1
|
Al Ojaimi M, Banimortada BJ, Alragheb A, Hajir RS, Alves C, Walid D, Raza A, El-Hattab AW. Molecular and clinical aspects of histone-related disorders. Hum Genomics 2025; 19:47. [PMID: 40301961 PMCID: PMC12042324 DOI: 10.1186/s40246-025-00734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/20/2025] [Indexed: 05/01/2025] Open
Abstract
Epigenetics is the coordination of gene expression without alterations in the DNA sequence. Epigenetic gene expression is regulated by an intricate system that revolves around the interaction of histone proteins and DNA within the chromatin structure. Histones remain at the core of the epigenetic gene transcription regulation where histone proteins, along with the histone modification enzymes, and the subunits of chromatin remodelers and epigenetic readers play essential roles in regulating gene expression. Histone-related disorders encompass the syndromes induced by pathogenic variants in genes encoding histones, genes encoding histone modification enzymes, and genes encoding subunits of chromatin remodeler and epigenetic reader complexes. Defects in genes encoding histones lead to the expression of abnormal histone proteins. Abnormalities in genes encoding histone modification enzymes result in aberrant histone modifications. Defects in genes encoding subunits of the chromatin remodeler complexes result in defective chromatin remodeling. Defects in genes that code for the epigenetic readers (bromodomain proteins) will hinder their ability to regulate gene transcription. These disorders typically present manifestations that impact the nervous system which is particularly sensitive due to its need for specific patterns of gene expression for neural cell function and differentiation. To date, 72 histone-related disorders have been described including 7 syndromes due to defects in histone genes, 35 syndromes due to histone modifications defects, 26 syndromes due to defects in chromatin remodeling, and 4 due to defects in epigenetic readers. In this review article, the molecular basis of histone structure and function is first explained, followed by a summary of the histone-related syndromes.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
- Keserwan Medical Center, Jounieh, Lebanon
| | - Bashar J Banimortada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abduljalil Alragheb
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Razan S Hajir
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Duaa Walid
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Genetics, Burjeel Medical City, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Hrizat AS, Lin R, Eberle-Singh J, O'Neill R, Xia Y, Testa JR, Uzzo R, McCue PA, Yang H, Li L. Tumor infiltrating T-cells and loss of expression of SWI/SNF genes in varying stages of clear cell renal cell carcinoma. Pathol Res Pract 2025; 266:155774. [PMID: 39693721 DOI: 10.1016/j.prp.2024.155774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Patients with clear cell renal cell carcinoma (ccRCC) metastases face poor prognoses, even with adjuvant therapies. Tumor-infiltrating T-cells and macrophages are critical in targeting tumor cells within the renal microenvironment. Beyond VHL mutations, loss-of-function mutations in SWI/SNF complex genes, including PBRM1, BAP1, ARID1A, SETD2, SMARCA4 (BRG1), and SMARCA2 (BRM), have been implicated in ccRCC progression. DESIGN A tissue microarray of 160 ccRCC cases was analyzed via immunohistochemistry (IHC) for SWI/SNF protein expression and CD4 + /CD8 + T-cell infiltration. Clinical and pathologic features were obtained through electronic medical records. Statistical analyses included one-way ANOVA, two-way ANOVA, Pearson's chi-square and t-tests. RESULTS Loss of SWI/SNF protein expression was observed in PBRM1 (31 %), ARID1A (51 %), SETD2 (14 %), BRG1 (15 %), BRM (38 %), and BAP1 (40 %). T-cell counts varied significantly with stage: CD4 + counts peaked at Stage 3, while CD8 + counts increased through Stage 4 (p < 0.001). Loss of PBRM1 was more frequent in advanced stages (29.4 %, p < 0.001), while BRM and BRG1 losses were more common in earlier stages (p < 0.001, p = 0.006). ARID1A and BRM losses correlated with reduced CD8 + counts (p = 0.016, p = 0.032) and stage-specific CD4 + variations (p < 0.001, p = 0.042). CONCLUSION Loss of PBRM1, SMARCA2/BRM, and SMARCA4/BRG1 expression is significantly associated with ccRCC progression, with PBRM1 loss prevalent in advanced stages and SMARCA2/BRM and SMARCA4/BRG1 in earlier stages. ARID1A and SMARCA2/BRM losses correlate with reduced CD8 + counts and stage-specific CD4 + infiltration, highlighting their potential as biomarkers for disease progression and immunotherapeutic response.
Collapse
Affiliation(s)
- Alaa S Hrizat
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States.
| | - Ruihe Lin
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Jaime Eberle-Singh
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Raymond O'Neill
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Yan Xia
- Department of Laboratories, Arnot Ogden Medical Center, Elmira, NY, United States
| | - Joseph R Testa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Robert Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Peter A McCue
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Haifeng Yang
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Li Li
- Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States; Physician Sciences Medical Group, Norfolk General Hospital, Norfolk, VA, United States
| |
Collapse
|
3
|
Zhao J, Zhu J, Tang Y, Zheng K, Li Z. Advances in the study of the role of high-frequency mutant subunits of the SWI/SNF complex in tumors. Front Oncol 2024; 14:1463892. [PMID: 39697230 PMCID: PMC11652375 DOI: 10.3389/fonc.2024.1463892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
SWI/SNF (Switch/Sucrose non-fermentable, switch/sucrose non-fermentable) chromatin remodeling complex is a macromolecular complex composed of multiple subunits. It can use the energy generated by the hydrolysis of ATP (Adenosine triphosphate) to destroy the connection between DNA and histones, achieve the breakdown of nucleosomes, and regulate gene expression. SWI/SNF complex is essential for cell proliferation and differentiation, and the abnormal function of its subunits is closely related to tumorigenesis. Among them, ARID1A, an essential non-catalytic subunit of the SWI/SNF complex, can regulate the targeting of the complex through DNA or protein interactions. Moreover, the abnormal function of ARID1A significantly reduces the targeting of SWI/SNF complex to genes and participates in critical intracellular activities such as gene transcription and DNA synthesis. As a catalytic subunit of the SWI/SNF complex, SMARCA4 has ATPase activity that catalyzes the hydrolysis of ATP to produce energy and power the chromatin remodeling complex, which is critical to the function of the SWI/SNF complex. The study data indicate that approximately 25% of cancers have one or more SWI/SNF subunit genetic abnormalities, and at least nine different SWI/SNF subunits have been identified as having repeated mutations multiple times in various cancers, suggesting that mutations affecting SWI/SNF subunits may introduce vulnerabilities to these cancers. Here, we review the mechanism of action of ARID1A and SMARCA4, the two subunits with the highest mutation frequency in the SWI/SNF complex, and the research progress of their targeted therapy in tumors to provide a new direction for precise targeted therapy of clinical tumors.
Collapse
Affiliation(s)
- Jiumei Zhao
- Chongqing Nanchuan District People’s Hospital, Chongqing, China
| | - Jing Zhu
- Kunming Medical University, Kunming, China
| | - Yu Tang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kepu Zheng
- Kunming Medical University, Kunming, China
| | - Ziwei Li
- Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang Y, Sun D, Han W, Yang Z, Lu Y, Zhang X, Wang Y, Zhang C, Liu N, Hou H. SMARCA4 mutations and expression in lung adenocarcinoma: prognostic significance and impact on the immunotherapy response. FEBS Open Bio 2024; 14:2086-2103. [PMID: 39322625 PMCID: PMC11609588 DOI: 10.1002/2211-5463.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The switch/sucrose non-fermenting (SWI/SNF) complex family includes important chromatin-remodeling factors that are frequently mutated in lung adenocarcinoma (LUAD). However, the role of one family member, SMARCA4, in LUAD prognosis and immunotherapy sensitivity remains unclear. In the present study, 6745 LUAD samples from the cBioPortal database were used to analyze the relationships between SMARCA4 mutations and patient prognoses and clinical characteristics. Additionally, we examined the correlation between SMARCA4 mutations and prognosis in patients treated with immunotherapy using two immune-related datasets. SMARCA4 mutations and low expression were associated with shorter survival, and mutations were associated with a high tumor mutational burden and high microsatellite instability. SMARCA4 mutations were accompanied by KRAS, KEAP1, TP53 and STK11 mutations. No significant difference was observed in the immunotherapy response between patients with and without SMARCA4 mutations. When KRAS or STK11 mutations were present, immunotherapy effectiveness was poorer; however, when both SMARCA4 and TP53 mutations were present, immunotherapy was more effective. Furthermore, low SMARCA4 expression predicted a higher immunophenoscore, and SMARCA4 expression was correlated with certain immune microenvironment features. Taken together, our results suggest that SMARCA4 mutations and low expression might be associated with poor LUAD prognosis. Additionally, immunotherapy efficacy in patients with SMARCA4 mutations depended on the co-mutant genes. Thus, SMARCA4 could be an important factor to be considered for LUAD diagnosis and treatment.
Collapse
Affiliation(s)
- Yuming Zhang
- Precision Medicine Center of OncologyThe Affiliated Hospital of Qingdao University, Qingdao UniversityChina
| | - Dantong Sun
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weizhong Han
- Department of Respiratory MedicineThe Affiliated Hospital of Qingdao UniversityChina
| | - Zhen Yang
- Department of PathologyThe Affiliated Hospital of Qingdao University, Qingdao UniversityChina
| | - Yongzhi Lu
- Department of OncologyQingdao Municipal HospitalChina
| | - Xuchen Zhang
- Precision Medicine Center of OncologyThe Affiliated Hospital of Qingdao University, Qingdao UniversityChina
| | - Yongjie Wang
- Department of Thoracic SurgeryThe Affiliation Hospital of Qingdao UniversityChina
| | - Chuantao Zhang
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityChina
| | - Ning Liu
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityChina
| | - Helei Hou
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityChina
| |
Collapse
|
5
|
Engl W, Kunstar-Thomas A, Chen S, Ng WS, Sielaff H, Zhao ZW. Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics. Nat Commun 2024; 15:7646. [PMID: 39223123 PMCID: PMC11369179 DOI: 10.1038/s41467-024-52040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Despite their prevalent cancer implications, the in vivo dynamics of SWI/SNF chromatin remodelers and how misregulation of such dynamics underpins cancer remain poorly understood. Using live-cell single-molecule tracking, we quantify the intranuclear diffusion and chromatin-binding of three key subunits common to all major human SWI/SNF remodeler complexes (BAF57, BAF155 and BRG1), and resolve two temporally distinct stable binding modes for the fully assembled complex. Super-resolved density mapping reveals heterogeneous, nanoscale remodeler binding "hotspots" across the nucleoplasm where multiple binding events (especially longer-lived ones) preferentially cluster. Importantly, we uncover distinct roles of the bromodomain in modulating chromatin binding/targeting in a DNA-accessibility-dependent manner, pointing to a model where successive longer-lived binding within "hotspots" leads to sustained productive remodeling. Finally, systematic comparison of six common BRG1 mutants implicated in various cancers unveils alterations in chromatin-binding dynamics unique to each mutant, shedding insight into a multi-modal landscape regulating the spatio-temporal organizational dynamics of SWI/SNF remodelers.
Collapse
Affiliation(s)
- Wilfried Engl
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Aliz Kunstar-Thomas
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Siyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore.
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
6
|
Wankhede D, Grover S, Hofman P. SMARCA4 alterations in non-small cell lung cancer: a systematic review and meta-analysis. J Clin Pathol 2024; 77:457-463. [PMID: 38702192 DOI: 10.1136/jcp-2024-209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
AIMS A mutation in the SMARCA4 gene which encodes BRG1, a common catalytic subunit of switch/sucrose non-fermentable chromatin-remodelling complexes, plays a vital role in carcinogenesis. SMARCA4 mutations are present in approximately 10% of non-small cell lung cancers (NSCLC), making it a crucial gene in NSCLC, but with varying prognostic associations. To explore this, we conducted a systematic review and meta-analysis on the prognostic significance of SMARCA4 mutations in NSCLC. METHODS Electronic database search was performed from inception to December 2022. Study characteristics and prognostic data were extracted from each eligible study. Depending on heterogeneity, pooled HR and 95% CI were derived using the random-effects or fixed-effects models. RESULTS 8 studies (11 cohorts) enrolling 8371 patients were eligible for inclusion. Data on overall survival (OS) and progression-free survival (PFS) were available from 8 (10 cohorts) and 1 (3 cohorts) studies, respectively. Comparing SMARCA4-mutated NSCLC patients with SMARCA4-wild-type NSCLC patients, the summary HRs for OS and PFS were 1.49 (95% CI 1.18 to 1.87; I2=84%) and 3.97 (95% CI 1.32 to 11.92; I2=79%), respectively. The results from the trim-and-fill method for publication bias and sensitivity analysis were inconsistent with the primary analyses. Three studies reported NSCLC prognosis for category I and II mutations separately; category I was significantly associated with OS. CONCLUSION Our findings suggest that SMARCA4 mutation negatively affects NSCLC OS and PFS. The prognostic effects of SMARCA4-co-occurring mutations and the predictive role of SMARCA4 mutation status in immunotherapy require further exploration.
Collapse
Affiliation(s)
- Durgesh Wankhede
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, Univeristy of Heidelberg, Heidelberg, Germany
| | - Sandeep Grover
- Center for Human Genetics, Universitatsklinikum Giessen und Marburg - Standort Marburg, Marburg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, University Côte d'Azur, Nice, France
- Hospital-Integrated Biobank BB-0033-00025, Pasteur Hospital, Nice, France
- University Hospital Federation OncoAge, CHU de Nice, University Côte d'Azur, Nice, France
| |
Collapse
|
7
|
Chen Y, Gao Z, Mohd‐Ibrahim I, Yang H, Wu L, Fu Y, Deng Y. Pan-cancer analyses of bromodomain containing 9 as a novel therapeutic target reveals its diagnostic, prognostic potential and biological mechanism in human tumours. Clin Transl Med 2024; 14:e1543. [PMID: 38303608 PMCID: PMC10835192 DOI: 10.1002/ctm2.1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Mutations in one or more genes responsible for encoding subunits within the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodelling complexes are found in approximately 25% of cancer patients. Bromodomain containing 9 (BRD9) is a more recently identified protein coding gene, which can encode SWI/SNF chromatin-remodelling complexes subunits. Although initial evaluations of the potential of BRD9-based targeted therapy have been explored in the clinical application of a small number of cancer types, more detailed study of the diagnostic and prognostic potential, as well as the detailed biological mechanism of BRD9 remains unreported. METHODS We used various bioinformatics tools to generate a comprehensive, pan-cancer analyses of BRD9 expression in multiple disease types described in The Cancer Genome Atlas (TCGA). Experimental validation was conducted in tissue microarrays and cell lines derived from lung and colon cancers. RESULTS Our study revealed that BRD9 exhibited elevated expression in a wide range of tumours. Analysis of survival data and DNA methylation for BRD9 indicated distinct conclusions for multiple tumours. mRNA splicing and molecular binding were involved in the functional mechanism of BRD9. BRD9 may affect cancer progression through different phosphorylation sites or N6 -methyladenosine site modifications. BRD9 could potentially serve as a novel biomarker for diagnosing different cancer types, especially could accurately forecast the prognosis of melanoma patients receiving anti-programmed cell death 1 immunotherapy. BRD9 has the potential to serve as a therapeutic target, when pairing with etoposide in patients with melanoma. The BRD9/SMARCD1 axis exhibited promising discriminative performance in forecasting the prognosis of patients afflicted with liver hepatocellular carcinoma (LIHC) and mesothelioma. Additionally, this axis appears to potentially influence the immune response in LIHC by regulating the programmed death-ligand 1 immune checkpoint. For experimental validation, high expression levels of BRD9 were observed in tumour tissue samples from both lung and colon cancer patients. Knocking down BRD9 led to the inhibition of lung and colon cancer development, likely via the Wnt/β-catenin signalling pathway. CONCLUSIONS These pan-cancer study revealed the diagnostic and prognostic potential, along with the biological mechanism of BRD9 as a novel therapeutic target in human tumours.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Zitong Gao
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Isam Mohd‐Ibrahim
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Hua Yang
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Lang Wu
- Cancer Epidemiology DivisionPopulation Sciences in the Pacific ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yuanyuan Fu
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
8
|
Zhang X, Huang X, Cao Y, Mao Y, Zhu Y, Zhang Q, Zhang T, Chang L, Wang C. Dynamic analysis of predictive biomarkers for radiation therapy efficacy in non-small cell lung cancer patients by next-generation sequencing based on blood specimens. Pathol Res Pract 2024; 253:154972. [PMID: 38064866 DOI: 10.1016/j.prp.2023.154972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE Radiotherapy plays an important role in the treatment of non-small cell lung cancer, and the aim of this study was to explore the potential association of single gene mutation or pathway mutations with radiotherapy response using targeted next-generation sequencing (NGS) testing of peripheral blood specimens. MATERIAL AND METHODS We performed NGS containing 425 genes on peripheral blood specimens from 13 NSCLC patients pre- and post-radiotherapy or post-radiotherapy. Patients whose tumors were in complete response or partial response within 1 month after radiotherapy were classified as a radiotherapy-sensitive group; otherwise, they were categorized as a radiotherapy-resistant group. The relationship between single gene mutations, signaling pathway mutations, dynamic fluctuations in circulating tumor DNA (ctDNA), and radiotherapy response was investigated. RESULTS Of these 13 patients,6 patients were categorized as a radiotherapy-sensitive group (46.2%), and 7 patients were categorized as a radiotherapy-resistant group (53.8%). No correlation between single gene mutations and response to radiotherapy. Mutations in the SWI/SNF complex were more likely to occur in the radiotherapy-sensitive group than in the other group (p = 0.07). Among all patients,9 patients underwent NGS tests pre- and post-radiotherapy. Dynamic analysis based on ctDNA before and after treatment revealed that a decrease in ctDNA abundance was observed in all patients in the radiotherapy-sensitive group. CONCLUSIONS SWI/SNF complex mutations may be potential predictive biomarkers of radiotherapy response. Decreased ctDNA abundance after radiotherapy correlates with better efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuemei Zhang
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xu Huang
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Cao
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxin Mao
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingying Zhu
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qian Zhang
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tao Zhang
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lele Chang
- Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunbo Wang
- Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
9
|
Borczuk AC. Neuroendocrine neoplasms of the lung. PRACTICAL PULMONARY PATHOLOGY 2024:465-496. [DOI: 10.1016/b978-0-323-79547-0.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Kamal M, Atwi D, Pang H, Li S, Hassell L. Dedifferentiated Ovarian Carcinoma with ARID1A and ARID1B Mutations: A Clinicopathological Report and Literature Review. Int J Surg Pathol 2023; 31:1526-1531. [PMID: 36843546 DOI: 10.1177/10668969231157776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Dedifferentiated carcinoma of the female genital tract is a relatively recently recognized aggressive tumor affecting predominantly perimenopausal and postmenopausal women. In addition to having an undifferentiated component, dedifferentiated carcinoma includes a juxtaposed endometrioid adenocarcinoma, FIGO grade 1 or 2. Molecular characterization of these tumors has been a subject of discussion in multiple recent articles. We present a case of dedifferentiated carcinoma of the ovary in a 70-year-old female demonstrating concurrent inactivation of ARID1A and ARID1B. To the best of our knowledge, this is the second clinical report demonstrating dedifferentiated carcinoma of the ovary with concurrent inactivation of ARID1A and ARID1B. ARID1A and ARID1B inactivation seems to represent an alternate mechanism of switch/sucrose nonfermentable complex inactivation in the development of dedifferentiated carcinoma. Additional studies are warranted to precisely understand the molecular mechanism of cellular dedifferentiation in the dedifferentiated endometrial/ovarian carcinomas, thus guiding the development of targeted therapy.
Collapse
Affiliation(s)
- Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Doaa Atwi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hui Pang
- Genetics Lab, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shibo Li
- Genetics Lab, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lewis Hassell
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Zhou X, Duan Z, Tao T, Li Z, Wang N, Xu Q, Wei M, Zhong Z, Liu R, Yin Q, Xiong L, Chen H. Malignant rhabdoid tumor of the omentum in an adult male: a case report and literature review. Front Oncol 2023; 13:1230021. [PMID: 37664039 PMCID: PMC10473875 DOI: 10.3389/fonc.2023.1230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Malignant rhabdoid tumors (MRTs) are rare tumors with high mortality rates and poor prognoses. MRTs occur mainly in the central nervous system, kidneys, and soft tissues, but rarely in the omentum. MRTs occur more commonly in infants and children and less frequently in adults. Here, we report the first observed case of MRT in an adult omentum. A 35-year-old man with abdominal distension and pain was admitted to the emergency department. Previously, several hospitals considered patients with cirrhosis who had not received active treatment. Computed tomography and magnetic resonance imaging revealed diffuse omental thickening and massive ascites. The surgery was performed at our hospital, and the pathological diagnosis was MRT with a SMARCB1(INI-1) deletion. Postoperatively, his symptoms improved, and he underwent five cycles of chemotherapy. However, 6 months after surgery, the tumor developed liver metastases, and the patient subsequently died. Primary MRT of the greater omentum is rare, and its pathological diagnosis usually requires extensive clinicopathological evaluation of various differential diagnoses and an appropriate work-up to exclude other malignancies associated with SMARCB1 deletion. At the same time, the lack of specific signs of omental MRT and its rapid progression should alert clinicians.
Collapse
Affiliation(s)
- Xunjian Zhou
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhi Duan
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ting Tao
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhen Li
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ning Wang
- Department of Infection and Immunity, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qimei Xu
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meiyan Wei
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Zhong
- Department of Radiology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ran Liu
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qinghua Yin
- Department of General Surgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lixin Xiong
- Department of General Surgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pathology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Jin F, Yang Z, Shao J, Tao J, Reißfelder C, Loges S, Zhu L, Schölch S. ARID1A mutations in lung cancer: biology, prognostic role, and therapeutic implications. Trends Mol Med 2023; 29:646-658. [PMID: 37179132 DOI: 10.1016/j.molmed.2023.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Mutations in the AT-interacting domain-rich protein 1A (ARID1A) gene, a critical component of the switch/sucrose nonfermentable (SWI/SNF) complex, are frequently found in most human cancers. Approximately 5-10% of lung cancers carry ARID1A mutations. ARID1A loss in lung cancer correlates with clinicopathological features and poor prognosis. Co-mutation of ARID1A and epidermal growth factor receptor (EGFR) results in the limited efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) but increases the clinical benefit of immune checkpoint inhibitors (ICIs). ARID1A gene mutation plays a role in cell cycle regulation, metabolic reprogramming, and epithelial-mesenchymal transition. We present the first comprehensive review of the relationship between ARID1A gene mutations and lung cancer and discuss the potential of ARID1A as a new molecular target.
Collapse
Affiliation(s)
- Fukang Jin
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Jingbo Shao
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
14
|
Soshnikova NV, Simonov YP, Feoktistov AV, Khamidullina AI, Yastrebova MA, Bayramova DO, Tatarskiy VV, Georgieva SG. New Approach for Studying of Isoforms and High-Homology Proteins in Mammalian Cells. Int J Mol Sci 2023; 24:12153. [PMID: 37569530 PMCID: PMC10419129 DOI: 10.3390/ijms241512153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
In mammals, a large number of proteins are expressed as more than one isoform, resulting in the increased diversity of their proteome. Understanding the functions of isoforms is very important, since individual isoforms of the same protein can have oncogenic or pathogenic properties, or serve as disease markers. The high homology of isoforms with ubiquitous expression makes it difficult to study them. In this work, we propose a new approach for the study of protein isoforms in mammalian cells, which makes it possible to individually detect and investigate the functions of an individual isoform. The approach was developed to study the functions of isoforms of the PHF10 protein, a chromatin subunit of the PBAF remodeling complex. We demonstrated the possibility of induced simultaneous suppression of all endogenous PHF10 isoforms and the expression of a single recombinant FLAG-tagged isoform. For this purpose, we created constructs based on the pSLIK plasmid with a cloned cassette containing the recombinant gene of interest and miR30 with the corresponding shRNAs. The doxycycline-induced activation of the cassette allows on and off switching. Using this construct, we achieved the preferential expression of only one recombinant PHF10 isoform with a simultaneously reduced number of all endogenous isoforms. Our approach can be used to study the role of point mutations, the functions of individual domains and important sites, or to individually detect untagged isoforms with knockdown of all endogenous isoforms.
Collapse
Affiliation(s)
- Nataliya V. Soshnikova
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
| | - Yuriy P. Simonov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
| | - Alexey V. Feoktistov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
| | - Alvina I. Khamidullina
- Department of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russia
| | - Margarita A. Yastrebova
- Department of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russia
| | - Darya O. Bayramova
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
| | - Victor V. Tatarskiy
- Department of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russia
| | - Sofia G. Georgieva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, Moscow 119991, Russia
| |
Collapse
|
15
|
Singh A, Modak SB, Chaturvedi MM, Purohit JS. SWI/SNF Chromatin Remodelers: Structural, Functional and Mechanistic Implications. Cell Biochem Biophys 2023:10.1007/s12013-023-01140-5. [PMID: 37119511 DOI: 10.1007/s12013-023-01140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
The nuclear events of a eukaryotic cell, such as replication, transcription, recombination and repair etc. require the transition of the compactly arranged chromatin into an uncompacted state and vice-versa. This is mediated by post-translational modification of the histones, exchange of histone variants and ATP-dependent chromatin remodeling. The SWI/SNF chromatin remodeling complexes are one of the most well characterized families of chromatin remodelers. In addition to their role in modulating chromatin, they have also been assigned roles in cancer and health-related anomalies such as developmental, neurocognitive, and intellectual disabilities. Owing to their vital cellular and medical connotations, developing an understanding of the structural and functional aspects of the complex becomes imperative. However, due to the intricate nature of higher-order chromatin as well as compositional heterogeneity of the SWI/SNF complex, intra-species isoforms and inter-species homologs, this often becomes challenging. To this end, the present review attempts to present an amalgamated perspective on the discovery, structure, function, and regulation of the SWI/SNF complex.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Madan M Chaturvedi
- Department of Zoology, University of Delhi, Delhi, 110007, India
- SGT University, Gurugram (Delhi-NCR), Haryana, 122505, India
| | | |
Collapse
|
16
|
Lewis M, Terré B, Knobel PA, Cheng T, Lu H, Attolini CSO, Smak J, Coyaud E, Garcia-Cao I, Sharma S, Vineethakumari C, Querol J, Gil-Gómez G, Piergiovanni G, Costanzo V, Peiró S, Raught B, Zhao H, Salvatella X, Roy S, Mahjoub MR, Stracker TH. GEMC1 and MCIDAS interactions with SWI/SNF complexes regulate the multiciliated cell-specific transcriptional program. Cell Death Dis 2023; 14:201. [PMID: 36932059 PMCID: PMC10023806 DOI: 10.1038/s41419-023-05720-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Multiciliated cells (MCCs) project dozens to hundreds of motile cilia from their apical surface to promote the movement of fluids or gametes in the mammalian brain, airway or reproductive organs. Differentiation of MCCs requires the sequential action of the Geminin family transcriptional activators, GEMC1 and MCIDAS, that both interact with E2F4/5-DP1. How these factors activate transcription and the extent to which they play redundant functions remains poorly understood. Here, we demonstrate that the transcriptional targets and proximal proteomes of GEMC1 and MCIDAS are highly similar. However, we identified distinct interactions with SWI/SNF subcomplexes; GEMC1 interacts primarily with the ARID1A containing BAF complex while MCIDAS interacts primarily with BRD9 containing ncBAF complexes. Treatment with a BRD9 inhibitor impaired MCIDAS-mediated activation of several target genes and compromised the MCC differentiation program in multiple cell based models. Our data suggest that the differential engagement of distinct SWI/SNF subcomplexes by GEMC1 and MCIDAS is required for MCC-specific transcriptional regulation and mediated by their distinct C-terminal domains.
Collapse
Affiliation(s)
- Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- MRC Clinical Trials Unit at UCL, London, UK
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- CDR-Life AG, Zurich, 8592, Switzerland
| | - Tao Cheng
- Washington University in St Louis, Departments of Medicine (Nephrology), Cell Biology and Physiology, St. Louis, MO, 20814, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Shalu Sharma
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA
| | - Chithran Vineethakumari
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Gabriel Gil-Gómez
- Apoptosis Signalling Group, IMIM (Institut Hospital del Mar d'Investigacions Mediques), Barcelona, 08003, Spain
| | - Gabriele Piergiovanni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, 20139, Italy
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, 119288, Singapore, Singapore
| | - Moe R Mahjoub
- Washington University in St Louis, Departments of Medicine (Nephrology), Cell Biology and Physiology, St. Louis, MO, 20814, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Li Z, Zhao J, Tang Y. Advances in the role of SWI/SNF complexes in tumours. J Cell Mol Med 2023; 27:1023-1031. [PMID: 36883311 PMCID: PMC10098296 DOI: 10.1111/jcmm.17709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.
Collapse
Affiliation(s)
- Ziwei Li
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiumei Zhao
- Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Yu Tang
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.,Department of Genetics, Zunyi Medical University, Guizhou, China
| |
Collapse
|
18
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
19
|
Abedini A, Landry DA, Macaulay AD, Vaishnav H, Parbhakar A, Ibrahim D, Salehi R, Maranda V, Macdonald E, Vanderhyden BC. SWI/SNF chromatin remodeling subunit Smarca4/BRG1 is essential for female fertility†. Biol Reprod 2023; 108:279-291. [PMID: 36440965 PMCID: PMC9930400 DOI: 10.1093/biolre/ioac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Mammalian folliculogenesis is a complex process that involves the regulation of chromatin structure for gene expression and oocyte meiotic resumption. The SWI/SNF complex is a chromatin remodeler using either Brahma-regulated gene 1 (BRG1) or BRM (encoded by Smarca4 and Smarca2, respectively) as its catalytic subunit. SMARCA4 loss of expression is associated with a rare type of ovarian cancer; however, its function during folliculogenesis remains poorly understood. In this study, we describe the phenotype of BRG1 mutant mice to better understand its role in female fertility. Although no tumor emerged from BRG1 mutant mice, conditional depletion of Brg1 in the granulosa cells (GCs) of Brg1fl/fl;Amhr2-Cre mice caused sterility, whereas conditional depletion of Brg1 in the oocytes of Brg1fl/fl;Gdf9-Cre mice resulted in subfertility. Recovery of cumulus-oocyte complexes after natural mating or superovulation showed no significant difference in the Brg1fl/fl;Amhr2-Cre mutant mice and significantly fewer oocytes in the Brg1fl/fl;Gdf9-Cre mutant mice compared with controls, which may account for the subfertility. Interestingly, the evaluation of oocyte developmental competence by in vitro culture of retrieved two-cell embryos indicated that oocytes originating from the Brg1fl/fl;Amhr2-Cre mice did not reach the blastocyst stage and had higher rates of mitotic defects, including micronuclei. Together, these results indicate that BRG1 plays an important role in female fertility by regulating granulosa and oocyte functions during follicle growth and is needed for the acquisition of oocyte developmental competence.
Collapse
Affiliation(s)
- Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David A Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Angus D Macaulay
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Het Vaishnav
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ashna Parbhakar
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dalia Ibrahim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Reza Salehi
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vincent Maranda
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
20
|
Sadek M, Sheth A, Zimmerman G, Hays E, Vélez-Cruz R. The role of SWI/SNF chromatin remodelers in the repair of DNA double strand breaks and cancer therapy. Front Cell Dev Biol 2022; 10:1071786. [PMID: 36605718 PMCID: PMC9810387 DOI: 10.3389/fcell.2022.1071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodelers hydrolyze ATP to push and slide nucleosomes along the DNA thus modulating access to various genomic loci. These complexes are the most frequently mutated epigenetic regulators in human cancers. SWI/SNF complexes are well known for their function in transcription regulation, but more recent work has uncovered a role for these complexes in the repair of DNA double strand breaks (DSBs). As radiotherapy and most chemotherapeutic agents kill cancer cells by inducing double strand breaks, by identifying a role for these complexes in double strand break repair we are also identifying a DNA repair vulnerability that can be exploited therapeutically in the treatment of SWI/SNF-mutated cancers. In this review we summarize work describing the function of various SWI/SNF subunits in the repair of double strand breaks with a focus on homologous recombination repair and discuss the implication for the treatment of cancers with SWI/SNF mutations.
Collapse
Affiliation(s)
- Maria Sadek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Anand Sheth
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Grant Zimmerman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Emily Hays
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Renier Vélez-Cruz
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
- Chicago College of Optometry, Midwestern University, Downers Grove, IL, United States
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
21
|
Pibiri M, Simbula G. Role of the Hippo pathway in liver regeneration and repair: recent advances. Inflamm Regen 2022; 42:59. [PMID: 36471376 PMCID: PMC9720992 DOI: 10.1186/s41232-022-00235-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Although the signaling pathways involved in normal liver regeneration have been well characterized, less has been done for livers affected by chronic tissue damage. These "abnormal livers" have an impaired regenerative response that leads to liver repair and fibrosis. The tumor suppressor Hippo pathway plays a key role in liver regeneration and repair. On this basis, this review discusses recent studies focusing on the involvement of the Hippo signaling pathway during "normal healthy liver regeneration" (i.e., in a normal liver after 2/3 partial hepatectomy) and "abnormal liver regeneration" (i.e., in a liver damaged by chronic disease). This could be an important question to address with respect to new therapies aimed at improving impaired liver regenerative responses. The studies reported here have shown that activation of the Hippo coactivators YAP/TAZ during normal liver regeneration promotes the formation of a new bile duct network through direct BEC proliferation or/and hepatocyte dedifferentiation to HPCs which can trans-differentiate to BECs. Moreover, YAP/TAZ signaling interaction with other signaling pathways mediates the recruitment and activation of Kupffer cells, which release mitogenic cytokines for parenchymal and/or non-parenchymal cells and engage in phagocytosis of cellular debris. In addition, YAP-mediated activation of stellate cells (HSCs) promotes liver regeneration through the synthesis of extracellular matrix. However, in chronically diseased livers, where the predetermined threshold for proper liver regeneration is exceeded, YAP/TAZ activation results in a reparative process characterized by liver fibrosis. In this condition, YAP/TAZ activation in parenchymal and non-parenchymal cells results in (i) differentiation of quiescent HSCs into myofibroblastic HSCs; (ii) recruitment of macrophages releasing inflammatory cytokines; (iii) polarization of macrophages toward the M2 phenotype. Since accumulation of damaged hepatocytes in chronic liver injury represent a significant risk factor for the development of hepatocarcinoma, this review also discussed the involvement of the Hippo pathway in the clearance of damaged cells.
Collapse
Affiliation(s)
- Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| | - Gabriella Simbula
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
22
|
Xu S, Sak A, Niedermaier B, Erol YB, Groneberg M, Mladenov E, Kang M, Iliakis G, Stuschke M. Selective vulnerability of ARID1A deficient colon cancer cells to combined radiation and ATR-inhibitor therapy. Front Oncol 2022; 12:999626. [PMID: 36249060 PMCID: PMC9561551 DOI: 10.3389/fonc.2022.999626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
ARID1A is frequently mutated in colorectal cancer (CRC) cells. Loss of ARID1A function compromises DNA damage repair and increases the reliance of tumor cells on ATR-dependent DNA repair pathways. Here, we investigated the effect of ionizing radiation (IR), in combination with ATR inhibitors (ATRi) in CRC cell lines with proficient and deficient ARID1A. The concept of selective vulnerability of ARID1A deficient CRC cells to ATRi was further tested in an ex vivo system by using the ATP-tumor chemosensitivity assay (ATP-TCA) in cells from untreated CRC patients, with and without ARID1A expression. We found selective sensitization upon ATRi treatment as well as after combined treatment with IR (P<0.001), especially in ARID1A deficient CRC cells (P <0.01). Knock-down of ARID1B further increased the selective radiosensitivity effect of ATRi in ARID1A negative cells (P<0.01). Mechanistically, ATRi abrogates the G2 checkpoint (P<0.01) and homologous recombination repair (P<0.01) in ARID1A deficient cells. Most importantly, ex-vivo experiments showed that ATRi had the highest radiosensitizing effect in ARID1A negative cells from CRC patients. Collectively, our results generate pre-clinical and clinical mechanistic rationale for assessing ARID1A defects as a biomarker for ATR inhibitor response as a single agent, or in a synthetic lethal approach in combination with IR.
Collapse
Affiliation(s)
- Shan Xu
- Strahlenklinik, Universitätsklinikum Essen, Essen, Germany
- *Correspondence: Shan Xu, ; Ali Sak,
| | - Ali Sak
- Strahlenklinik, Universitätsklinikum Essen, Essen, Germany
- *Correspondence: Shan Xu, ; Ali Sak,
| | | | | | | | - Emil Mladenov
- Strahlenklinik, Universitätsklinikum Essen, Essen, Germany
| | - MingWei Kang
- Department of General Surgery, Mianyang Fulin Hospital, Mianyang, China
| | - George Iliakis
- Strahlenklinik, Universitätsklinikum Essen, Essen, Germany
| | | |
Collapse
|
23
|
TGFB2-AS1 inhibits triple-negative breast cancer progression via interaction with SMARCA4 and regulating its targets TGFB2 and SOX2. Proc Natl Acad Sci U S A 2022; 119:e2117988119. [PMID: 36126099 PMCID: PMC9522332 DOI: 10.1073/pnas.2117988119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multisubunit ATPase-dependent SWI/SNF complex plays an important role in chromatin remodeling. Large numbers of SWI/SNF subunit mutations have been identified in large variety of human cancers, suggesting that they function against tumorigenesis. Here we report long noncoding RNA TGFB2-AS1 correlates with prognosis in triple-negative breast cancer, the most aggressive cluster of all breast cancers. Especially, we show that TGFB2-AS1 interacts with SMARCA4, a core subunit of the SWI/SNF complex, and blocks the complex to approach its target promoters both in cis and in trans, thus inhibiting the expression of the target genes, TGFB2 and SOX2, eventually leading to the inhibition of breast cancer progression. These findings shed light on understanding regulation and roles of the SWI/SNF complex in carcinogenesis. Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype for its high rates of relapse, great metastatic potential, and short overall survival. How cancer cells acquire metastatic potency through the conversion of noncancer stem-like cells into cancer cells with stem-cell properties is poorly understood. Here, we identified the long noncoding RNA (lncRNA) TGFB2-AS1 as an important regulator of the reversibility and plasticity of noncancer stem cell populations in TNBC. We revealed that TGFB2-AS1 impairs the breast cancer stem-like cell (BCSC) traits of TNBC cells in vitro and dramatically decreases tumorigenic frequency and lung metastasis in vivo. Mechanistically, TGFB2-AS1 interacts with SMARCA4, a core subunit of the SWI/SNF chromatin remodeling complex, and results in transcriptional repression of its target genes including TGFB2 and SOX2 in an in cis or in trans way, leading to inhibition of transforming growth factor β (TGFβ) signaling and BCSC characteristics. In line with this, TGFB2-AS1 overexpression in an orthotopic TNBC mouse model remarkably abrogates the enhancement of tumor growth and lung metastasis endowed by TGFβ2. Furthermore, combined prognosis analysis of TGFB2-AS1 and TGFβ2 in TNBC patients shows that high TGFB2-AS1 and low TGFβ2 levels are correlated with better outcome. These findings demonstrate a key role of TGFB2-AS1 in inhibiting disease progression of TNBC based on switching the cancer cell fate of TNBC and also shed light on the treatment of TNBC patients.
Collapse
|
24
|
Krishnamurthy N, Kato S, Lippman S, Kurzrock R. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J Immunother Cancer 2022. [PMCID: PMC9442488 DOI: 10.1136/jitc-2022-004669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chromatin regulation involves four subfamilies composed of ATP-dependent multifunctional protein complexes that remodel the way DNA is packaged. The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex subfamily mediates nucleosome reorganization and hence activation/repression of critical genes. The SWI/SNF complex is composed of the BRG-/BRM-associated factor and Polybromo-associated BAF complexes, which in turn have multiple subunits. Significantly, ~20% of malignancies harbor alterations in >1 of these subunits, making the genes encoding SWI/SNF family members among the most vulnerable to genomic aberrations in cancer. ARID1A is the largest subunit of the SWI/SNF complex and is altered in ~40%–50% of ovarian clear cell cancers and ~15%–30% of cholangiocarcinomas, in addition to a variety of other malignancies. Importantly, outcome was improved after immune checkpoint blockade (ICB) in patients with ARID1A-altered versuss wild-type tumors, and this result was independent of microsatellite instability or tumor mutational burden. Another subunit—PBRM1—is mutated in ~40% of clear cell renal cell carcinomas and ~12% of cholangiocarcinomas; there are contradictory reports regarding ICB responsiveness. Two other SWI/SNF subunits of interest are SMARCA4 and SMARCB1. SMARCA4 loss is the hallmark of small cell carcinoma of the ovary hypercalcemic type (and is found in a variety of other malignancies); SMARCA4 germline alterations lead to rhabdoid tumor predisposition syndrome-2; SMARCB1 germline alterations, rhabdoid tumor predisposition syndrome-1. Remarkable, although anecdotal, responses to ICB have been reported in both SMARCA4-aberrant and SMARCB1-aberrant advanced cancers. This review focuses on the role that SWI/SNF chromatin remodeling subunits play in carcinogenesis, the immune microenvironment, and in immunotherapy responsiveness.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Yale University, New Haven, Connecticut, USA
| | - Shumei Kato
- Yale University, New Haven, Connecticut, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Scott Lippman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Razelle Kurzrock
- Worldwide Innovative Network for Personalized Cancer Therapy, San Diego, California, USA
| |
Collapse
|
25
|
Akiyama T, Yoshimatsu Y, Noguchi R, Sin Y, Tsuchiya R, Ono T, Sato C, Kojima N, Yoshida A, Kawai A, Ohtori S, Kondo T. Establishment and characterization of NCC-MRT1-C1: a novel cell line of malignant rhabdoid tumor. Hum Cell 2022; 35:2002-2010. [PMID: 35927606 DOI: 10.1007/s13577-022-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/10/2022] [Indexed: 11/27/2022]
Abstract
Malignant rhabdoid tumor (MRT) is a sarcoma histologically characterized by rhabdoid cells and genetically characterized by loss of function of the chromatin remodeling complex SWI/SNF induced by SMARCB1 gene deficiency. MRT mainly occurs in children, may arise in various locations, but is predominantly in the central nervous system (CNS) and kidney. Although MRT exhibits poor prognosis, standard treatment has not yet been established due to its extreme rarity. Patient-derived cancer cell lines are critical tools for basic and pre-clinical research in the development of chemotherapy. However, none of the MRT cell lines was derived from adult patients, and only one cell line was derived from the MRT of a soft tissue, despite the clinical behavior of MRT varying according to patient age and anatomic site. Herein, we reported the first cell line of MRT isolated from the soft tissue of an adult patient and named it NCC-MRT1-C1. NCC-MRT1-C1 cells showed a biallelic loss of the SMARCB1 gene. NCC-MRT1-C1 cells demonstrated rapid proliferation, spheroid formation, invasion capability in vitro, and tumorigenesis in nude mice. Screening of antitumor agents in NCC-MRT1-C1 cells resulted in the identification of six effective drugs. In conclusion, we report the first MRT cell line from the soft tissue of an adult patient. We believe that NCC-MRT1-C1 is a useful tool for developing novel chemotherapies for MRT.
Collapse
Affiliation(s)
- Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- The Department of Orthopaedic Surgery, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-0856, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- The Department of Orthopaedic Surgery, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-0856, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chiaki Sato
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seji Ohtori
- The Department of Orthopaedic Surgery, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-0856, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
26
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2022; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
27
|
Zhou Z, Huang D, Yang S, Liang J, Wang X, Rao Q. Clinicopathological Significance, Related Molecular Changes and Tumor Immune Response Analysis of the Abnormal SWI/SNF Complex Subunit PBRM1 in Gastric Adenocarcinoma. PATHOLOGY AND ONCOLOGY RESEARCH 2022; 28:1610479. [PMID: 35928964 PMCID: PMC9344308 DOI: 10.3389/pore.2022.1610479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022]
Abstract
Background: PBRM1 gene abnormalities were recently found to play a role in tumor development and tumor immune activity. This article will explore the clinicopathological and molecular changes and tumor immune activity of the abnormal SWI/SNF complex subunit PBRM1 in gastric adenocarcinoma (GAC) and its significance. Methods: The cBioPortal, LinkedOmics and TISIDB datasets were used to analyze the abnormality of the PBRM1 gene in GAC and its relationship with prognosis, related molecular changes and tumor-infiltrating lymphocytes (TILs). In addition, 198 GAC cases were collected to further study the relationship between the loss/attenuation of PBRM1 expression and clinicopathology, prognosis, microsatellite stability, PD-L1 expression and TIL in GAC. DNA whole-exome sequencing was performed on 7 cases of gastric cancer with loss of PBRM1 expression. Results: The cBioPortal data showed that PBRM1 deletion/mutation accounted for 7.32% of GAC and was significantly associated with several molecular changes, such as molecular subtypes of GAC. The LinkedOmics dataset showed that PBRM1 mutation and its promoter DNA methylation showed lower PBRM1 mRNA expression, and PBRM1 mutation cases showed significantly higher mRNA expression of PD-L1 (CD274). TISIDB data showed that PBRM1 abnormalities were significantly positively associated with multiple TILs. In our group of 198 cases, the loss/attenuation of PBRM1 expression was significantly positively correlated with intra-tumoral tumor infiltrating lymphocytes (iTILs) and deficient MMR and PD-L1 expression. Kaplan–Meier survival analysis showed that the overall survival of GAC patients with loss/attenuation of PBRM1 expression was significantly better (p = 0.023). iTIL was an independent prognostic factor of GAC. Loss of PBRM1 expression often co-occurs with mutations in other SWI/SNF complex subunit genes, and there are some repetitive KEGG signaling changes. Conclusion: Abnormality of the PBRM1 gene may be related to the occurrence of some GACs and can affect tumor immune activity, thereby affecting clinicopathology and prognosis. It may be a potentially effective predictive marker for immunotherapy and a novel therapeutic approach associated with synthetic lethality.
Collapse
Affiliation(s)
- Zhiyi Zhou
- Department of Pathology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Dandan Huang
- Digestive Endoscopic Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Shudong Yang
- Department of Pathology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiabei Liang
- Department of Pathology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Qiu Rao,
| |
Collapse
|
28
|
Srinivas US, Tay NSC, Jaynes P, Anbuselvan A, Ramachandran GK, Wardyn JD, Hoppe MM, Hoang PM, Peng Y, Lim S, Lee MY, Peethala PC, An O, Shendre A, Tan BWQ, Jemimah S, Lakshmanan M, Hu L, Jakhar R, Sachaphibulkij K, Lim LHK, Pervaiz S, Crasta K, Yang H, Tan P, Liang C, Ho L, Khanchandani V, Kappei D, Yong WP, Tan DSP, Bordi M, Campello S, Tam WL, Frezza C, Jeyasekharan AD. PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene 2022; 41:1986-2002. [PMID: 35236967 DOI: 10.1038/s41388-022-02219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
Collapse
Affiliation(s)
- Upadhyayula S Srinivas
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Norbert S C Tay
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Gokula K Ramachandran
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Joanna D Wardyn
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlly Lim
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshay Shendre
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlyn Jemimah
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Longyu Hu
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chao Liang
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - Matteo Bordi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore.
| |
Collapse
|
29
|
Minato H, Yoshikawa A, Katayanagi K, Kurumaya H, Kato K, Kitamura H. An Intrahepatic Cholangiocarcinoma with Focal Rhabdoid Features and SMARCA4-Deficiency. Int J Surg Pathol 2021; 30:581-585. [DOI: 10.1177/10668969211070169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intrahepatic cholangiocarcinoma with rhabdoid morphology is rare, and only three case reports have been published to date, none of which discuss the genetic changes in the rhabdoid component. We present a case of intrahepatic cholangiocarcinoma with focal rhabdoid features and SMARCA4-deficiency detected using immunohistochemistry. A Japanese man in his 60s without viral hepatitis was diagnosed with an avascular tumor in the liver, measuring 4.4 cm in the greatest dimension. The tumor was mostly composed of moderately differentiated adenocarcinoma, focal poorly differentiated adenocarcinoma, and an undifferentiated rhabdoid component. Immunohistochemical analysis showed an inclusion-like staining pattern for keratin AE1/AE3 and vimentin in the rhabdoid component. BRG1/SMARCA4 was detected in the differentiated component but not in the poorly- and undifferentiated components. Our novel findings reflecting the morphological and genetic heterogeneity of intrahepatic cholangiocarcinoma and will aid the research on drugs targeting the aberrant SWItch/Sucrose NonFermentable complex.
Collapse
Affiliation(s)
- Hiroshi Minato
- Department of Diagnostic Pathology, Ishikawa Prefectural Central Hospital, Ishikawa, 9208530, Japan
| | - Akane Yoshikawa
- Department of Diagnostic Pathology, Ishikawa Prefectural Central Hospital, Ishikawa, 9208530, Japan
| | - Kazuyoshi Katayanagi
- Department of Diagnostic Pathology, Ishikawa Prefectural Central Hospital, Ishikawa, 9208530, Japan
| | - Hiroshi Kurumaya
- Department of Diagnostic Pathology, Ishikawa Prefectural Central Hospital, Ishikawa, 9208530, Japan
| | - Kaichiro Kato
- Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Ishikawa, 9208530, Japan
| | - Hirotaka Kitamura
- Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Ishikawa, 9208530, Japan
| |
Collapse
|
30
|
Cai X, Zhou J, Deng J, Chen Z. Prognostic biomarker SMARCC1 and its association with immune infiltrates in hepatocellular carcinoma. Cancer Cell Int 2021; 21:701. [PMID: 34937564 PMCID: PMC8697473 DOI: 10.1186/s12935-021-02413-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic alterations contribute greatly to metastasis and dissemination in hepatocellular carcinoma (HCC). SMARCC1, as a SWI/SNF chromatin remodeling factor, has been reported to play important roles in many cancers. For the first time, with the bioinformatics analysis and wet-bench experiments, we explored the biological significance of SMARCC1 and its potential as putative therapeutic target in HCC. Methods The mRNA expression profiles and prognostic value of SMARCC1 were analyzed in the Oncomine, UALCAN and Kaplan–Meier Plotter databases. The expression of SMARCC1 and associated clinicopathological factors were further evaluated using a tissue microarray. Differentially expressed genes associated with SMARCC1 in HCC were obtained and analyzed via the LinkedOmics and GEPIA databases and Cytoscape software. To verify the important role of SMARCC1 in HCC, we knocked down and overexpressed SMARCC1 in different hepatic cell lines and conducted several functional experiments. Then, we evaluated the mutation profiles and transcriptional regulators of SMARCC1 using the cBioPortal, COSMIC, CistromeDB and TCGA databases. Finally, we addressed the relationship of SMARCC1 expression with immune cell infiltration via TIMER database analysis. Results Through data mining and tissue microarray verification, we found that the protein and mRNA levels of SMARCC1 are high in tumor tissues, which has remarkable diagnostic value in HCC patients. SMARCC1 and its hub genes showed prognostic value in HCC. Furthermore, we confirmed that SMARCC1 influenced the proliferation, migration, and invasion of HCC cells. Moreover, correlation analyses revealed that SMARCC1 expression was positively correlated with ZBTB40 transcription factors and negatively correlated with the DNA methylation level. Overall, we found that SMARCC1 affects immune infiltration and plays a tumor-promoting role in HCC. Conclusions SMARCC1 is overexpressed and is a putative prognostic predictor in HCC. Due to the tumor-promoting role of SMARCC1, treatments inhibiting DNA methyltransferases and transcription factors or weakening the role of SMARCC1 in immune infiltration might improve the survival of HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02413-w.
Collapse
|
31
|
Chen C, Yin W, Wang X, Li P, Chen Y, Jin X, Yang P, Wu H. Synchronous Malignant Gastrointestinal Neuroectodermal Tumor and SMARCA4-Deficient Undifferentiated Carcinoma With Independent Origins in the Small Intestine: A Case Report. Front Oncol 2021; 11:665056. [PMID: 34513665 PMCID: PMC8429901 DOI: 10.3389/fonc.2021.665056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/14/2023] Open
Abstract
Background Malignant gastrointestinal neuroectodermal tumor (GNET) is a rare malignant mesenchymal neoplasm that commonly arises in the small bowel, stomach or colon. Meanwhile, SMARCA4-deficient undifferentiated carcinoma is a rarely reported entity with highly aggressive behavior that may involve the ovary, lung, gastrointestinal (GI) tract, endometrium and other organs. To our knowledge, we describe for the first time, an extremely rare case of synchronous GNET and SMARCA4-deficient undifferentiated carcinoma with independent origins in the small intestine. Case Presentation A 46-year-old woman presented with multiple small intestine masses and underwent surgical resection. Two distinct entities, GNET and SMARCA4-deficient undifferentiated carcinoma, were identified. GNET was composed of epithelioid and spindle cells with clear or eosinophilic cytoplasm arranged in sheets, nest, papillary, fascicular, palisade, rosette like or pseudoalveolar pattern. The neoplastic cells were positive for S-100 and SOX-10. Ewing sarcoma breakpoint region 1 gene (EWSR1) rearrangement was confirmed by fluorescence in situ hybridization (FISH), and EWSR1-CREB1 fusion was revealed by next-generation sequencing (NGS). SMARCA4-deficient undifferentiated carcinoma was composed mainly of poorly adhesive rhabdoid cells with eosinophilic cytoplasm arranged in a diffuse pattern. Multifocal necrosis, brisk mitotic figures as well as multinucleated tumor cells were observed. The neoplastic cells diffusely expressed pancytokeratin and vimentin, and was negative for SMARCA4(BRG1). Frame shift mutation of SMARCA4 was detected by NGS. Conclusions This is the first report that GNET and SMARCA4-deficient undifferentiated carcinoma occurred simultaneously in the small intestine, with the latter showing multiple involvement of the jejunum and ileum. The potential mechanism underlying co-existence of these two rare malignancies is unknown and need further investigations and concern.
Collapse
Affiliation(s)
- Cuimin Chen
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Xingen Wang
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Ping Li
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Yaoli Chen
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Xianglan Jin
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Ping Yang
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Peking, China
| |
Collapse
|
32
|
Evaluation of SWI/SNF Protein Expression by Immunohistochemistry in Ovarian Clear Cell Carcinoma. Int J Gynecol Pathol 2021; 40:156-164. [PMID: 32897960 DOI: 10.1097/pgp.0000000000000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ovarian clear cell carcinomas (OCCC) are known to harbor ARID1A mutations, and several recent studies have described immunohistochemical loss of SMARCA2, SMARCA4, and SMARCB1 in a subset of tumors. We performed ARID1A, SMARCA2, SMARCA4, and SMARCB1 immunohistochemistry on 105 OCCCs to identify possible associations with clinicopathologic features and assess their prognostic value in these tumors. ARID1A, SMARCA4, and SMARCB1 were considered retained if any tumor cell nucleus stained while for SMARCA2, >5% of tumor nuclei were required to be positive. Patients had a mean age of 56 yr and tumors averaged 13 cm in size. Most patients (63%) had stage I tumors with 47% being alive and well, 41% dead from disease, 10% dead from other causes, and 3% alive with disease at last follow-up (mean 72 mo). Tumors showed an admixture of architectural patterns, but papillary was most frequent (49%). Stromal hyalinization was detected in 83% of OCCCs and a background precursor in 78%. High-grade atypia and/or oxyphilic cells were noted in 45% and 29% of tumors, respectively. All OCCCs expressed SMARCA4 and SMARCB1, but the absence of ARID1A was noted in 30% of tumors and SMARCA2 in 8%. ARID1A-retained OCCCs were associated with a dominant tubulocystic or solid pattern, but no other clinicopathologic features reached statistical significance. No switch/sucrose non-fermentable protein expression was predictive of prognosis. Additional studies with known mutational status of these proteins are warranted to better assess their prognostic utility and develop a standardized immunohistochemical scoring system.
Collapse
|
33
|
Alessi JV, Ricciuti B, Spurr LF, Gupta H, Li YY, Glass C, Nishino M, Cherniack AD, Lindsay J, Sharma B, Felt KD, Rodig SJ, Cheng ML, Sholl LM, Awad MM. SMARCA4 and Other SWItch/Sucrose NonFermentable Family Genomic Alterations in NSCLC: Clinicopathologic Characteristics and Outcomes to Immune Checkpoint Inhibition. J Thorac Oncol 2021; 16:1176-1187. [PMID: 33845210 DOI: 10.1016/j.jtho.2021.03.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The SWItch/Sucrose Nonfermentable (SWI/SNF) chromatin remodeling complex acts as a regulatory component of transcription, and inactivating mutations (muts) within the complex are implicated in genomic instability, higher tumor mutational burden, and an aggressive cancer phenotype. Whether SMARCA4 and other SWI/SNF alterations are independent prognostic factors or associated with clinical outcomes to immune checkpoint inhibitors (ICIs) in NSCLC remains unclear. METHODS We collected clinicopathologic and genomic data from patients with NSCLC who underwent targeted next-generation sequencing at the Dana-Farber Cancer Institute. Tumors were characterized on the basis of the presence or absence of muts across a set of six SWI/SNF genes (ARID1A, ARID1B, ARID2, PBRM1, SMARCA4, and SMARCB1). RESULTS Of 2689 patients with NSCLC, 20.6% (N = 555) had SWI/SNF genomic alterations. Compared with SWI/SNF wild-type (wt) NSCLC, patients with SWI/SNF-mutant NSCLCs had a lower prevalence of concurrent targetable driver muts (33.2% versus 22.2%; p < 0.001), a higher tumor mutational burden (median 8.5 versus 12.2 muts/megabase; p < 0.001), and a shorter median overall survival (mOS) from the time of advanced disease diagnosis (25.0 versus 19.3 mo, p = 0.01); the detrimental effect in OS seemed to be largely driven by SMARCA4 muts (mOS: 25.0 for SMARCA4 wt versus 15.6 mo for SMARCA4 mutant; p < 0.001). Among 532 patients who received ICIs, 25.5% (N = 136) harbored SWI/SNF muts. From the start of immunotherapy, there was no difference in objective response rate (ORR = 19.9% versus 25.0%, p = 0.2), median progression-free survival (mPFS = 3.0 versus 3.0 mo, hazard ratio [HR] = 0.96 [95% confidence interval [CI] = 0.77-1.18], p = 0.7), or mOS (13.1 versus 9.5 mo, HR = 0.81 [95% CI: 0.64-1.02], p = 0.07) in SWI/SNF-wt versus SWI/SNF-mutant NSCLC, respectively. Nevertheless, among KRAS-mutant NSCLCs treated with ICIs (N = 176), a concurrent SWI/SNF mut (N = 39) conferred a numerically lower ORR (21.9% versus 12.8%, p = 0.2), a significantly shorter mPFS (4.1 versus 1.8 mo, HR = 0.57 [95% CI: 0.38-0.84], p = 0.005), and a significantly shorter mOS (15.5 versus 8.2 mo, HR = 0.56 [95% CI: 0.36-0.86], p = 0.008). The deleterious effect on immunotherapy outcomes in KRAS-mutant NSCLC was most pronounced in the SMARCA4-mutant subset (N = 17), with a lower ORR (22% versus 0%, p = 0.03), a significantly shorter mPFS (4.1 versus 1.4 mo, HR = 0.25 [95% CI: 0.14-0.42], p < 0.001), and a significantly shorter mOS (15.1 versus 3.0 mo, HR = 0.29 [95% CI: 0.17-0.50], p < 0.001) compared with SMARCA4-wt KRAS-mutant NSCLCs. CONCLUSIONS Although there were no associations between SWI/SNF mut status and immunotherapy efficacy in the overall NSCLC cohort, the presence of a SMARCA4 alteration may confer a worse outcome to immunotherapy among KRAS-mutant NSCLCs.
Collapse
Affiliation(s)
- Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Liam F Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Hersh Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Carolyn Glass
- Department of Pathology, Duke University Hospital, Durham, North Carolina
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - James Lindsay
- Knowledge Systems Group, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bijaya Sharma
- ImmunoProfile, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen D Felt
- ImmunoProfile, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts; Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
34
|
Xiao ZM, Lv DJ, Yu YZ, Wang C, Xie T, Wang T, Song XL, Zhao SC. SMARCC1 Suppresses Tumor Progression by Inhibiting the PI3K/AKT Signaling Pathway in Prostate Cancer. Front Cell Dev Biol 2021; 9:678967. [PMID: 34249931 PMCID: PMC8267926 DOI: 10.3389/fcell.2021.678967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1) protein is a potential tumor suppressor in various cancers. However, its role in prostate cancer (PCa) remains controversial. The aim of this study was to determine the biological function of SMARCC1 in PCa and explore the underlying regulatory mechanisms. Methods The expression of SMARCC1 was validated in PCa tissues by immunohistochemistry. Meanwhile, function experiments were used to evaluate the regulatory role on cell proliferation and metastasis in PCa cells with SMARCC1 depletion both in vitro and in vivo. The expression levels of relevant proteins were detected by Western blotting. Results Our finding showed that SMARCC1 was significantly downregulated in prostate adenocarcinoma, with a higher Gleason score (GS) than that in low GS. The decreased expression of SMARCC1 was significantly correlated with a higher GS and poor prognosis. Additionally, we found that silencing of SMARCC1 dramatically accelerated cell proliferation by promoting cell cycle progression and enhancing cell migration by inducing epithelial mesenchymal transition (EMT). Furthermore, depletion of SMARCC1 facilitated PCa xenograft growth and lung metastasis in murine models. Mechanistically, the loss of SMARCC1 activated the PI3K/AKT pathway in PCa cells. Conclusion SMARCC1 suppresses PCa cell proliferation and metastasis via the PI3K/AKT signaling pathway and is a novel therapeutic target.
Collapse
Affiliation(s)
- Zhao-Ming Xiao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Jun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian-Lu Song
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Li C, Fei C, Li J, Wu H, Chen L, Roshani R, Li H, Shi L, Song C, Gu J, Lu Y, Zhou Q. SMARCC2 combined with c‑Myc inhibits the migration and invasion of glioma cells via modulation of the Wnt/β‑catenin signaling pathway. Mol Med Rep 2021; 24:551. [PMID: 34080022 PMCID: PMC8185515 DOI: 10.3892/mmr.2021.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
Glioma is the most common type of central nervous system tumor. SWItch/sucrose non-fermentable (SWI/SNF) is a tumor suppressor that serves an important role in epithelial-mesenchymal transition (EMT). The present study aimed to identify key molecules involved in the EMT process. SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 2 (SMARCC2) is mutated in and its expression is low in multiple types of cancer. SMARCC2 is the core subunit of the chromatin-remodeling complex, SWI/SNF. Relative mRNA SMARCC2 expression levels in human glioma tissue were analyzed via reverse transcription-quantitative PCR, whereas the protein expression levels were determined via immunohistochemistry staining. SMARCC2 expression was knocked down in glioma cells using small interfering RNA (si) and overexpressed by infection with adenovirus vectors carrying SMARCC2 cDNA. Wound healing and Transwell assays were performed to assess cell migration and invasion, respectively. Subsequently, immunofluorescence and western blotting were performed to analyze the expression levels of the oncogene c-Myc, which is associated with SMARCC2. SMARCC2 combines with C-MYC to downregulate its expression. Consistent with the results of the bioinformatics analysis, which revealed that the upregulated expression levels of SMARCC2 were associated with a more favorable prognosis in patients with glioma, the mRNA and protein expression levels of SMARCC2 were significantly upregulated in low-grade glioma tissues compared with high-grade glioma tissues. The results of the wound healing assay demonstrated that cell migration was significantly increased in the siSMARCC2-1/3 groups compared with the negative control (NC) group. By contrast, the migratory ability of cells was significantly reduced following transduction with adenovirus overexpressing SMARCC2, which upregulated the expression of SMARCC2, compared with the lentiviral vector-non-specific control (LVS-NC) group. The Transwell assay results further showed that SMARCC2 overexpression significantly inhibited the migratory and invasive abilities of U87MG and LN229 cells compared with the LVS-NC group. Co-immunoprecipitation assays were subsequently conducted to validate the binding of SMARCC2 and c-Myc; the results demonstrated that the expression of c-Myc was downregulated in adenovirus-transfected cells compared with LVS-NC-transfected cells. The results of the western blotting experiments demonstrated that the expression levels of N-cadherin, vimentin, snail family transcriptional repressor 1 and β-catenin were notably downregulated, whereas the expression levels of T-cadherin were markedly upregulated in cell lines stably overexpressing SMARCC2 compared with the LVS-NC group. In conclusion, the results of the present study suggested that SMARCC2 may inhibit Wnt/β-catenin signaling by regulating c-Myc expression in glioma. SMARCC2 regulates the EMT status of the glioblastoma cell line by mediating the expression of the oncogene C-MYC to inhibit its migration and invasion ability. Thus, SMARCC2 may function as a tumor suppressor or oncogene by regulating associated oncogenes or tumor suppressor genes.
Collapse
Affiliation(s)
- Chiyang Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chengshuo Fei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junjie Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hang Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ramzi Roshani
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chong Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junwei Gu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuntao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
36
|
Dixit U, Bhutoria S, Wu X, Qiu L, Spira M, Mathew S, Harris R, Adams LJ, Cahill S, Pathak R, Rajesh Kumar P, Nguyen M, Acharya SA, Brenowitz M, Almo SC, Zou X, Steven AC, Cowburn D, Girvin M, Kalpana GV. INI1/SMARCB1 Rpt1 domain mimics TAR RNA in binding to integrase to facilitate HIV-1 replication. Nat Commun 2021; 12:2743. [PMID: 33980829 PMCID: PMC8115288 DOI: 10.1038/s41467-021-22733-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
INI1/SMARCB1 binds to HIV-1 integrase (IN) through its Rpt1 domain and exhibits multifaceted role in HIV-1 replication. Determining the NMR structure of INI1-Rpt1 and modeling its interaction with the IN-C-terminal domain (IN-CTD) reveal that INI1-Rpt1/IN-CTD interface residues overlap with those required for IN/RNA interaction. Mutational analyses validate our model and indicate that the same IN residues are involved in both INI1 and RNA binding. INI1-Rpt1 and TAR RNA compete with each other for IN binding with similar IC50 values. INI1-interaction-defective IN mutant viruses are impaired for incorporation of INI1 into virions and for particle morphogenesis. Computational modeling of IN-CTD/TAR complex indicates that the TAR interface phosphates overlap with negatively charged surface residues of INI1-Rpt1 in three-dimensional space, suggesting that INI1-Rpt1 domain structurally mimics TAR. This possible mimicry between INI1-Rpt1 and TAR explains the mechanism by which INI1/SMARCB1 influences HIV-1 late events and suggests additional strategies to inhibit HIV-1 replication.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Savita Bhutoria
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Xuhong Wu
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Menachem Spira
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Sheeba Mathew
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Richard Harris
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Lucas J Adams
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - P Rajesh Kumar
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Minh Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Seetharama A Acharya
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Mark Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Ganjam V Kalpana
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
37
|
Yao B, Gui T, Zeng X, Deng Y, Wang Z, Wang Y, Yang D, Li Q, Xu P, Hu R, Li X, Chen B, Wang J, Zen K, Li H, Davis MJ, Herold MJ, Pan HF, Jiang ZW, Huang DCS, Liu M, Ju J, Zhao Q. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med 2021; 13:58. [PMID: 33853662 PMCID: PMC8048298 DOI: 10.1186/s13073-021-00871-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aberrant changes in epigenetic mechanisms such as histone modifications play an important role in cancer progression. PRMT1 which triggers asymmetric dimethylation of histone H4 on arginine 3 (H4R3me2a) is upregulated in human colorectal cancer (CRC) and is essential for cell proliferation. However, how this dysregulated modification might contribute to malignant transitions of CRC remains poorly understood. METHODS In this study, we integrated biochemical assays including protein interaction studies and chromatin immunoprecipitation (ChIP), cellular analysis including cell viability, proliferation, colony formation, and migration assays, clinical sample analysis, microarray experiments, and ChIP-Seq data to investigate the potential genomic recognition pattern of H4R3me2s in CRC cells and its effect on CRC progression. RESULTS We show that PRMT1 and SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, act cooperatively to promote colorectal cancer (CRC) progression. We find that SMARCA4 is a novel effector molecule of PRMT1-mediated H4R3me2a. Mechanistically, we show that H4R3me2a directly recruited SMARCA4 to promote the proliferative, colony-formative, and migratory abilities of CRC cells by enhancing EGFR signaling. We found that EGFR and TNS4 were major direct downstream transcriptional targets of PRMT1 and SMARCA4 in colon cells, and acted in a PRMT1 methyltransferase activity-dependent manner to promote CRC cell proliferation. In vivo, knockdown or inhibition of PRMT1 profoundly attenuated the growth of CRC cells in the C57BL/6 J-ApcMin/+ CRC mice model. Importantly, elevated expression of PRMT1 or SMARCA4 in CRC patients were positively correlated with expression of EGFR and TNS4, and CRC patients had shorter overall survival. These findings reveal a critical interplay between epigenetic and transcriptional control during CRC progression, suggesting that SMARCA4 is a novel key epigenetic modulator of CRC. Our findings thus highlight PRMT1/SMARCA4 inhibition as a potential therapeutic intervention strategy for CRC. CONCLUSION PRMT1-mediated H4R3me2a recruits SMARCA4, which promotes colorectal cancer progression by enhancing EGFR signaling.
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Tao Gui
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Dongjun Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hua-Feng Pan
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Wei Jiang
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
38
|
SMARCA4 (BRG1) and SMARCB1 (INI1) expression in TTF-1 negative neuroendocrine carcinomas including merkel cell carcinoma. Pathol Res Pract 2021; 219:153341. [PMID: 33581550 DOI: 10.1016/j.prp.2021.153341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
SMARCA4 and SMARCB1 loss of function has been implicated in many different tumors. The objective of this study was to investigate the loss of BRG1 and INI1 expression in TTF-1 negative neuroendocrine carcinomas to see if they are analogous to small-cell carcinoma of the ovary, hypercalcemic type. The potential role of these tumor suppressor genes in high-grade neuroendocrine carcinoma largely remains unknown. Cases of previously diagnosed Small cell carcinoma (SmCC), Large cell neuroendocrine carcinoma (LCNEC) and Merkel cell carcinoma (MCC) were selected. Immunohistochemical expression patterns for BRG1 and INI1 were interpreted as: intact, hybrid and complete loss of nuclear staining. SmCC and LCNEC cases were divided as TTF-1 positive and TTF-1 negative subsets. One case of TTF-1 negative SmCC (lung) showed loss of SMARCA4(BRG1) expression. Amongst TTF-1 negative LCNEC, one case (lung) showed complete loss of SMARCA4(BRG1) and partial loss of SMARCB1(INI1) and one case (lymph node) had hybrid expression of SMARCA4(BRG1) with intact SMARCB1(INI1) expression. All TTF-1 positive cases and all MCC cases showed intact expression of SMARCA4(BRG1) and SMARCB1(INI1). Our study highlights that SMARCA4(BRG1) is deficient in a subset of NEC. Inactivation of SMARCA4 in a subset of TTF-1 negative neuroendocrine carcinomas especially of pulmonary site can be further studied for their therapeutic response to targeted therapy e.g. EZH2 inhibitors. In addition, our study is the first to show that BRG1 and INI1 expression are intact in MCC and hence the biology of MCC might be completely exclusive of these two tumor suppressor genes.
Collapse
|
39
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Comprehensive Analysis of SWI/SNF Inactivation in Lung Adenocarcinoma Cell Models. Cancers (Basel) 2020; 12:cancers12123712. [PMID: 33321963 PMCID: PMC7763689 DOI: 10.3390/cancers12123712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Mammalian SWI/SNF complexes regulate gene expression by reorganizing the way DNA is packaged into chromatin. SWI/SNF subunits are recurrently altered in tumors at multiple levels, including DNA mutations as well as alteration of the levels of RNA and protein. Cancer cell lines are often used to study SWI/SNF function, but their patterns of SWI/SNF alterations can be complex. Here, we present a comprehensive characterization of DNA mutations and RNA and protein expression of SWI/SNF members in 38 lung adenocarcinoma (LUAD) cell lines. We show that over 85% of our cell lines harbored at least one alteration in one SWI/SNF subunit. In addition, over 75% of our cell lines lacked expression of at least one SWI/SNF subunit at the protein level. Our catalog will help researchers choose an appropriate cell line model to study SWI/SNF function in LUAD. Abstract Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead to the discovery of new therapeutic drugs. However, choosing an appropriate cancer cell line model for SWI/SNF functional studies can be challenging because SWI/SNF subunits are frequently altered in cancer by various mechanisms, including genetic alterations and post-transcriptional mechanisms. In this work, we combined genomic, transcriptomic, and proteomic approaches to study the mutational status and the expression levels of the SWI/SNF subunits in a panel of 38 lung adenocarcinoma (LUAD) cell lines. We found that the SWI/SNF complex was mutated in more than 76% of our LUAD cell lines and there was a high variability in the expression of the different SWI/SNF subunits. These results underline the importance of the SWI/SNF complex as a tumor suppressor in LUAD and the difficulties in defining altered and unaltered cell models for the SWI/SNF complex. These findings will assist researchers in choosing the most suitable cellular models for their studies of SWI/SNF to bring all of its potential to the development of novel therapeutic applications.
Collapse
|
41
|
USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci Rep 2020; 10:20870. [PMID: 33257797 PMCID: PMC7705756 DOI: 10.1038/s41598-020-78000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
Bromodomain (BRD)-containing proteins are important for chromatin remodeling to regulate gene expression. In this study, we found that the deubiquitinase USP24 interacted with BRD through its C-terminus increased the levels of most BRD-containing proteins through increasing their protein stability by the removal of ubiquitin from Lys391/Lys400 of the BRD. In addition, we found that USP24 and BRG1 could regulate each other through regulating the protein stability and the transcriptional activity, respectively, of the other, suggesting that the levels of USP24 and BRG1 are regulated to form a positive feedback loop in cancer progression. Loss of the interaction motif of USP24 eliminated the ability of USP24 to stabilize BRD-containing proteins and abolished the effect of USP24 on cancer progression, including its inhibition of cancer cell proliferation and promotion of cancer cell migration, suggesting that the interaction between USP24 and the BRD is important for USP24-mediated effects on cancer progression. The targeting of BRD-containing proteins has been developed as a strategy for cancer therapy. Based on our study, targeting USP24 to inhibit the levels of BRD-containing proteins may inhibit cancer progression.
Collapse
|
42
|
Primary SMARCA4-deficient undifferentiated sarcomatoid tumor of the gastroesophageal junction. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2020.200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Soshnikova NV, Sheynov AA, Tatarskiy EV, Georgieva SG. The DPF Domain As a Unique Structural Unit Participating in Transcriptional Activation, Cell Differentiation, and Malignant Transformation. Acta Naturae 2020; 12:57-65. [PMID: 33456978 PMCID: PMC7800603 DOI: 10.32607/actanaturae.11092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
The DPF (double PHD finger) domain consists of two PHD fingers organized in tandem. The two PHD-finger domains within a DPF form a single structure that interacts with the modification of the N-terminal histone fragment in a way different from that for single PHD fingers. Several histone modifications interacting with the DPF domain have already been identified. They include acetylation of H3K14 and H3K9, as well as crotonylation of H3K14. These modifications are found predominantly in transcriptionally active chromatin. Proteins containing DPF belong to two classes of protein complexes, which are the transcriptional coactivators involved in the regulation of the chromatin structure. These are the histone acetyltransferase complex belonging to the MYST family and the SWI/SNF chromatin-remodeling complex. The DPF domain is responsible for the specificity of the interactions between these complexes and chromatin. Proteins containing DPF play a crucial role in the activation of the transcription of a number of genes expressed during the development of an organism. These genes are important in the differentiation and malignant transformation of mammalian cells.
Collapse
Affiliation(s)
- N. V. Soshnikova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. A. Sheynov
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - Eu. V. Tatarskiy
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - S. G. Georgieva
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
44
|
Gong J, Mou T, Wu H, Wu Z. Brg1 regulates murine liver regeneration by targeting miR-187-5p dependent on Hippo signalling pathway. J Cell Mol Med 2020; 24:11592-11602. [PMID: 32845093 PMCID: PMC7576256 DOI: 10.1111/jcmm.15776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Brg1 and Hippo signalling pathway are abnormally expressed in many malignant tumours, especially in Hepatocellular carcinoma, but their role in liver regeneration (LR) is unknown. In our research, we investigated the role of Brg1 and Hippo signalling pathway in hepatocyte proliferation and LR. Following 2/3 partial hepatectomy (PH) in liver-specific Brg1 deleted mice (Brg1-/-) (KO) mice and sex-matched wild-type (WT), depletion of Brg1 in mouse embryos caused liver cell growth disorders and significantly decreased expression of miR-187-5p. We identified LATS1 as a target gene of miR-187-5p and the introduction of miR-187-5p decrease the expression of LATS1 and inactivated the Hippo signalling pathway, which facilitated the expression of cell cycle-related proteins, and rescues the inhibitory effect of Brg1 in LR. Taken together, our findings suggested that deletion of Brg1 inhibits hepatocyte proliferation and LR by targeting miR-187-5p dependent on Hippo signalling pathway.
Collapse
Affiliation(s)
- Junhua Gong
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tong Mou
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hao Wu
- Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhongjun Wu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
45
|
Eich ML, Athar M, Ferguson JE, Varambally S. EZH2-Targeted Therapies in Cancer: Hype or a Reality. Cancer Res 2020; 80:5449-5458. [PMID: 32978169 DOI: 10.1158/0008-5472.can-20-2147] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Next-generation genomic sequencing has identified multiple novel molecular alterations in cancer. Since the identification of DNA methylation and histone modification, it has become evident that genes encoding epigenetic modifiers that locally and globally regulate gene expression play a crucial role in normal development and cancer progression. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is the enzymatic catalytic subunit of the polycomb-repressive complex 2 (PRC2) that can alter gene expression by trimethylating lysine 27 on histone 3 (H3K27). EZH2 is involved in global transcriptional repression, mainly targeting tumor-suppressor genes. EZH2 is commonly overexpressed in cancer and shows activating mutations in subtypes of lymphoma. Extensive studies have uncovered an important role for EZH2 in cancer progression and have suggested that it may be a useful therapeutic target. In addition, tumors harboring mutations in other epigenetic genes such as ARID1A, KDM6, and BAP1 are highly sensitive to EZH2 inhibition, thus increasing its potential as a therapeutic target. Recent studies also suggest that inhibition of EZH2 enhances the response to tumor immunotherapy. Many small-molecule inhibitors have been developed to target EZH2 or the PRC2 complex, with some of these inhibitors now in early clinical trials reporting clinical responses with acceptable tolerability. In this review, we highlight the recent advances in targeting EZH2, its successes, and potential limitations, and we discuss the future directions of this therapeutic subclass.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James E Ferguson
- Department of Urology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
- Michigan Center for Translational Pathology, Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
46
|
Wu S, Ge Y, Li X, Yang Y, Zhou H, Lin K, Zhang Z, Zhao Y. BRM-SWI/SNF chromatin remodeling complex enables functional telomeres by promoting co-expression of TRF2 and TRF1. PLoS Genet 2020; 16:e1008799. [PMID: 32502208 PMCID: PMC7299400 DOI: 10.1371/journal.pgen.1008799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/17/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
TRF2 and TRF1 are a key component in shelterin complex that associates with telomeric DNA and protects chromosome ends. BRM is a core ATPase subunit of SWI/SNF chromatin remodeling complex. Whether and how BRM-SWI/SNF complex is engaged in chromatin end protection by telomeres is unknown. Here, we report that depletion of BRM does not affect heterochromatin state of telomeres, but results in telomere dysfunctional phenomena including telomere uncapping and replication defect. Mechanistically, expression of TRF2 and TRF1 is jointly regulated by BRM-SWI/SNF complex, which is localized to promoter region of both genes and facilitates their transcription. BRM-deficient cells bear increased TRF2-free or TRF1-free telomeres due to insufficient expression. Importantly, BRM depletion-induced telomere uncapping or replication defect can be rescued by compensatory expression of exogenous TRF2 or TRF1, respectively. Together, these results identify a new function of BRM-SWI/SNF complex in enabling functional telomeres for maintaining genome stability. Human telomeres consist of repetitive “TTAGGG” DNA sequences and associated shelterin complex, which maintain genomic stability by preventing linear chromosome ends from being recognized as broken DNA. TRF1 and TRF2, as key components of shelterin complex, directly associate with double strand telomeric DNA. In this study, we discovered that both TRF1 and TRF2 are jointly regulated by BRM-SWI/SNF complex. Depletion of BRM led to insufficient amount of TRF1 and TRF2, which is associated with telomere replication defect and telomere uncapping. More importantly, these phenomena can be rescued by ectopically expressed TRF1 and TRF2. Our work demonstrates a specific role of BRM-SWI/SNF complex on safeguarding genome stability by enabling functional telomeres.
Collapse
Affiliation(s)
- Shu Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Xiaocui Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiding Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kaixuan Lin
- Yale Stem Cell Center & Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Zepeng Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
47
|
The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol 2020; 17:435-448. [PMID: 32303701 DOI: 10.1038/s41571-020-0357-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer genome-sequencing studies have revealed a remarkably high prevalence of mutations in genes encoding subunits of the SWI/SNF chromatin-remodelling complexes, with nearly 25% of all cancers harbouring aberrations in one or more of these genes. A role for such aberrations in tumorigenesis is evidenced by cancer predisposition in both carriers of germline loss-of-function mutations and genetically engineered mouse models with inactivation of any of several SWI/SNF subunits. Whereas many of the most frequently mutated oncogenes and tumour-suppressor genes have been studied for several decades, the cancer-promoting role of mutations in SWI/SNF genes has been recognized only more recently, and thus comparatively less is known about these alterations. Consequently, increasing research interest is being focused on understanding the prognostic and, in particular, the potential therapeutic implications of mutations in genes encoding SWI/SNF subunits. Herein, we review the burgeoning data on the mechanisms by which mutations affecting SWI/SNF complexes promote cancer and describe promising emerging opportunities for targeted therapy, including immunotherapy with immune-checkpoint inhibitors, presented by these mutations. We also highlight ongoing clinical trials open specifically to patients with cancers harbouring mutations in certain SWI/SNF genes.
Collapse
|
48
|
Villatoro TM, Ma C, Pai RK. Switch/sucrose nonfermenting nucleosome complex-deficient colorectal carcinomas have distinct clinicopathologic features. Hum Pathol 2020; 99:53-61. [PMID: 32222462 DOI: 10.1016/j.humpath.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
The switch/sucrose nonfermenting (SWI/SNF) nucleosome complex consists of several proteins that are involved in cellular proliferation and tumor suppression. The aim of this study was to correlate immunohistochemical expression of four SWI/SNF complex subunits, SMARCA2, SMARCB1, SMARCA4, and ARID1A, with clinicopathologic and molecular features and patient survival in 338 patients with colorectal adenocarcinoma using a tissue microarray approach. Twenty-three (7%) colorectal adenocarcinomas demonstrated deficient SWI/SNF expression: 7 had SMARCA2 deficiency, 12 had ARID1A deficiency, and 4 had both SMARCA2 and ARID1A deficiency. No cases were SMARCB1 or SMARCA4 deficient. Twelve (52%) SWI/SNF complex-deficient tumors demonstrated mismatch repair (MMR) deficiency (p = 0.02), 6 (26%) showed medullary differentiation (p = 0.001), and 9 were negative for CDX2 expression (p < 0.001). Among the MMR-deficient SWI/SNF complex-deficient tumors, 8 were sporadic MLH1 deficient, and 4 were seen in patients with Lynch syndrome. Compared with tumors with ARID1A deficiency alone, SMARCA2-deficient tumors were less likely to exhibit MMR deficiency (27% vs. 75%, p = 0.04), medullary differentiation (0% vs. 50%, p = 0.01), and mucinous differentiation (0% vs. 42%, p = 0.04). Conventional gland-forming histology was more often identified in SMARCA2-deficient tumors (11/11, 100%) than in tumors with ARID1A deficiency alone (4/12, 33%) (p = 0.001). There was no difference in KRAS mutation, BRAF mutation, stage, disease-specific survival, or disease-free survival for patients stratified by SWI/SNF expression (all with p > 0.05). In conclusion, SMARCA2-deficient and ARID1A-deficient colorectal carcinomas had distinctly different clinicopathologic features, with ARID1A-deficient tumors exhibiting medullary and mucinous differentiation and MMR deficiency and SMARCA2-deficient tumors demonstrating conventional gland-forming histologic growth with less frequent MMR deficiency.
Collapse
Affiliation(s)
- Tatiana M Villatoro
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Changqing Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Hu B, Lin JZ, Yang XB, Sang XT. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Prolif 2020; 53:e12791. [PMID: 32162380 PMCID: PMC7162795 DOI: 10.1111/cpr.12791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Kargbo RB. BRM Targeting Compounds for the Potential Treatment of Cancer. ACS Med Chem Lett 2020; 11:99-100. [PMID: 32071673 DOI: 10.1021/acsmedchemlett.0c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert B Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|