theoretical thermodynamics and kinetic nucleation modeling. The resulting MBHg composites exhibit structural stability, resistance to oxidation, and partially reversible formation of diverse [BH4]- species during de- and rehydrogenation processes, rendering them intriguing candidates for further optimization toward hydrogen storage applications.
Collapse
Affiliation(s)
- Sohee Jeong
- The Molecular Foundry, Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tae Wook Heo
- Materials Science Division , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Julia Oktawiec
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Rongpei Shi
- Materials Science Division , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - ShinYoung Kang
- Materials Science Division , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - James L White
- Chemistry, Combustion, and Materials Science Center , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Andreas Schneemann
- Chemistry, Combustion, and Materials Science Center , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Edmond W Zaia
- The Molecular Foundry, Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Liwen F Wan
- Materials Science Division , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Keith G Ray
- Materials Science Division , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Yi-Sheng Liu
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Jinghua Guo
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Jeffrey R Long
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Brandon C Wood
- Materials Science Division , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Jeffrey J Urban
- The Molecular Foundry, Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
30
|
de Rink R, Klok JBM, van Heeringen GJ, Keesman KJ, Janssen AJH, Ter Heijne A, Buisman CJN. Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121104. [PMID: 31586887 DOI: 10.1016/j.jhazmat.2019.121104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two steps: i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ± 265 ppmv at 25.4 °C to 69 ± 25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ± 126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.
Collapse
Affiliation(s)
- Rieks de Rink
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands
| | - Johannes B M Klok
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands
| | | | - Karel J Keesman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands; Mathematical and Statistical methods, Wageningen University, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands.
| | - Cees J N Buisman
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands
| |
Collapse
|
31
|
Kulkarni AD. Molecular Hydration of Carbonic Acid: Ab Initio Quantum Chemical and Density Functional Theory Investigation. J Phys Chem A 2019; 123:5504-5516. [PMID: 31244117 DOI: 10.1021/acs.jpca.9b01122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular hydration of carbonic acid (H2CO3) is investigated in terms of bonding patterns in H2CO3···(H2O) n [ n = 1-4] hydrogen-bonded clusters within ab initio quantum chemical and density functional theory (DFT) frameworks. Successive addition of water molecules to H2CO3···H2O entails elongation of O-H (hydroxyl) bond as well as contraction of specific intermolecular hydrogen bonds signifying hydration of carbonic acid; these structural features get markedly enhanced under the continuum solvation framework. A comparison between the structurally similar clusters H2CO3···(H2O) n and HCOOH···(H2O) n [ n = 1-3] brings out the structural stability of the former. The present investigation in conjunction with the binding energy behavior of approaching water molecule(s) should serve as a precursor for pathways exploring aqueous dissociation of H2CO3 for larger clusters, as well as development of force-field potentials for acid dissociation process.
Collapse
Affiliation(s)
- Anant D Kulkarni
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
32
|
Yan D, Topsakal M, Selcuk S, Lyons JL, Zhang W, Wu Q, Waluyo I, Stavitski E, Attenkofer K, Yoo S, Hybertsen MS, Lu D, Stacchiola DJ, Liu M. Ultrathin Amorphous Titania on Nanowires: Optimization of Conformal Growth and Elucidation of Atomic-Scale Motifs. NANO LETTERS 2019; 19:3457-3463. [PMID: 31046292 DOI: 10.1021/acs.nanolett.8b04888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.
Collapse
Affiliation(s)
| | | | | | - John L Lyons
- Center for Computational Materials Science , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | | | - Qiyuan Wu
- Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang T, Zheng C, Qu S, Liu G, Pu S. Modulating the selectivity of a colorimetric sensor based on a Schiff base-functionalized diarylethene towards anions by judicious choice of solvent. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Rundel K, Liang Y, Welford A, Prendergast D, McNeill CR. Understanding the effect of thionation on naphthalene diimide using first-principles predictions of near-edge x-ray absorption fine structure spectra. J Chem Phys 2019; 150:104302. [DOI: 10.1063/1.5084754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kira Rundel
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yufeng Liang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adam Welford
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Poloni R, Mariano AL, Prendergast D, Garcia-Barriocanal J. Probing the electric field-induced doping mechanism in YBa2Cu3O7 using computed Cu K-edge x-ray absorption spectra. J Chem Phys 2018; 149:234706. [DOI: 10.1063/1.5055283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roberta Poloni
- Université Grenoble Alpes, CNRS, SIMAP, 38000 Grenoble, France
| | | | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
36
|
Wu CH, Pascal TA, Baskin A, Wang H, Fang HT, Liu YS, Lu YH, Guo J, Prendergast D, Salmeron MB. Molecular-Scale Structure of Electrode-Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid. J Am Chem Soc 2018; 140:16237-16244. [PMID: 30369234 DOI: 10.1021/jacs.8b09743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Knowledge of the molecular composition and electronic structure of electrified solid-liquid interfaces is key to understanding elemental processes in heterogeneous reactions. Using X-ray absorption spectroscopy in the interface-sensitive electron yield mode (EY-XAS), first-principles electronic structure calculations, and multiscale simulations, we determined the chemical composition of the interfacial region of a polycrystalline platinum electrode in contact with aqueous sulfuric acid solution at potentials between the hydrogen and oxygen evolution reactions. We found that between 0.7 and 1.3 V vs Ag/AgCl the electrical double layer (EDL) region comprises adsorbed sulfate ions with hydrated hydronium ions in the next layer. No evidence was found for bisulfate or Pt-O/Pt-OH species, which have very distinctive spectral signatures. In addition to resolving the long-standing issue of the EDL structure, our work establishes interface- and element-sensitive EY-XAS as a powerful spectroscopic tool for studying condensed phase, buried solid-liquid interfaces relevant to various electrochemical processes and devices.
Collapse
Affiliation(s)
- Cheng Hao Wu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tod A Pascal
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Artem Baskin
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Huixin Wang
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150080 , P. R. China
| | - Hai-Tao Fang
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150080 , P. R. China
| | - Yi-Sheng Liu
- The Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yi-Hsien Lu
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jinghua Guo
- The Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry and Chemical Biology , University of California, Santa Cruz , Santa Cruz , California 95064 , United States
| | - David Prendergast
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Miquel B Salmeron
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Materials Science and Engineering , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
37
|
Wan LF, Wright J, Perdue BR, Fister TT, Kim S, Apblett CA, Prendergast D. Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy. Phys Chem Chem Phys 2018; 18:17326-9. [PMID: 27314253 DOI: 10.1039/c6cp02412b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following previous work predicting the electronic response of the Chevrel phase Mo6S8 upon Mg insertion (Thöle et al., Phys. Chem. Chem. Phys., 2015, 17, 22548), we provide the experimental proof, evident in X-ray absorption spectroscopy, to illustrate the charge compensation mechanism of the Chevrel phase compound during Mg insertion and de-insertion processes.
Collapse
Affiliation(s)
- Liwen F Wan
- Joint Center for Energy Storage Research (JCESR), The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Joshua Wright
- Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Brian R Perdue
- Joint Center for Energy Storage Research (JCESR), Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Timothy T Fister
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, IL 60439, USA
| | - Soojeong Kim
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christopher A Apblett
- Joint Center for Energy Storage Research (JCESR), Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - David Prendergast
- Joint Center for Energy Storage Research (JCESR), The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Smith JW, Saykally RJ. Soft X-ray Absorption Spectroscopy of Liquids and Solutions. Chem Rev 2017; 117:13909-13934. [DOI: 10.1021/acs.chemrev.7b00213] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jacob W. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Zhang W, Topsakal M, Cama C, Pelliccione CJ, Zhao H, Ehrlich S, Wu L, Zhu Y, Frenkel AI, Takeuchi KJ, Takeuchi ES, Marschilok AC, Lu D, Wang F. Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints. J Am Chem Soc 2017; 139:16591-16603. [PMID: 29027465 DOI: 10.1021/jacs.7b07628] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Zhang
- Sustainable
Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mehmet Topsakal
- Center
for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christina Cama
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher J. Pelliccione
- Energy
and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hu Zhao
- Sustainable
Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven Ehrlich
- National
Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lijun Wu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yimei Zhu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anatoly I. Frenkel
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Kenneth J. Takeuchi
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Esther S. Takeuchi
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Energy
and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Amy C. Marschilok
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Energy
and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Deyu Lu
- Center
for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Wang
- Sustainable
Energy Technologies Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
40
|
Rongwong W, Wongchitphimon S, Goh K, Wang R, Bae TH. Transport properties of CO2 and CH4 in hollow fiber membrane contactor for the recovery of biogas from anaerobic membrane bioreactor effluent. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Chen L, Li F, Zhang Y, Bentley CL, Horne M, Bond AM, Zhang J. Electrochemical Reduction of Carbon Dioxide in a Monoethanolamine Capture Medium. CHEMSUSCHEM 2017; 10:4109-4118. [PMID: 28799204 DOI: 10.1002/cssc.201701075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/22/2017] [Indexed: 06/07/2023]
Abstract
The electrocatalytic reduction of CO2 in a 30 % (w/w) monoethanolamine (MEA) aqueous solution was undertaken at In, Sn, Bi, Pb, Pd, Ag, Cu and Zn metal electrodes. Upon the dissolution of CO2 , the non-conducting MEA solution is transformed into a conducting one, as is required for the electrochemical reduction of CO2 . Both an increase in the electrode surface porosity and the addition of the surfactant cetyltrimethylammonium bromide (CTAB) suppress the competing hydrogen evolution reaction; the latter has a significantly stronger impact. The combination of a porous metal electrode and the addition of 0.1 % (w/w) CTAB results in the reduction of molecular CO2 to CO and formate ions, and the product distribution is highly dependent on the identity of the metal electrode used. At a potential of -0.8 V versus the reversible hydrogen electrode (RHE) with an indium electrode with a coralline-like structure, the faradaic efficiencies for the generation of CO and [HCOO]- ions are 22.8 and 54.5 %, respectively compared to efficiencies of 2.9 and 60.8 % with a porous lead electrode and 38.2 and 2.4 % with a porous silver electrode. Extensive data for the other five electrodes are also provided. The optimal conditions for CO2 reduction are identified, and mechanistic details for the reaction pathways are proposed in this proof-of-concept electrochemical study in a CO2 capture medium. The conditions and features needed to achieve industrially and commercially viable CO2 reduction in an amine-based capture medium are considered.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Fengwang Li
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Ying Zhang
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mike Horne
- CSIRO Minerals Resources Business Unit, Clayton, Vic, 3168, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
42
|
Wan LF, Liu YS, Cho ES, Forster JD, Jeong S, Wang HT, Urban JJ, Guo J, Prendergast D. Atomically Thin Interfacial Suboxide Key to Hydrogen Storage Performance Enhancements of Magnesium Nanoparticles Encapsulated in Reduced Graphene Oxide. NANO LETTERS 2017; 17:5540-5545. [PMID: 28762272 DOI: 10.1021/acs.nanolett.7b02280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a model system for hydrogen storage, magnesium hydride exhibits high hydrogen storage density, yet its practical usage is hindered by necessarily high temperatures and slow kinetics for hydrogenation-dehydrogenation cycling. Decreasing particle size has been proposed to simultaneously improve the kinetics and decrease the sorption enthalpies. However, the associated increase in surface reactivity due to increased active surface area makes the material more susceptible to surface oxidation or other side reactions, which would hinder the overall hydrogenation-dehydrogenation process and diminish the capacity. Previous work has shown that the chemical stability of Mg nanoparticles can be greatly enhanced by using reduced graphene oxide as a protecting agent. Although no bulklike crystalline MgO layer has been clearly identified in this graphene-encapsulated/Mg nanocomposite, we propose that an atomically thin layer of honeycomb suboxide exists, based on first-principles interpretation of Mg K-edge X-ray absorption spectra. Density functional theory calculations reveal that in contrast to conventional expectations for thick oxides this interfacial oxidation layer permits H2 dissociation to the same degree as pristine Mg metal with the added benefit of enhancing the binding between reduced graphene oxide and the Mg nanoparticle, contributing to improved mechanical and chemical stability of the functioning nanocomposite.
Collapse
Affiliation(s)
- Liwen F Wan
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Eun Seon Cho
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, 34141, Republic of Korea
| | - Jason D Forster
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Sohee Jeong
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Hsiao-Tsu Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Department of Physics, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
43
|
Pham TA, Govoni M, Seidel R, Bradforth SE, Schwegler E, Galli G. Electronic structure of aqueous solutions: Bridging the gap between theory and experiments. SCIENCE ADVANCES 2017; 3:e1603210. [PMID: 28691091 PMCID: PMC5482551 DOI: 10.1126/sciadv.1603210] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/28/2017] [Indexed: 05/31/2023]
Abstract
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
Collapse
Affiliation(s)
- Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Marco Govoni
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Seidel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482, USA
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482, USA
| | - Eric Schwegler
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Giulia Galli
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
44
|
Yang C, Bebensee F, Chen J, Yu X, Nefedov A, Wöll C. Carbon Dioxide Adsorption on CeO2
(110): An XPS and NEXAFS Study. Chemphyschem 2017; 18:1874-1880. [DOI: 10.1002/cphc.201700240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/08/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Chengwu Yang
- Institute of Functional Interfaces; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Fabian Bebensee
- Institute of Functional Interfaces; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jun Chen
- Institute of Functional Interfaces; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- China Academy of Engineering Physics; Mianshan Road 64 621900 Mianyang China
| | - Xiaojuan Yu
- Institute of Functional Interfaces; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Institute of Functional Interfaces; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
45
|
Altman AB, Pemmaraju CD, Alayoglu S, Arnold J, Booth CH, Braun A, Bunker CE, Herve A, Minasian SG, Prendergast D, Shuh DK, Tyliszczak T. Chemical and Morphological Inhomogeneity of Aluminum Metal and Oxides from Soft X-ray Spectromicroscopy. Inorg Chem 2017; 56:5710-5719. [PMID: 28471186 DOI: 10.1021/acs.inorgchem.7b00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen and aluminum K-edge X-ray absorption spectroscopy (XAS), imaging from a scanning transmission X-ray microscope (STXM), and first-principles calculations were used to probe the composition and morphology of bulk aluminum metal, α- and γ-Al2O3, and several types of aluminum nanoparticles. The imaging results agreed with earlier transmission electron microscopy studies that showed a 2 to 5 nm thick layer of Al2O3 on all the Al surfaces. Spectral interpretations were guided by examination of the calculated transition energies, which agreed well with the spectroscopic measurements. Features observed in the experimental O and Al K-edge XAS were used to determine the chemical structure and phase of the Al2O3 on the aluminum surfaces. For unprotected 18 and 100 nm Al nanoparticles, this analysis revealed an oxide layer that was similar to γ-Al2O3 and comprised of both tetrahedral and octahedral Al coordination sites. For oleic acid-protected Al nanoparticles, only tetrahedral Al oxide coordination sites were observed. The results were correlated to trends in the reactivity of the different materials, which suggests that the structures of different Al2O3 layers have an important role in the accessibility of the underlying Al metal toward further oxidation. Combined, the Al K-edge XAS and STXM results provided detailed chemical information that was not obtained from powder X-ray diffraction or imaging from a transmission electron microscope.
Collapse
Affiliation(s)
- Alison B Altman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | - John Arnold
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | - Christopher E Bunker
- Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base , Dayton, Ohio 45433, United States
| | | | | | | | | | | |
Collapse
|
46
|
Huber SP, Medvedev VV, Gullikson E, Padavala B, Edgar JH, van de Kruijs RWE, Bijkerk F, Prendergast D. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy. Phys Chem Chem Phys 2017; 19:8174-8187. [PMID: 28149999 DOI: 10.1039/c6cp06967c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.
Collapse
Affiliation(s)
- S P Huber
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. and Industrial Focus Group XUV Optics, MESA+ Research Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - V V Medvedev
- Institute for Spectroscopy RAS, Fizicheskaya str. 5, Troitsk, Moscow, 108840 Russia
| | - E Gullikson
- Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B Padavala
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - J H Edgar
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - R W E van de Kruijs
- Industrial Focus Group XUV Optics, MESA+ Research Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - F Bijkerk
- Industrial Focus Group XUV Optics, MESA+ Research Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - D Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
47
|
Lam RK, Smith JW, Rizzuto AM, Karslıoğlu O, Bluhm H, Saykally RJ. Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy. J Chem Phys 2017. [DOI: 10.1063/1.4977046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Royce K. Lam
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jacob W. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anthony M. Rizzuto
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Osman Karslıoğlu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
48
|
Nemausat R, Gervais C, Brouder C, Trcera N, Bordage A, Coelho-Diogo C, Florian P, Rakhmatullin A, Errea I, Paulatto L, Lazzeri M, Cabaret D. Temperature dependence of X-ray absorption and nuclear magnetic resonance spectra: probing quantum vibrations of light elements in oxides. Phys Chem Chem Phys 2017; 19:6246-6256. [DOI: 10.1039/c6cp08393e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the quantum thermal fluctuations of nuclei in light-element oxides using XANES and NMR spectroscopies.
Collapse
Affiliation(s)
- Ruidy Nemausat
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Christel Gervais
- Sorbonne Universités
- UPMC Univ Paris 06
- LCMCP
- Collège de France
- UMR CNRS 7574
| | - Christian Brouder
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Nicolas Trcera
- Synchrotron SOLEIL
- L'Orme des Merisiers
- F-91192 Gif sur Yvette
- France
| | - Amélie Bordage
- ICMMO
- Univ Paris Sud
- Univ Paris-Saclay
- UMR CNRS 8182
- F-91405 Orsay
| | | | | | | | - Ion Errea
- Fisika Aplikatua 1 Saila
- Bilboko Ingeniaritza Eskola
- University of the Basque Country (UPV/EHU)
- 48013 Bilbao
- Spain
| | - Lorenzo Paulatto
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Michele Lazzeri
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| | - Delphine Cabaret
- Sorbonne Universités
- UPMC Univ Paris 06
- IMPMC
- UMR CNRS 7590
- F-75005 Paris
| |
Collapse
|
49
|
Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 2016; 21:163-174. [DOI: 10.1007/s00792-016-0892-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
50
|
Vinson J, Jach T, Müller M, Unterumsberger R, Beckhoff B. Quasiparticle Lifetime Broadening in Resonant X-ray Scattering of NH 4NO 3. PHYSICAL REVIEW. B 2016; 94:035163. [PMID: 27747308 PMCID: PMC5061147 DOI: 10.1103/physrevb.94.035163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It has been previously shown that two effects cause dramatic changes in the x-ray absorption and emission spectra from the N K edge of the insulating crystal ammonium nitrate. First, vibrational disorder causes major changes in the absorption spectrum, originating not only from the thermal population of phonons, but, significantly, from zero-point motion as well. Second, the anomalously large broadening (~ 4 eV) of the emission originating from nitrate σ states is due to unusually short lifetimes of quasiparticles in an otherwise extremely narrow band. In this work we investigate the coupling of these effects to core and valence excitons that are created as the initial x-ray excitation energy is progressively reduced toward the N edge. Using a GW/Bethe-Salpeter approach, we show the extent to which this anomalous broadening is captured by the GW approximation. The data and calculations demonstrate the importance that the complex self-energies (finite lifetimes) of valence bands have on the interpretation of emission spectra. We produce a scheme to explain why extreme lifetimes should appear in σ states of other similar compounds.
Collapse
Affiliation(s)
- John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Terrence Jach
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Matthias Müller
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | | | - Burkhard Beckhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|