1
|
Yang Z, Niu R, Han J, Guo J, Lv Y. Hedgehog inhibitors exert anti-proliferation effects and synergistically interact with trastuzumab in HER2-positive gastric cancer models. Acta Oncol 2025; 64:715-728. [PMID: 40426308 DOI: 10.2340/1651-226x.2025.42219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Gastric cancer (GC) remains a significant health concern with limited therapeutic options. While trastuzumab, a Human Epidermal Growth Factor Receptor 2 (HER2)-targeting antibody, has shown efficacy in HER2-positive GC, its therapeutic response is moderate. Hedgehog (Hh) signalling plays a critical role in the progression of GC. METHODS We evaluated the sensitivity of various GC cell lines to trastuzumab. The HER2-positive HGC-27 cell line was identified as the most sensitive. In addition, the effects of two Hedgehog inhibitors, vismodegib and cyclopamine, were assessed on cell growth by monitoring SMO expression. Both in vitro and in vivo assays were conducted to explore the combination of Hh inhibitors and trastuzumab. RESULTS Both vismodegib and cyclopamine exerted anti-proliferative effects, and synergistically enhanced the anti-tumour activity of trastuzumab in HER2-positive GC models. Mechanistically, Hh inhibitors inhibited the AKT/mTOR signalling pathway through Smoothened (SMO) depletion, contributing to their anti-growth effects. INTERPRETATION This study highlights the potential of combining Hh inhibitors with trastuzumab as a therapeutic strategy for HER2-positive GC by targeting the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zixin Yang
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Ren Niu
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jinzhu Han
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jie Guo
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yingqian Lv
- The second department of Oncology, The Second Hospital of Hebei Medical University, Hebei, China.
| |
Collapse
|
2
|
Xia B, Zhu Q. Aptamer-ODN Chimeras: Enabling Cell-Specific ODN Targeting Therapy. Cells 2025; 14:697. [PMID: 40422200 DOI: 10.3390/cells14100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Oligonucleotides (ODNs) such as siRNA, saRNA, and miRNA regulate gene expression through a variety of molecular mechanisms and show unique potential in the treatment of genetic diseases and rare diseases, but their clinical application is still limited by the efficiency of the delivery system, especially the problem of the insufficient targeting of extrahepatic tissues. As homologous nucleic acid molecules, aptamers have become a key tool to improve the targeted delivery of ODNs. Aptamer-ODN chimeras can not only bind to multiple proteins on the cell surface with high specificity and selectivity, but they can also internalize into cells. Furthermore, they outperform traditional delivery systems in terms of cost-effectiveness and chemical modification flexibility. This review systematically summarizes the origin and progress of aptamer-ODN chimera therapy, discusses some innovative design strategies, and proposes views on the future direction of aptamer-ODN chimeras.
Collapse
Affiliation(s)
- Bei Xia
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
An Y, Lv X, Xu S, Li H, Zheng P, Zhu W, Wang L. Pyrimidine-based dual-target inhibitors targeting epidermal growth factor receptor for overcoming drug resistance in cancer therapy(2006-present). Eur J Med Chem 2025; 286:117268. [PMID: 39837171 DOI: 10.1016/j.ejmech.2025.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
The epidermal growth factor receptor (EGFR) is a pivotal member of the epidermal growth factor receptor family, exerting crucial regulatory influence on cellular physiological processes, particularly in relation to cell growth, proliferation, and differentiation. In recent years, numerous EGFR inhibitors have been introduced to the market; unfortunately, the effectiveness of single-target EGFR inhibitors has been compromised due to the development of drug resistance caused by EGFR mutations. Despite attempts by some researchers to address this issue through combination therapy with two or more drugs, instances of dose-limiting toxicities have been observed. Consequently, EGFR dual-target inhibitors have emerged as a burgeoning field in cancer treatment, offering a novel therapeutic option for solid tumors with the added benefits of reduced risk of resistance, lower dosage requirements, diminished toxicity profiles, and enhanced efficacy. At present, a series of EGFR dual-target inhibitors with diverse structures have been developed successively. In this study, we initially investigated the pyrimidine-based EGFR dual-target inhibitors that have been reported in the past two decades and categorized them into aminopyrimidine derivatives and heterocyclic pyrimidine derivatives with increased molecular complexity. Subsequently, we comprehensively summarized the biological activity and structure-activity relationship of this class of inhibitors in the context of cancer therapy, while also exploring potential opportunities and challenges associated with their application in this field. The present study provides a partial framework to guide future endeavors in drug development.
Collapse
Affiliation(s)
- Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Xinya Lv
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Heqing Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
4
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Singh G, Al-Fahad D, Al-Zrkani MK, Chaudhuri TK, Soni H, Tandon S, Narasimhaji CV, Azam F, Patil R. Identification of potential inhibitors of HER2 targeting breast cancer-a structure-based drug design approach. J Biomol Struct Dyn 2024; 42:8184-8201. [PMID: 37565730 DOI: 10.1080/07391102.2023.2246576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Breast cancer is one of the most prevalent and malignant cancers in women. Most breast cancer patients show overexpression of the HER2 protein. The current study focused on identifying potent inhibitors of HER2 using a structure-based drug design approach. Prefiltered compounds from the Drugbank and the ZINC database were docked on HER2 protein using the FlexX docking tool of LeadIT. The docking study identified the 12 best molecules that interacted strongly with the active site of HER2 and also fulfilled the ADMET parameters. The complexes of these compounds with HER2 were further subjected to molecular dynamics simulation using GROMACS 2021.4, followed by the end-state MMGBSA binding energy calculations. The RMSD analysis was conducted to study the conformational changes, which revealed stability throughout the 100 ns simulation period. The local flexibility and dynamics of the simulated ligand-protein complexes were studied using RMSF analysis. The values of the radius of gyration were computed to analyze the compactness of HER2. The MMGBSA analysis provided insights into the energetic aspects of the system. The compound DB15187 emerged as the most potent candidate, showing MMGBSA-computed binding energy of -63.60 ± 3.39 kcal/mol. The study could help develop targeted therapies for HER2-positive breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gagandeep Singh
- Section of Microbiology and Chemistry, Central Ayurveda Research Institute Jhansi, CCRAS, Ministry of Ayush, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah, Iraq
| | - Mrtatha K Al-Zrkani
- Department of Animal Production, College of Agriculture, Wasit University, Wasit, Iraq
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Hemant Soni
- Section of Microbiology and Chemistry, Central Ayurveda Research Institute Jhansi, CCRAS, Ministry of Ayush, India
| | - Smriti Tandon
- Section of Microbiology and Chemistry, Central Ayurveda Research Institute Jhansi, CCRAS, Ministry of Ayush, India
| | | | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Rajesh Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
6
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Li K, Shu D, Li H, Lan A, Zhang W, Tan Z, Huang M, Tomasi ML, Jin A, Yu H, Shen M, Liu S. SMAD4 depletion contributes to endocrine resistance by integrating ER and ERBB signaling in HR + HER2- breast cancer. Cell Death Dis 2024; 15:444. [PMID: 38914552 PMCID: PMC11196642 DOI: 10.1038/s41419-024-06838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Endocrine resistance poses a significant clinical challenge for patients with hormone receptor-positive and human epithelial growth factor receptor 2-negative (HR + HER2-) breast cancer. Dysregulation of estrogen receptor (ER) and ERBB signaling pathways is implicated in resistance development; however, the integration of these pathways remains unclear. While SMAD4 is known to play diverse roles in tumorigenesis, its involvement in endocrine resistance is poorly understood. Here, we investigate the role of SMAD4 in acquired endocrine resistance in HR + HER2- breast cancer. Genome-wide CRISPR screening identifies SMAD4 as a regulator of 4-hydroxytamoxifen (OHT) sensitivity in T47D cells. Clinical data analysis reveals downregulated SMAD4 expression in breast cancer tissues, correlating with poor prognosis. Following endocrine therapy, SMAD4 expression is further suppressed. Functional studies demonstrate that SMAD4 depletion induces endocrine resistance in vitro and in vivo by enhancing ER and ERBB signaling. Concomitant inhibition of ER and ERBB signaling leads to aberrant autophagy activation. Simultaneous inhibition of ER, ERBB, and autophagy pathways synergistically impacts SMAD4-depleted cells. Our findings unveil a mechanism whereby endocrine therapy-induced SMAD4 downregulation drives acquired resistance by integrating ER and ERBB signaling and suggest a rational treatment strategy for endocrine-resistant HR + HER2- breast cancer patients.
Collapse
MESH Headings
- Humans
- Smad4 Protein/metabolism
- Smad4 Protein/genetics
- Female
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/drug therapy
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/metabolism
- Cell Line, Tumor
- Animals
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Tamoxifen/analogs & derivatives
- Mice
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Mice, Nude
- Gene Expression Regulation, Neoplastic/drug effects
- Autophagy/drug effects
- ErbB Receptors/metabolism
- ErbB Receptors/genetics
Collapse
Affiliation(s)
- Kang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Dan Shu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Han Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Ailin Lan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Wenjie Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Zhaofu Tan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Man Huang
- Department of Breast Center, Chongqing University Three Gorges Hospital, Wanzhou, 404000, Chongqing, China
| | - Maria Lauda Tomasi
- Department of Medicine, Cedars-Sinai Medical Center, DAVIS Research Building 3096A, 8700 Beverly Blv, Los Angeles, CA, 90048, USA
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, 400010, Chongqing, China
| | - Haochen Yu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| | - Meiying Shen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
8
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
9
|
Zeng H, Wang W, Zhang L, Lin Z. HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:14. [PMID: 38835349 PMCID: PMC11149107 DOI: 10.20517/cdr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3), which is part of the HER family, is aberrantly expressed in various human cancers. Since HER3 only has weak tyrosine kinase activity, when HER3 ligand neuregulin 1 (NRG1) or neuregulin 2 (NRG2) appears, activated HER3 contributes to cancer development and drug resistance by forming heterodimers with other receptors, mainly including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Inhibition of HER3 and its downstream signaling, including PI3K/AKT, MEK/MAPK, JAK/STAT, and Src kinase, is believed to be necessary to conquer drug resistance and improve treatment efficiency. Until now, despite multiple anti-HER3 antibodies undergoing preclinical and clinical studies, none of the HER3-targeted therapies are licensed for utilization in clinical cancer treatment because of their safety and efficacy. Therefore, the development of HER3-targeted drugs possessing safety, tolerability, and sensitivity is crucial for clinical cancer treatment. This review summarizes the progress of the mechanism of HER3 in drug resistance, the HER3-targeted therapies that are conducted in preclinical and clinical trials, and some emerging molecules that could be used as future designed drugs for HER3, aiming to provide insights for future research and development of anticancer drugs targeting HER3.
Collapse
Affiliation(s)
- Huilan Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
12
|
Nada H, Gul AR, Elkamhawy A, Kim S, Kim M, Choi Y, Park TJ, Lee K. Machine Learning-Based Approach to Developing Potent EGFR Inhibitors for Breast Cancer-Design, Synthesis, and In Vitro Evaluation. ACS OMEGA 2023; 8:31784-31800. [PMID: 37692247 PMCID: PMC10483653 DOI: 10.1021/acsomega.3c02799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
The epidermal growth factor receptor (EGFR) is vital for regulating cellular functions, including cell division, migration, survival, apoptosis, angiogenesis, and cancer. EGFR overexpression is an ideal target for anticancer drug development as it is absent from normal tissues, marking it as tumor-specific. Unfortunately, the development of medication resistance limits the therapeutic efficacy of the currently approved EGFR inhibitors, indicating the need for further development. Herein, a machine learning-based application that predicts the bioactivity of novel EGFR inhibitors is presented. Clustering of the EGFR small-molecule inhibitor (∼9000 compounds) library showed that N-substituted quinazolin-4-amine-based compounds made up the largest cluster of EGFR inhibitors (∼2500 compounds). Taking advantage of this finding, rational drug design was used to design a novel series of 4-anilinoquinazoline-based EGFR inhibitors, which were first tested by the developed artificial intelligence application, and only the compounds which were predicted to be active were then chosen to be synthesized. This led to the synthesis of 18 novel compounds, which were subsequently evaluated for cytotoxicity and EGFR inhibitory activity. Among the tested compounds, compound 9 demonstrated the most potent antiproliferative activity, with 2.50 and 1.96 μM activity over MCF-7 and MDA-MB-231 cancer cell lines, respectively. Moreover, compound 9 displayed an EGFR inhibitory activity of 2.53 nM and promising apoptotic results, marking it a potential candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Hossam Nada
- BK21
FOUR Team and Integrated Research Institute for Drug Development,
College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Anam Rana Gul
- Department
of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, South Korea
| | - Ahmed Elkamhawy
- BK21
FOUR Team and Integrated Research Institute for Drug Development,
College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sungdo Kim
- BK21
FOUR Team and Integrated Research Institute for Drug Development,
College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Minkyoung Kim
- BK21
FOUR Team and Integrated Research Institute for Drug Development,
College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Yongseok Choi
- College
of Life Sciences and Biotechnology, Korea
University, Seoul 02841, Republic of Korea
| | - Tae Jung Park
- Department
of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, South Korea
| | - Kyeong Lee
- BK21
FOUR Team and Integrated Research Institute for Drug Development,
College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
13
|
Cai P, Yang B, Zhao J, Ye P, Yang D. Detection of KRAS mutation using plasma samples in non-small-cell lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1207892. [PMID: 37483491 PMCID: PMC10357383 DOI: 10.3389/fonc.2023.1207892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The aim of this study was to investigate the diagnostic accuracy of KRAS mutation detection using plasma sample of patients with non-small cell lung cancer (NSCLC). Methods Databases of Pubmed, Embase, Cochrane Library, and Web of Science were searched for studies detecting KRAS mutation in paired tissue and plasma samples of patients with NSCLC. Data were extracted from each eligible study and analyzed using MetaDiSc and STATA. Results After database searching and screening of the studies with pre-defined criteria, 43 eligible studies were identified and relevant data were extracted. After pooling the accuracy data from 3341 patients, the pooled sensitivity, specificity and diagnostic odds ratio were 71%, 94%, and 59.28, respectively. Area under curve of summary receiver operating characteristic curve was 0.8883. Subgroup analysis revealed that next-generation sequencing outperformed PCR-based techniques in detecting KRAS mutation using plasma sample of patients with NSCLC, with sensitivity, specificity, and diagnostic odds ratio of 73%, 94%, and 82.60, respectively. Conclusion Compared to paired tumor tissue sample, plasma sample showed overall good performance in detecting KRAS mutation in patients with NSCLC, which could serve as good surrogate when tissue samples are not available.
Collapse
Affiliation(s)
- Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Bofan Yang
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Jiahui Zhao
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dongmei Yang
- Clinical Laboratory & Clinical Research and Translational Center, Second People’s Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
14
|
Wang N, Cao Y, Si C, Shao P, Su G, Wang K, Bao J, Yang L. Emerging Role of ERBB2 in Targeted Therapy for Metastatic Colorectal Cancer: Signaling Pathways to Therapeutic Strategies. Cancers (Basel) 2022; 14:5160. [PMID: 36291943 PMCID: PMC9600272 DOI: 10.3390/cancers14205160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Despite recent improvements in the comprehensive therapy of malignancy, metastatic colorectal cancer (mCRC) continues to have a poor prognosis. Notably, 5% of mCRC cases harbor Erb-B2 receptor tyrosine kinase 2 (ERBB2) alterations. ERBB2, commonly referred to as human epidermal growth factor receptor 2, is a member of the human epidermal growth factor receptor family of protein tyrosine kinases. In addition to being a recognized therapeutic target in the treatment of gastric and breast malignancies, it is considered crucial in the management of CRC. In this review, we describe the molecular biology of ERBB2 from the perspective of biomarkers for mCRC-targeted therapy, including receptor structures, signaling pathways, gene alterations, and their detection methods. We also discuss the relationship between ERBB2 aberrations and the underlying mechanisms of resistance to anti-EGFR therapy and immunotherapy tolerance in these patients with a focus on novel targeted therapeutics and ongoing clinical trials. This may aid the development of a new standard of care in patients with ERBB2-positive mCRC.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yuepeng Cao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Chengshuai Si
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Peng Shao
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Guoqing Su
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ke Wang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Jun Bao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| |
Collapse
|