1
|
Wilkinson M, López-Martínez G. The lifelong effects of anoxia hormesis in solitary bees. ENVIRONMENTAL ENTOMOLOGY 2025; 54:320-330. [PMID: 40084522 DOI: 10.1093/ee/nvaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/02/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The stimulatory and protective response known as hormesis elicits an often over compensatory response resulting in life-history trait improvements. There are an array of abiotic and biotic agents that have been shown to trigger hormesis; most commonly studied are chemicals, temperature, and low oxygen. Investigations into low-oxygen exposures that activate the hormetic response reveal that insect performance can be dramatically improved by single short low-oxygen events, but the focus of this work has been primarily on short-term, transitory protection afforded by hormesis. Few reports examine whether the effect is longer lasting or lifelong. We previously reported that one hour of anoxia was enough to induce a hormetic response in the alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae). Here, we investigated the long-term effects of this response by looking at starvation resistance, flight, and locomotory activity throughout the life of the adult bees. In addition, we studied the effects of anoxia hormesis on multiple reproductive metrics. Anoxia hormesis had lifelong positive effects for flight in both sexes. We also recorded higher starvation survival in bees that experienced hormesis. This improvement in performance came at a steep reproductive cost (ie reduction in fecundity). However, no costs or benefits were passed to the next generation. We hypothesize that using anoxia hormesis in the context of pollination services by this species should result in bees that are more active in the field, thereby increasing the numbers of visits to flowers throughout their entire life.
Collapse
Affiliation(s)
- Michaelyne Wilkinson
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
2
|
Szejner-Sigal A, Rinehart JP, Bowsher J, Greenlee KJ. Senescence and early-life performance as predictors of lifespan in a solitary bee. Proc Biol Sci 2025; 292:20242637. [PMID: 40237084 PMCID: PMC12001081 DOI: 10.1098/rspb.2024.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
Performance tends to decline with age, including muscle function and stress tolerance. Yet, performance can vary widely among individuals within the same age group, showing that chronological age does not always represent biological age. To better understand ageing, we need to examine what drives some individuals to age faster than others. In order to achieve this, first we need to be able to predict whether an individual will have a long or short lifespan. In this study, we conducted a longitudinal study tracking individual-level locomotor activity, chill-coma recovery time, and metabolic rates, and assessed whether early-life performance is linked to lifespan using the solitary bee Megachile rotundata. We found that locomotor activity and chill-coma recovery times decline in old adults. However, resting metabolic rate did not change with age. We also found low cold tolerance and low mass at emergence in early-life are linked to shorter female lifespans, showing that early-life performance can explain some of the variation in lifespan in a population. Finally, these results also show that not all traits decline with age within the same species, and shed new light on sexual dimorphism in physiological traits and ageing.
Collapse
Affiliation(s)
- Andre Szejner-Sigal
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | | | - Julia Bowsher
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Kendra J. Greenlee
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
3
|
Kogan HV, Macleod SG, Rondeau NC, Raup-Collado J, Cordero VA, Rovnyak D, Marshalleck CA, Mallapan M, Flores ME, Snow JW. Transcriptional control of a metabolic switch regulating cellular methylation reactions is part of a common response to stress in divergent bee species. J Exp Biol 2024; 227:jeb246894. [PMID: 38736357 DOI: 10.1242/jeb.246894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Recent global declines in bee health have elevated the need for a more complete understanding of the cellular stress mechanisms employed by diverse bee species. We recently uncovered the biomarker lethal (2) essential for life [l(2)efl] genes as part of a shared transcriptional program in response to a number of cell stressors in the western honey bee (Apis mellifera). Here, we describe another shared stress-responsive gene, glycine N-methyltransferase (Gnmt), which is known as a key metabolic switch controlling cellular methylation reactions. We observed Gnmt induction by both abiotic and biotic stressors. We also found increased levels of the GNMT reaction product sarcosine in the midgut after stress, linking metabolic changes with the observed changes in gene regulation. Prior to this study, Gnmt upregulation had not been associated with cellular stress responses in other organisms. To determine whether this novel stress-responsive gene would behave similarly in other bee species, we first characterized the cellular response to endoplasmic reticulum (ER) stress in lab-reared adults of the solitary alfalfa leafcutting bee (Megachile rotundata) and compared this with age-matched honey bees. The novel stress gene Gnmt was induced in addition to a number of canonical gene targets induced in both bee species upon unfolded protein response (UPR) activation, suggesting that stress-induced regulation of cellular methylation reactions is a common feature of bees. Therefore, this study suggests that the honey bee can serve as an important model for bee biology more broadly, although studies on diverse bee species will be required to fully understand global declines in bee populations.
Collapse
Affiliation(s)
- Helen V Kogan
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | | | | | | | - David Rovnyak
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | | | - Meghna Mallapan
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA
| |
Collapse
|
4
|
Grula CC, Rinehart JD, Anacleto A, Kittilson JD, Heidinger BJ, Greenlee KJ, Rinehart JP, Bowsher JH. Telomere length is longer following diapause in two solitary bee species. Sci Rep 2024; 14:11208. [PMID: 38755232 PMCID: PMC11099051 DOI: 10.1038/s41598-024-61613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.
Collapse
Affiliation(s)
- Courtney C Grula
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA.
| | - Joshua D Rinehart
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Angelo Anacleto
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 E. Catherine St., Ann Arbor, MI, 48109, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Britt J Heidinger
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| |
Collapse
|
5
|
Walters J, Zavalnitskaya J, Isaacs R, Szendrei Z. Heat of the moment: extreme heat poses a risk to bee-plant interactions and crop yields. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100927. [PMID: 35500861 DOI: 10.1016/j.cois.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extreme heat events threaten the development, functioning, and success of bee pollinators and crops that rely on pollinators for high yields. While direct effects of extreme heat and climate warming have gained more attention, the indirect effects on bees and crops remain largely unexplored. Extreme heat can directly alter the nutritional value of floral rewards, which indirectly contributes to lower bee survival, development, and reproduction with implications for pollination. Phenological mismatches between bee activity and crop flowering are also expected. Heat-stressed crop plants with reduced floral rewards may reduce bee foraging and nesting, limiting pollination services. Understanding how extreme heat affects bee-crop interactions will be essential for resilient production of pollinator-dependent crops in this era of climate change.
Collapse
Affiliation(s)
- Jenna Walters
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | | | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|