1
|
Camiña-Conforto G, Ivars M, Sarquella-Brugada G, Valera-Dávila C, Salvador H, Rovira C, Baselga E. Phacomatosis pigmentokeratotica: Exploring extracutaneous comorbidities and topical therapy. Pediatr Dermatol 2024; 41:904-907. [PMID: 38621679 DOI: 10.1111/pde.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
Phacomatosis pigmentokeratotica (PPK) is a RASopathy characterized by the presence of a sebaceous nevus and a papular speckled lentiginous nevus. This case report highlights the associated extracutaneous comorbidities, including life-threatening arrhythmia, and introduces topical rapamycin as a potential therapeutic avenue for sebaceous nevus in PPK patients.
Collapse
Affiliation(s)
| | - Marta Ivars
- Department of Dermatology, Inherited Cardiac Diseases and Sudden Death Unit, Barcelona, Spain
| | | | - Carlos Valera-Dávila
- Department of Neurology, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Héctor Salvador
- Department of Pediatric Oncology, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Carlota Rovira
- Department of Pathology, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Inherited Cardiac Diseases and Sudden Death Unit, Barcelona, Spain
| |
Collapse
|
2
|
Gross JB, Berning D, Phelps A, Luc H. An analysis of lateralized neural crest marker expression across development in the Mexican tetra, Astyanax mexicanus. Front Cell Dev Biol 2023; 11:1074616. [PMID: 36875772 PMCID: PMC9975491 DOI: 10.3389/fcell.2023.1074616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The biological basis of lateralized cranial aberrations can be rooted in early asymmetric patterning of developmental tissues. However, precisely how development impacts natural cranial asymmetries remains incompletely understood. Here, we examined embryonic patterning of the cranial neural crest at two phases of embryonic development in a natural animal system with two morphotypes: cave-dwelling and surface-dwelling fish. Surface fish are highly symmetric with respect to cranial form at adulthood, however adult cavefish harbor diverse cranial asymmetries. To examine if lateralized aberrations of the developing neural crest underpin these asymmetries, we used an automated technique to quantify the area and expression level of cranial neural crest markers on the left and right sides of the embryonic head. We examined the expression of marker genes encoding both structural proteins and transcription factors at two key stages of development: 36 hpf (∼mid-migration of the neural crest) and 72 hpf (∼early differentiation of neural crest derivatives). Interestingly, our results revealed asymmetric biases at both phases of development in both morphotypes, however consistent lateral biases were less common in surface fish as development progressed. Additionally, this work provides the information on neural crest development, based on whole-mount expression patterns of 19 genes, between stage-matched cave and surface morphs. Further, this study revealed 'asymmetric' noise as a likely normative component of early neural crest development in natural Astyanax fish. Mature cranial asymmetries in cave morphs may arise from persistence of asymmetric processes during development, or as a function of asymmetric processes occurring later in the life history.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Daniel Berning
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Ayana Phelps
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Heidi Luc
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
3
|
Baranowska-Kortylewicz J, Kortylewicz ZP, McIntyre EM, Sharp JG, Coulter DW. Multifarious Functions of Butyrylcholinesterase in Neuroblastoma: Impact of BCHE Deletion on the Neuroblastoma Growth In Vitro and In Vivo. J Pediatr Hematol Oncol 2022; 44:293-304. [PMID: 34486544 DOI: 10.1097/mph.0000000000002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
The physiological functions of butyrylcholinesterase (BChE) and its role in malignancy remain unexplained. Our studies in children newly diagnosed with neuroblastoma indicated that BChE expressions is proportional to MYCN amplification suggesting that pathogenesis of high-risk disease may be related to the persistent expression of abnormally high levels of tumor-associated BChE. BChE-deficient neuroblastoma cells (KO [knockout]) were produced from MYCN -amplified BE(2)-C cells (WT [wild-type]) by the CRISPR-Cas9 targeted disruption of the BCHE locus. KO cells have no detectable BChE activity. The compensatory acetylcholinesterase activity was not detected. The average population doubling time of KO cells is 47.0±2.4 hours, >2× longer than WT cells. Reduced proliferation rates of KO cells were accompanied by the loss of N-Myc protein and a significant deactivation of tyrosine kinase receptors associated with the aggressive neuroblastoma phenotype including Ros1, TrkB, and Ltk. Tumorigenicity of WT and KO cells in male mice was essentially identical. In contrast, KO xenografts in female mice were very small (0.37±0.10 g), ~3× smaller compared with WT xenografts (1.11±0.30 g). Unexpectedly, KO xenografts produced changes in plasma BChE similarly to WT tumors but lesser in magnitude. The disruption of BCHE locus in MYCN -amplified neuroblastoma cells decelerates proliferation and produces neuroblastoma cells that are less aggressive in female mice.
Collapse
Affiliation(s)
| | | | | | - John G Sharp
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Don W Coulter
- Division of Hematology/Oncology, Departments of Pediatrics
| |
Collapse
|
4
|
Liu J, Rebecca VW, Kossenkov AV, Connelly T, Liu Q, Gutierrez A, Xiao M, Li L, Zhang G, Samarkina A, Zayasbazan D, Zhang J, Cheng C, Wei Z, Alicea GM, Fukunaga-Kalabis M, Krepler C, Aza-Blanc P, Yang CC, Delvadia B, Tong C, Huang Y, Delvadia M, Morias AS, Sproesser K, Brafford P, Wang JX, Beqiri M, Somasundaram R, Vultur A, Hristova DM, Wu LW, Lu Y, Mills GB, Xu W, Karakousis GC, Xu X, Schuchter LM, Mitchell TC, Amaravadi RK, Kwong LN, Frederick DT, Boland GM, Salvino JM, Speicher DW, Flaherty KT, Ronai ZA, Herlyn M. Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Res 2021; 81:5230-5241. [PMID: 34462276 PMCID: PMC8530965 DOI: 10.1158/0008-5472.can-20-1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/15/2020] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Metastatic melanoma is challenging to clinically address. Although standard-of-care targeted therapy has high response rates in patients with BRAF-mutant melanoma, therapy relapse occurs in most cases. Intrinsically resistant melanoma cells drive therapy resistance and display molecular and biologic properties akin to neural crest-like stem cells (NCLSC) including high invasiveness, plasticity, and self-renewal capacity. The shared transcriptional programs and vulnerabilities between NCLSCs and cancer cells remains poorly understood. Here, we identify a developmental LPAR1-axis critical for NCLSC viability and melanoma cell survival. LPAR1 activity increased during progression and following acquisition of therapeutic resistance. Notably, genetic inhibition of LPAR1 potentiated BRAFi ± MEKi efficacy and ablated melanoma migration and invasion. Our data define LPAR1 as a new therapeutic target in melanoma and highlights the promise of dissecting stem cell-like pathways hijacked by tumor cells. SIGNIFICANCE: This study identifies an LPAR1-axis critical for melanoma invasion and intrinsic/acquired therapy resistance.
Collapse
Affiliation(s)
- Jianglan Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Vito W Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrew V Kossenkov
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thomas Connelly
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alexis Gutierrez
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ling Li
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anastasia Samarkina
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Delaine Zayasbazan
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Gretchen M Alicea
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Mizuho Fukunaga-Kalabis
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Pedro Aza-Blanc
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Bela Delvadia
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Cynthia Tong
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ye Huang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maya Delvadia
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alice S Morias
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia Brafford
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua X Wang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Marilda Beqiri
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adina Vultur
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Denitsa M Hristova
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lawrence W Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Xu
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M Schuchter
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C Mitchell
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dennie T Frederick
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Genevieve M Boland
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keith T Flaherty
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
6
|
Ozolek JA. Selected Topics in the Pathology of the Thyroid and Parathyroid Glands in Children and Adolescents. Head Neck Pathol 2021; 15:85-106. [PMID: 33723755 PMCID: PMC8010056 DOI: 10.1007/s12105-020-01274-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
The goals of this chapter in keeping with the overall general themes of this special edition will be (1) to highlight aspects of development of the thyroid and parathyroid glands with particular focus on the role and contribution of the neural crest (or not) and how this may impact on the pathology that is seen, (2) to emphasize those lesions particularly more commonly arising in the pediatric population that actually generate specimens that the surgical pathologist would encounter, and (3) highlight more in depth specific lesions associated with heritable syndromes or specific gene mutations since the heritable syndromes tends to manifest in the pediatric age group. In this light, the other interesting areas of pediatric thyroid disease including medical thyroid diseases, congenital hypothyroidism, anatomic variants and aberrations of development that lead to structural anomalies will not be emphasized here.
Collapse
Affiliation(s)
- John A. Ozolek
- West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
7
|
Abstract
The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.
Collapse
Affiliation(s)
- Laurent Souci
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
8
|
Vissio PG, Darias MJ, Di Yorio MP, Pérez Sirkin DI, Delgadin TH. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. Gen Comp Endocrinol 2021; 301:113662. [PMID: 33220300 DOI: 10.1016/j.ygcen.2020.113662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Skin pigmentation pattern is a species-specific characteristic that depends on the number and the spatial combination of several types of chromatophores. This feature can change during life, for example in the metamorphosis or reproductive cycle, or as a response to biotic and/or abiotic environmental cues (nutrition, UV incidence, surrounding luminosity, and social interactions). Fish skin pigmentation is one of the most important quality criteria dictating the market value of both aquaculture and ornamental species because it serves as an external signal to infer its welfare and the culture conditions used. For that reason, several studies have been conducted aiming to understand the mechanisms underlying fish pigmentation as well as the influence exerted by rearing conditions. In this context, the present review focuses on the current knowledge on endocrine regulation of fish pigmentation as well as on the aquaculture conditions affecting skin coloration. Available information on Iberoamerican fish species cultured is presented.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Tomás H Delgadin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Stuepp RT, Modolo F, Trentin AG, Garcez RC, Biz MT. HNK1 and Sox10 are present during repair of mandibular bone defects. Biotech Histochem 2020; 95:619-625. [PMID: 32362205 DOI: 10.1080/10520295.2020.1744728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Neural crest cells possess characteristics of stem cells including plasticity and ability to differentiate into various cell types. HNK1 and Sox10 are markers of neural crest cell progenitors that have been demonstrated in osteoblasts during osteogenesis of the maxilla and mandible. We investigated the presence of Sox10 and HNK1 during regeneration of mandibular bone defects. Defects were created in mandibles of rats. Samples of these defects were collected at 7, 14 and 28 days post-surgery; bone regeneration was observed during this period. Immunohistochemical analysis revealed expression of HNK1 and Sox10 in osteoblasts, osteocytes and osteogenic cells, whereas osteoclasts were unstained. HNK1 expression was increased in osteoblasts and osteocytes over time and SOX10 expression was found in osteoblasts and osteogenic cells at 7, 14 and 28 days post-surgery. HNK1 and Sox10 are present in osteoblasts, osteocytes and osteogenic cells during mandible bone regeneration.
Collapse
Affiliation(s)
- R T Stuepp
- Postgraduate Program in Dentistry, Federal University of Santa Catarina , Florianópolis, Brazil.,Pathology Department, Federal University of Santa Catarina , Florianopolis, Brazil
| | - F Modolo
- Postgraduate Program in Dentistry, Federal University of Santa Catarina , Florianópolis, Brazil.,Pathology Department, Federal University of Santa Catarina , Florianopolis, Brazil
| | - A G Trentin
- Cellular Biology, Embryology and Genetics Department and Cellular Biology, Federal University of Santa Catarina , Florianopolis, Brazil
| | - R C Garcez
- Cellular Biology, Embryology and Genetics Department and Cellular Biology, Federal University of Santa Catarina , Florianopolis, Brazil
| | - M T Biz
- Morphology Sciences Department, Federal University of Santa Catarina , Florianopolis, Brazil
| |
Collapse
|
10
|
In Vitro Differentiation of Human Skin-Derived Cells into Functional Sensory Neurons-Like. Cells 2020; 9:cells9041000. [PMID: 32316463 PMCID: PMC7226083 DOI: 10.3390/cells9041000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Skin-derived precursor cells (SKPs) are neural crest stem cells that persist in certain adult tissues, particularly in the skin. They can generate a large type of cell in vitro, including neurons. SKPs were induced to differentiate into sensory neurons (SNs) by molecules that were previously shown to be important for the generation of SNs: purmorphamine, CHIR99021, BMP4, GDNF, BDNF, and NGF. We showed that the differentiation of SKPs induced the upregulation of neurogenins. At the end of the differentiation protocol, transcriptional analysis was performed on BRN3A and a marker of pain-sensing nerve cell PRDM12 genes: 1000 times higher for PRDM12 and 2500 times higher for BRN3A in differentiated cells than they were in undifferentiated SKPs. Using immunostaining, we showed that 65% and 80% of cells expressed peripheral neuron markers BRN3A and PERIPHERIN, respectively. Furthermore, differentiated cells expressed TRPV1, PAR2, TRPA1, substance P, CGRP, HR1. Using calcium imaging, we observed that a proportion of cells responded to histamine, SLIGKV (a specific agonist of PAR2), polygodial (a specific agonist of TRPA1), and capsaicin (a specific agonist of TRPV1). In conclusion, SKPs are able to differentiate directly into functional SNs. These differentiated cells will be very useful for further in vitro studies.
Collapse
|
11
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
12
|
Latin American contributions to the neural crest field. Mech Dev 2018; 153:17-29. [PMID: 30081090 DOI: 10.1016/j.mod.2018.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/15/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022]
Abstract
The neural crest (NC) is one of the most fascinating structures during embryonic development. Unique to vertebrate embryos, these cells give rise to important components of the craniofacial skeleton, such as the jaws and skull, as well as melanocytes and ganglia of the peripheral nervous system. Worldwide, several groups have been studying NC development and specifically in the Latin America (LA) they have been growing in numbers since the 1990s. It is important for the world to recognize the contributions of LA researchers on the knowledge of NC development, as it can stimulate networking and improvement in the field. We developed a database of LA publications on NC development using ORCID and PUBMED as search engines. We thoroughly describe all of the contributions from LA, collected in five major topics on NC development mechanisms: i) induction and specification; ii) migration; iii) differentiation; iv) adult NC; and, v) neurocristopathies. Further analysis was done to correlate each LA country with topics and animal models, and to access collaboration between LA countries. We observed that some LA countries have made important contributions to the comprehension of NC development. Interestingly, some LA countries have a topic and an animal model as their strength; in addition, collaboration between LA countries is almost inexistent. This review will help LA NC research to be acknowledged, and to facilitate networking between students and researchers worldwide.
Collapse
|
13
|
Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet 2018; 14:e1007260. [PMID: 29621239 PMCID: PMC5886393 DOI: 10.1371/journal.pgen.1007260] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. How individual cell fates become specified from multipotent progenitors is a fundamental question in developmental and stem cell biology. Body pigment cells derive from a multipotent progenitor, but while in zebrafish there are three types of pigment cells (melanocytes, iridophores and xanthophores), in medaka these progenitors form four (as zebrafish, plus leucophores). Here, we address whether mechanisms generating each cell-type are conserved between the two species. We focus on two key regulatory proteins, Sox5 and Sox10, which we previously showed were involved in pigment cell development in medaka and zebrafish, respectively. We compare experimentally how the two proteins interact in regulating development of each of the pigment cell lineages in these fish. We show that development of all pigment cells, except leucophores, is dependent on Sox10, and that Sox5 modulates Sox10 activity antagonistically in all pigment cells in zebrafish, and melanocytes and iridophores in medaka. Surprisingly, in medaka, Sox5 acts co-operatively with Sox10 to promote xanthophore fate and to repress leucophore fate. Our findings reveal surprising diversity how Sox5 and Sox10 interact to govern pigment cell development in medaka and zebrafish, and suggest that this likely relates to the evolution of the novel leucophore pigment cell type in medaka.
Collapse
Affiliation(s)
- Yusuke Nagao
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroyuki Takada
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Motohiro Miyadai
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masahiko Hibi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail: (HH); (RNK)
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail: (HH); (RNK)
| |
Collapse
|
14
|
Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, Li S. Neural crest‐derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen 2018; 26:54-63. [DOI: 10.1111/wrr.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kang Xu
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022 China
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing China
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| | - Xin Pan
- College of PharmacySouth‐Central University for NationalitiesWuhan China
| | - Xuefeng Qiu
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022 China
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| | - Dong Wang
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| | - Nianguo Dong
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022 China
| | - Li Yang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing China
| | - Song Li
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| |
Collapse
|
15
|
Lung and Mediastinum. HANDBOOK OF PRACTICAL FINE NEEDLE ASPIRATION AND SMALL TISSUE BIOPSIES 2018. [PMCID: PMC7189424 DOI: 10.1007/978-3-319-57386-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fine needle aspiration and small tissue biopsies have become a primary modality to achieve a definitive diagnosis of a mass-like lesion of the lung and mediastinum. This chapter delineated cytologic and histologic features of common and rare neoplastic and nonneoplastic mass-like lesions of the lung and mediastinum. The utilities and pitfalls of commonly used diagnostic immunohistochemical (IHC) stains, such as TTF1, Napsin A, p40 and CK5/6, and small diagnostic IHC panels, were described. Multiple challenging and yet practical cases at the end of the chapter were used to reemphasize important points illustrated throughout the chapter.
Collapse
|
16
|
Gazarian KG, Ramírez-García LR. Human Deciduous Teeth Stem Cells (SHED) Display Neural Crest Signature Characters. PLoS One 2017; 12:e0170321. [PMID: 28125654 PMCID: PMC5268458 DOI: 10.1371/journal.pone.0170321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
Human dental tissues are sources of neural crest origin multipotent stem cells whose regenerative potential is a focus of extensive studies. Rational programming of clinical applications requires a more detailed knowledge of the characters inherited from neural crest. Investigation of neural crest cells generated from human pluripotent stem cells provided opportunity for their comparison with the postnatal dental cells. The purpose of this study was to investigate the role of the culture conditions in the expression by dental cells of neural crest characters. The results of the study demonstrate that specific neural crest cells requirements, serum-free, active WNT signaling and inactive SMAD 2/3, are needed for the activity of the neural crest characters in dental cells. Specifically, the decreasing concentration of fetal bovine serum (FBS) from regularly used for dental cells 10% to 2% and below, or using serum-free medium, led to emergence of a subset of epithelial-like cells expressing the two key neural crest markers, p75 and HNK-1. Further, the serum-free medium supplemented with neural crest signaling requirements (WNT inducer BIO and TGF-β inhibitor REPSOX), induced epithelial-like phenotype, upregulated the p75, Sox10 and E-Cadherin and downregulated the mesenchymal genes (SNAIL1, ZEB1, TWIST). An expansion medium containing 2% FBS allowed to obtain an epithelial/mesenchymal SHED population showing high proliferation, clonogenic, multi-lineage differentiation capacities. Future experiments will be required to determine the effects of these features on regenerative potential of this novel SHED population.
Collapse
Affiliation(s)
- Karlen G. Gazarian
- Department of Medicine Genomics and Environmental Toxicity, Institute of Biomedical Research, Mexican National Autonomous University, Mexico City, University Campus, Mexico
- * E-mail:
| | - Luis R. Ramírez-García
- Department of Medicine Genomics and Environmental Toxicity, Institute of Biomedical Research, Mexican National Autonomous University, Mexico City, University Campus, Mexico
| |
Collapse
|
17
|
Jaroonwitchawan T, Muangchan P, Noisa P. Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells. Biochem Biophys Res Commun 2016; 481:176-181. [PMID: 27816457 DOI: 10.1016/j.bbrc.2016.10.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022]
Abstract
Neural crest (NC) is a transient population, arising during embryonic development and capable of differentiating into various somatic cells. The defects of neural crest development leads to neurocristopathy. Several signaling pathways were revealed their significance in NC cell specification. Fibroblast growth factor (FGF) is recognized as an important signaling during NC development, for instance Xenopus and avian; however, its contributions in human species are remained elusive. Here we used human pluripotent stem cells (hPSCs) to investigate the consequences of FGF inhibition during NC cell differentiation. The specific-FGF receptor inhibitor, SU5402, was used in this investigation. The inhibition of FGF did not found to affect the proliferation or death of hPSC-derived NC cells, but promoted hPSCs to commit NC cell fate. NC-specific genes, including PAX3, SLUG, and TWIST1, were highly upregulated, while hPSC genes, such as OCT4, and E-CAD, rapidly reduced upon FGF signaling blockage. Noteworthy, TFAP-2α, a marker of migratory NC cells, abundantly presented in SU5402-induced cells. This accelerated NC cell differentiation could be due to the activation of Notch signaling upon the blockage of ERK1/2 phosphorylation, since NICD was increased by SU5402. Altogether, this study proposed the contributions of FGF signaling in controlling human NC cell differentiation from hPSCs, the crosstalk between FGF and Notch, and might imply to the influences of FGF signaling in neurocristophatic diseases.
Collapse
Affiliation(s)
- Thiranut Jaroonwitchawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pattamon Muangchan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
18
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zage PE, Whittle SB, Shohet JM. CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 2016; 118:221-231. [PMID: 27428599 DOI: 10.1002/jcb.25656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
The neural crest is a population of cells in the vertebrate embryo that gives rise to a wide range of tissues and cell types, including components of the peripheral nervous system and the craniofacial skeleton as well as melanocytes and the adrenal medulla. Aberrations in neural crest development can lead to numerous diseases, including cancers such as melanoma and neuroblastoma. Cancer stem cells (CSCs) have been identified in these neural crest-derived tumors, and these CSCs demonstrate resistance to treatment and are likely key contributors to disease relapse. Patients with neural crest-derived tumors often have poor outcomes due to frequent relapses, likely due to the continued presence of residual treatment-resistant CSCs, and therapies directed against these CSCs are likely to improve patient outcomes. CSCs share many of the same genetic and biologic features of primordial neural crest cells, and therefore a better understanding of neural crest development will likely lead to the development of effective therapies directed against these CSCs. Signaling through STAT3 has been shown to be required for neural crest development, and granulocyte colony stimulating factor (GCSF)-mediated activation of STAT3 has been shown to play a role in the pathogenesis of neural crest-derived tumors. Expression of the cell surface marker CD114 (the receptor for GCSF) has been identified as a potential marker for CSCs in neural crest-derived tumors, suggesting that CD114 expression and function may contribute to disease relapse and poor patient outcomes. Here we review the processes of neural crest development and tumorigenesis and we discuss the previously identified markers for CSC subpopulations identified in neural crest tumors and their role in neural crest tumor biology. We also discuss the potential for CD114 and downstream intracellular signaling pathways as potential targets for CSC-directed therapy. J. Cell. Biochem. 118: 221-231, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter E Zage
- Division of Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, California
| | - Sarah B Whittle
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Singh AP, Dinwiddie A, Mahalwar P, Schach U, Linker C, Irion U, Nüsslein-Volhard C. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis. Dev Cell 2016; 38:316-30. [DOI: 10.1016/j.devcel.2016.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
|
21
|
Park I, Lee HK, Kim C, Ismail T, Kim YK, Park JW, Kwon OS, Kang BS, Lee DS, Park TJ, Park MJ, Choi SC, Lee HS. IFT46 plays crucial roles in craniofacial and cilia development. Biochem Biophys Res Commun 2016; 477:419-25. [PMID: 27320864 DOI: 10.1016/j.bbrc.2016.06.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
The intraflagellar transport (IFT) system is essential for bidirectional movement of ciliary components from the basal body to the tip beneath the ciliary sheath and is conserved for cilia and flagella formation in most vertebrates. IFT complex A is involved in anterograde trafficking, whereas complex B is involved in retrograde trafficking. IFT46 is well known as a crucial component of IFT complex B, however, its developmental functions are poorly understood. In this study, we investigated the novel functions of IFT46 during vertebrate development, especially, ciliogenesis and neurogenesis, because IFT46 is strongly expressed in both multiciliated cells of epithelial and neural tissues. Knockdown of IFT46 using morpholino microinjections caused shortening of the body axis as well as the formation of fewer and shorter cilia. Furthermore, loss of IFT46 down-regulated the expression of the neural plate and neural tube markers, thus may influence Wnt/planar cell polarity and the sonic hedgehog signaling pathway during neurogenesis. In addition, loss of IFT46 caused craniofacial defects by interfering with cartilage formation. In conclusion, our results depict that IFT46 plays important roles in cilia as well as in neural and craniofacial development.
Collapse
Affiliation(s)
- Inji Park
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Tayaba Ismail
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Yoo-Kyung Kim
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Jeen-Woo Park
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Oh-Shin Kwon
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Beom Sik Kang
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Dong-Seok Lee
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Tae-Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Mae-Ja Park
- Department of Anatomy, College of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Seoul, 05505, South Korea.
| | - Hyun-Shik Lee
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
22
|
Ratner N, Brodeur GM, Dale RC, Schor NF. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol 2016; 80:13-23. [PMID: 27043043 DOI: 10.1002/ana.24659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23.
Collapse
Affiliation(s)
- Nancy Ratner
- Department of Pediatrics, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, OH
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Russell C Dale
- Clinical School, the Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
23
|
Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016; 34:720-31. [PMID: 26865184 DOI: 10.1002/stem.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.
Collapse
Affiliation(s)
- Keerthi Boddupally
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Guangfang Wang
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Agnieszka Kobielak
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Abstract
PURPOSE To investigate stemness characteristics of human corneal endothelial cells (HCECs) cultured in various media. METHODS Human corneal endothelial cells were isolated using a sphere-forming assay. Cells were allowed to attach to the bottom of culture plates and were cultured in different media designated as medium A (Opti-MEM I with 8% fetal bovine serum), medium B (DMEM/F12 with B27 supplement), medium E (DMEM/F12 with epidermal growth factor [EGF]), and medium BE (DMEM/F12 with B27 supplement and EGF), respectively. Cell morphology was evaluated with an phase-contrast inverted microscope. Immunofluorescence staining and western blotting of nestin, octamer-binding transcription factor (OCT3/4), glial fibrillary acidic protein (GFAP), zonula occludens-1 (ZO-1), collagen VIII alpha2, and Na-K ATPase was performed. Cell proliferation was assessed with a cell counting kit-8 assay. RESULTS A few cultured cells stained with nestin. The cells cultured in medium A expressed high levels of GFAP, OCT3/4, and nestin, and higher levels of ZO-1 were expressed in the cells cultured in medium A and medium B compared with cells cultured in the other media. The cells cultured in medium A assumed a fibroblast-like shape, whereas the cells cultured in medium B and medium BE appeared as mosaics. Cell proliferation was highest in medium A compared with those cultured in the other media. CONCLUSIONS Cultured HCECs expressed stem cell markers, including nestin, OCT3/4, and GFAP. The expression of stem cell markers differed according to the culture media and associated proliferation rate.
Collapse
|
25
|
RUSU E, NECULA LG, NEAGU AI, ALECU M, STAN C, ALBULESCU R, TANASE CP. Current status of stem cell therapy: opportunities and limitations. Turk J Biol 2016; 40:955-967. [DOI: 10.3906/biy-1506-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
26
|
Tomazelli KB, Modolo F, Trentin AG, Garcez RC, Biz MT. Temporo-spatial analysis of Osterix, HNK1 and Sox10 during odontogenesis and maxillaries osteogenesis. Tissue Cell 2015; 47:465-70. [PMID: 26253417 DOI: 10.1016/j.tice.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
Cell differentiation is essential for maxillaries and tooth development. Facial mesenchymal tissue is formed by neural crest cells (NC). These cells are highly migratory, giving rise to various cell types, considered with a high level of plasticity, indicating that they contain progenitor cells with a great power of differentiation. In this study, it was analyzed the presence of NC cell progenitors and mesenchymal stem cells (MSC) during maxillaries osteogenesis and odontogenesis in rats. Histological slides were collected in two phases: embryonic age of 15 and 17 days; 2, 4 and 7 days after birth. Immunohistochemistry for MSC markers (Osterix) and NC cells (Sox10, HNK1) was performed. The results showed positive expression for Osterix and HNK1 in undifferentiated ectomesenchymal cells in early and late stages; Sox10 was present only in early stages in undifferentiated cells. All markers were present in differentiated cells. Although the experiments performed do not allow us to explain a possible role for Osx, HNK1 and Sox10 in both differentiated and undifferentiated cells during osteogenesis and odontogenesis, it had shown important results not yet described: the presence of HNK1 and Sox10 in osteoblasts and odontoblasts in late development stages and in the tooth germ epithelial cells and ameloblasts.
Collapse
Affiliation(s)
- Karin Berria Tomazelli
- Postgraduate Dentistry Program, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe Modolo
- Pathology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Andrea Gonçalves Trentin
- Cellular Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Cellular Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Michelle Tillmann Biz
- Morphology Sciences Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
27
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Promotion of periostin expression contributes to the migration of Schwann cells. J Cell Sci 2015; 128:3345-55. [PMID: 26187852 DOI: 10.1242/jcs.174177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
Neuregulin ligands and their ErbB receptors are important for the development of Schwann cells, the glial cells of the peripheral nervous system (PNS). ErbB3 deficiency is characterized by a complete loss of Schwann cells along axons of the peripheral nerves, impaired fasciculation and neuronal cell death. We performed comparative gene expression analysis of dorsal root ganglia (DRG) explant cultures from ErbB3-deficient and wild-type mice in order to identify genes that are involved in Schwann cell development and migration. The extracellular matrix (ECM) gene periostin was found to exhibit the most prominent down regulation in ErbB3-deficient DRG. Expression analysis revealed that the periostin-expressing cell population in the PNS corresponds to Schwann cell precursors and Schwann cells, and is particularly high in migratory Schwann cells. Furthermore, stimulation of Schwann cells with neuregulin-1 (NRG1) or transforming growth factor β (TGFβ-1) resulted in an upregulation of periostin expression. Interestingly, DRG explant cultures of periostin-deficient mice revealed a significant reduction of the number of migrating Schwann cells. These data demonstrate that the expression of periostin is stimulated by ErbB ligand NRG1 and influences the migration of Schwann cell precursors.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Human Development and Health, University of Southampton, School of Medicine, Tremona Road, Southampton SO16 6YD, UK Center for Molecular Neurobiology, University of Hamburg, Falkenried 94, Hamburg 20251, Germany
| | - Michaela Miehe
- Center for Molecular Neurobiology, University of Hamburg, Falkenried 94, Hamburg 20251, Germany Institut for Immunological Engineering, University of Aarhus, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Dieter Riethmacher
- Human Development and Health, University of Southampton, School of Medicine, Tremona Road, Southampton SO16 6YD, UK Center for Molecular Neurobiology, University of Hamburg, Falkenried 94, Hamburg 20251, Germany
| |
Collapse
|
28
|
Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol 2015; 11:e1004130. [PMID: 25884760 PMCID: PMC4401789 DOI: 10.1371/journal.pcbi.1004130] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma. Neuroblastoma is a childhood cancer for which therapeutic progress has been slow. We analyzed a large number phosphorylated proteins in neuroblastoma cells to discern patterns that indicate functional signal transduction pathways. To analyze the data, we developed novel techniques that resolve data structure and visualize that structure as networks that represent both protein interactions and statistical relationships. We also fractionated neuroblastoma cells to examine the location of signaling proteins in different membrane fractions and organelles. The analysis revealed that signaling pathways are functionally and physically compartmentalized into distinct collaborative groups distinguished by phosphorylation patterns and intracellular localization. We found that two related proteins (FYN and LYN) act like central hubs in the tyrosine kinase signaling network that change intracellular localization and activity in response to activation of different receptors.
Collapse
Affiliation(s)
- Juan Palacios-Moreno
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Lauren Foltz
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Emily D. Kuehn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States of America
| | - Michael Comb
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Mark L. Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tlholoe MM, Khammissa RAG, Bouckaert M, Altini M, Lemmer J, Feller L. Oral mucosal melanoma: some pathobiological considerations and an illustrative report of a case. Head Neck Pathol 2015; 9:127-34. [PMID: 24496654 PMCID: PMC4382483 DOI: 10.1007/s12105-014-0526-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022]
Abstract
Oral mucosal melanoma is a relatively rare malignancy with an aggressive clinico-pathological behaviour. The mean 5-year survival rate is about 15 %. It arises primarily from melanocytes found in the basal cell layer of the epithelium, but may sometimes arise from melanocytes residing in the lamina propria. The pathogenesis is complex, and few of the molecular mechanisms underlying the development of oral mucosal melanoma have been defined. The extraneous risk factors associated with oral mucosal melanoma, if any, are unknown. Oral mucosal melanomas account for about 25 % of all mucosal melanomas of the head and neck, and exhibit a profile of cytogenetic alterations, and a pathobiological behaviour and clinical course different from that of cutaneous melanomas. As they are usually painless and grow quickly, as a rule, they are diagnosed late in the course of the disease when the lesions are already large and have metastasized to regional lymph nodes. In this paper we discuss some aspects of the pathobiology of oral mucosal melanoma, and present an illustrative case report.
Collapse
Affiliation(s)
- M. M. Tlholoe
- />Department of Maxillofacial Oral Surgery, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - R. A. G. Khammissa
- />Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - M. Bouckaert
- />Department of Maxillofacial Oral Surgery, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - M. Altini
- />Department of Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Lemmer
- />Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - L. Feller
- />Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| |
Collapse
|
30
|
Kerkis I, Kerkis A, Lizier NF, Wenceslau CV. Dental Stem Cells: Risk and Responsibilities. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. ACTA ACUST UNITED AC 2014; 102:187-209. [PMID: 25219958 DOI: 10.1002/bdrc.21080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM, U968, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | |
Collapse
|
32
|
Suzuki S, Uchida K, Harada T, Nibe K, Yamashita M, Ono K, Nakayama H. The Origin and Role of Autophagy in the Formation of Cytoplasmic Granules in Canine Lingual Granular Cell Tumors. Vet Pathol 2014; 52:456-64. [DOI: 10.1177/0300985814546051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Granular cell tumors (GCTs) are histologically characterized by polygonal neoplastic cells with abundant eosinophilic cytoplasmic granules. In humans, these cells are considered to be derived from Schwann cells, and the cytoplasmic granules are assumed to be autophagosomes or autophagolysosomes. However, the origin and nature of the cytoplasmic granules in canine GCTs have not been well characterized. The present study examined 9 canine lingual GCTs using immunohistochemistry, transmission electron microscopy (TEM), and cell culture and xenotransplantation experiments. In some cases, the tumor cells expressed S100, CD133, and desmin. The cytoplasmic granules were positive for LC3, p62, NBR1, and ubiquitin. TEM revealed autophagosome-like structures in the cytoplasm of the granule-containing cells. The cultured GCT cells were round to spindle shaped and expressed S100, nestin, Melan-A, CD133, LC3, p62, NBR1, and ubiquitin, suggesting that they were of neural crest origin, redifferentiated into melanocytes, and exhibited upregulated autophagy. The xenotransplanted tumors consisted of spindle to polygonal cells. Only a few cells contained cytoplasmic granules, and some had melanin pigments in their cytoplasm. The xenotransplanted cells expressed S100, nestin, Melan-A, and CD133. P62 and ubiquitin were detected, regardless of the presence or absence of cytoplasmic granules, while LC3 and NBR1 were detected only in the neoplastic cells containing cytoplasmic granules. These findings suggest that some xenotransplanted cells redifferentiated into melanocytes and that autophagy was upregulated in the cytoplasmic granule-containing cells. In conclusion, canine lingual GCTs originate from the neural crest and develop cytoplasmic granules via autophagy. In addition, the microenvironment of GCT cells affects their morphology.
Collapse
Affiliation(s)
- S. Suzuki
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K. Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T. Harada
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K. Nibe
- Japan Animal Referral Medical Center, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan
| | - M. Yamashita
- Japan Animal Referral Medical Center, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan
| | - K. Ono
- Japan Animal Referral Medical Center, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
33
|
Matsushita T, Fujihara A, Royall L, Kagiwada S, Kosaka M, Araki M. Immediate differentiation of neuronal cells from stem/progenitor-like cells in the avian iris tissues. Exp Eye Res 2014; 123:16-26. [DOI: 10.1016/j.exer.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023]
|
34
|
Kinsler VA, Anderson G, Latimer B, Natarajan D, Healy E, Moore GE, Sebire NJ. Immunohistochemical and ultrastructural features of congenital melanocytic naevus cells support a stem-cell phenotype. Br J Dermatol 2014; 169:374-83. [PMID: 23517330 PMCID: PMC3838625 DOI: 10.1111/bjd.12323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/23/2023]
Abstract
Background Multiple congenital melanocytic naevi (CMN) in one individual are caused by somatic mosaicism for NRAS mutations; however, the lineage of the mutated cells remains uncertain. Objectives To test the hypothesis that CMN may be derived from cutaneous stem cells. Methods Sixty-six CMN samples from 44 patients were stained for immunohistochemical (IHC) markers of melanocytic differentiation (TYR, TRP1, TRP2, LEF1, MITF, cKit), pluripotency (nestin, fascin, CD133, CD20, CD34), monocyte/macrophage lineage (CD68, CD163, CD14), proliferation (Ki67) and MTOR/Wnt-signalling pathway activation (pS6, β-catenin). Semiquantitative scoring compared samples with naevus cell nesting (group 1) with those with only diffuse dermal infiltration (group 2). Transmission electron microscopy (TEM) was performed on 10 samples. Results A normal melanocyte population was seen overlying many dermal CMN. Group 1 samples were significantly more likely to express melanocytic differentiation markers than group 2, and expression decreased significantly with depth. Expression of these markers was correlated with each other, and with nestin and fascin. CD20 staining was positive in a substantial proportion and was stronger superficially. Expression of β-catenin and pS6 was almost universal. Some samples expressed monocyte/macrophage markers. TEM revealed variable naevus cell morphology, striking macromelanosomes, double cilia and microvilli. Conclusions Congenital melanocytic naevi development frequently coexists with normal overlying melanocyte development, leading us to hypothesize that in these cases CMN are likely to develop from a cell present in the skin independent of, or remaining after, normal melanocytic migration. IHC and TEM findings are compatible with CMN cells being of cutaneous stem-cell origin, capable of some degree of melanocytic differentiation superficially.
Collapse
Affiliation(s)
- V A Kinsler
- Paediatric Dermatology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol 2014; 34:257-68. [PMID: 24292331 PMCID: PMC11488893 DOI: 10.1007/s10571-013-0009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/17/2013] [Indexed: 12/12/2022]
Abstract
The aim of this study is to identify rat nasal septum respiratory mucosa-derived mesenchyme stem cells (RM-MSCs) and to compare its neural lineage differentiation capacity with bone marrow-derived mesenchyme stem cells (BM-MSCs) after a short period of neural induction culture in vitro. The cell morphology was observed with light microscopy; cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The characteristics of the cells were evaluated with flow cytometry, immunofluorescence, real-time quantitative PCR (RT-PCR), and Western blotting. The results showed that rat nasal respiratory mucosa contains RM-MSCs that exhibited similar proliferation rate as BM-MSCs in vitro. Both RT-PCR and Western blotting analyses demonstrated that RM-MSCs showed higher expression of neural lineage markers than BM-MSCs after a short period of neural induction culture, and secreted higher level of brain-derived neurotrophic factor. RM-MSCs were more amenable to differentiate into neural or glial cell after a short period of neural induction culture than BM-MSCs in vitro; and it could be considered as another optimal source of stem cells for cell-based therapy to neurological diseases.
Collapse
Affiliation(s)
- Xin Gao
- Department of Orthopedics, The Third Affiliated Hospital of Suzhou University, Changzhou, 213003 Jiangsu China
| | - Jian Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Suzhou University, Changzhou, 213003 Jiangsu China
| | - Jun Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Suzhou University, Changzhou, 213003 Jiangsu China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Suzhou University, Changzhou, 213003 Jiangsu China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Suzhou University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
36
|
Starostová M, Cermák V, Dvořáková M, Karafiát V, Kosla J, Dvořák M. The oncoprotein v-Myb activates transcription of Gremlin 2 during in vitro differentiation of the chicken neural crest to melanoblasts. Gene 2014; 540:122-9. [PMID: 24576577 DOI: 10.1016/j.gene.2014.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023]
Abstract
The neural crest (NC) is a transient dynamic structure of ectodermal origin, found in early vertebrate embryos. The multipotential NC cells migrate along well defined routes, differentiate to various cell types including melanocytes and participate in the formation of various permanent tissues. As there is only limited information about the molecular mechanisms controlling early events in melanocyte specification and development, we exploited the AMV v-Myb transcriptional regulator, which directs differentiation of in vitro chicken NC cells to the melanocyte lineage. This activity is strictly dependent on v-Myb specifically binding to the Myb recognition DNA element (MRE). The two tamoxifen-inducible v-Myb alleles were constructed one which recognizes the MRE and one which does not. These were activated in ex ovo NC cells, and the expression profiles of resulting cells were analyzed using Affymetrix microarrays and RT-PCR. These approaches revealed up-regulation of the BMP antagonist Gremlin 2 mRNA, and down-regulation of mRNAs encoding several epithelial genes including KRT19 as very early events following the activation of melanocyte differentiation by v-Myb. The enforced v-Myb expression in neural tubes of chicken embryos resulted in detectable presence of Gremlin 2 mRNA. However, expression of Gremlin 2 in NC cells did not promote formation of melanocytes suggesting that Gremlin 2 is not the master regulator of melanocytic differentiation.
Collapse
Affiliation(s)
- Michaela Starostová
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Vladimír Cermák
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Marta Dvořáková
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Vít Karafiát
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Jan Kosla
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Michal Dvořák
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| |
Collapse
|
37
|
Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, Lundin K, Chokechuwattanalert H, Otonkoski T, Tuuri T, Raivio T. Notch signaling regulates neural crest differentiation from human pluripotent stem cells. J Cell Sci 2014; 127:2083-94. [DOI: 10.1242/jcs.145755] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural crest (NC) cells are specified at the border of neural plate and epiderm. They are capable of differentiating into various somatic cell types, including craniofacial and peripheral nerve tissues. Notch signaling plays significant roles during neurogenesis; however, its function during human NC development is poorly understood. Here, we generated self-renewing premigratory NC-like cells (pNCCs) from human pluripotent stem cells and investigated the roles of Notch signaling during the NC differentiation. pNCCs expressed various NC specifier genes, including SLUG, SOX10 and TWIST1, and were able to differentiate into most NC derivatives. Blocking Notch signaling during the pNCC differentiation suppressed the expression of NC specifier genes. In contrast, ectopic expression of activated Notch1 intracellular domain (NICD1) augmented the expression of NC specifier genes, and NICD1 was found to bind at their promoter regions. Notch activity was also required for the maintenance of premigratory NC state, and suppression of Notch led to generation of NC-derived neurons. Taken together, we provide a protocol for the generation of pNCCs, and show that Notch signaling regulates the formation, migration and differentiation of NC from hPSCs.
Collapse
|
38
|
Lee RTH, Nagai H, Nakaya Y, Sheng G, Trainor PA, Weston JA, Thiery JP. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 2013; 140:4890-902. [PMID: 24198279 PMCID: PMC4074292 DOI: 10.1242/dev.094680] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural crest is a transient structure unique to vertebrate embryos that gives rise to multiple lineages along the rostrocaudal axis. In cranial regions, neural crest cells are thought to differentiate into chondrocytes, osteocytes, pericytes and stromal cells, which are collectively termed ectomesenchyme derivatives, as well as pigment and neuronal derivatives. There is still no consensus as to whether the neural crest can be classified as a homogenous multipotent population of cells. This unresolved controversy has important implications for the formation of ectomesenchyme and for confirmation of whether the neural fold is compartmentalized into distinct domains, each with a different repertoire of derivatives. Here we report in mouse and chicken that cells in the neural fold delaminate over an extended period from different regions of the cranial neural fold to give rise to cells with distinct fates. Importantly, cells that give rise to ectomesenchyme undergo epithelial-mesenchymal transition from a lateral neural fold domain that does not express definitive neural markers, such as Sox1 and N-cadherin. Additionally, the inference that cells originating from the cranial neural ectoderm have a common origin and cell fate with trunk neural crest cells prompted us to revisit the issue of what defines the neural crest and the origin of the ectomesenchyme.
Collapse
Affiliation(s)
- Raymond Teck Ho Lee
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
39
|
Bittencourt DA, da Costa MC, Calloni GW, Alvarez-Silva M, Trentin AG. Fibroblast Growth Factor 2 Promotes the Self-Renewal of Bipotent Glial Smooth Muscle Neural Crest Progenitors. Stem Cells Dev 2013; 22:1241-51. [DOI: 10.1089/scd.2012.0585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Denise Avani Bittencourt
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Neurociências, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Meline Coelho da Costa
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Giordano Wosgrau Calloni
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Marcio Alvarez-Silva
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Neurociências, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| | - Andréa Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Neurociências, Campus Universitário—Trindade, Florianópolis, Brazil
- Programa de Pós-graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário—Trindade, Florianópolis, Brazil
| |
Collapse
|
40
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
41
|
SONG W, SONG JK. Development of the lateral line system in juvenile Siberian sturgeon ( Acipenser baerii). Zool Res 2013; 33:261-70. [DOI: 10.3724/sp.j.1141.2012.03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Kaltschmidt B, Kaltschmidt C, Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev Rep 2012; 8:658-71. [PMID: 22170630 DOI: 10.1007/s12015-011-9340-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the process of development, neural crest cells migrate out from their niche between the newly formed ectoderm and the neural tube. Thereafter, they give rise not only to ectodermal cell types, but also to mesodermal cell types. Cell types with neural crest ancestry consequently comprise a number of specialized varieties, such as ectodermal neurons, melanocytes and Schwann cells, as well as mesodermal osteoblasts, adipocytes and smooth muscle cells. Numerous recent studies suggest that stem cells with a neural crest origin persist into adulthood, especially within the mammalian craniofacial compartment. This review discusses the sources of adult neural crest-derived stem cells (NCSCs) derived from the cranium, as well as their differentiation potential and expression of key stem cell markers. Furthermore, the expression of marker genes associated with embryonic stem cells and the issue of multi- versus pluripotency of adult NCSCs is reviewed. Stringent tests are proposed, which, if performed, are anticipated to clarify the issue of adult NCSC potency. Finally, current pre-clinical and clinical data are discussed in light of the clinical impact of adult NCSCs.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Universitätsstr. 25, 33501 Bielefeld, Germany
| | | | | |
Collapse
|
43
|
Forni PE, Wray S. Neural crest and olfactory system: new prospective. Mol Neurobiol 2012; 46:349-60. [PMID: 22773137 PMCID: PMC3586243 DOI: 10.1007/s12035-012-8286-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/27/2012] [Indexed: 02/07/2023]
Abstract
Sensory neurons in vertebrates are derived from two embryonic transient cell sources: neural crest (NC) and ectodermal placodes. The placodes are thickenings of ectodermal tissue that are responsible for the formation of cranial ganglia as well as complex sensory organs that include the lens, inner ear, and olfactory epithelium. The NC cells have been indicated to arise at the edges of the neural plate/dorsal neural tube, from both the neural plate and the epidermis in response to reciprocal interactions Moury and Jacobson (Dev Biol 141:243-253, 1990). NC cells migrate throughout the organism and give rise to a multitude of cell types that include melanocytes, cartilage and connective tissue of the head, components of the cranial nerves, the dorsal root ganglia, and Schwann cells. The embryonic definition of these two transient populations and their relative contribution to the formation of sensory organs has been investigated and debated for several decades (Basch and Bronner-Fraser, Adv Exp Med Biol 589:24-31, 2006; Basch et al., Nature 441:218-222, 2006) review (Baker and Bronner-Fraser, Dev Biol 232:1-61, 2001). Historically, all placodes have been described as exclusively derived from non-neural ectodermal progenitors. Recent genetic fate-mapping studies suggested a NC contribution to the olfactory placodes (OP) as well as the otic (auditory) placodes in rodents (Murdoch and Roskams, J Neurosci Off J Soc Neurosci 28:4271-4282, 2008; Murdoch et al., J Neurosci 30:9523-9532, 2010; Forni et al., J Neurosci Off J Soc Neurosci 31:6915-6927, 2011b; Freyer et al., Development 138:5403-5414, 2011; Katoh et al., Mol Brain 4:34, 2011). This review analyzes and discusses some recent developmental studies on the OP, placodal derivatives, and olfactory system.
Collapse
Affiliation(s)
- Paolo E. Forni
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Rm. 3A-1012, Bethesda, MD 20892-3703, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Rm. 3A-1012, Bethesda, MD 20892-3703, USA
| |
Collapse
|
44
|
The effect of unilateral adrenalectomy on transformation of adrenal medullary chromaffin cells in vivo: a potential mechanism of asthma pathogenesis. PLoS One 2012; 7:e44586. [PMID: 22957086 PMCID: PMC3434170 DOI: 10.1371/journal.pone.0044586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Decreased epinephrine (EPI) is an important underlying factor of bronchoconstriction in asthma. Exogenous β(2)-adrenergic receptor agonist is one of the preferred options to treat asthma. We previously showed that this phenomenon involved adrenal medullary chromaffin cell (AMCC) transformation to a neuron phenotype. However, the underlying molecular mechanism is not fully understood. To further explore this, an asthmatic model with unilateral adrenalectomy was established in this study. METHODOLOGY/PRINCIPAL FINDINGS Thirty-two rats were randomly into four groups (n = 8 each) control rats (controls), unilateral adrenalectomy rats (surgery-control, s-control), asthmatic rats (asthma), unilateral adrenalectomy asthmatic rats (surgery-induced asthma, s-asthma). Asthmatic rats and s-asthmatic rats were sensitized and challenged with ovalbumin (OVA). The pathological changes in adrenal medulla tissues were observed under microscopy. EPI and its rate-limiting enzyme, phenylethanolamine N-methyl transferase (PNMT), were measured. Peripherin, a type III intermediate filament protein, was also detected in each group. The asthmatic rats presented with decreased chromaffin granules and swollen mitochondria in AMCCs, and the s-asthmatic rats presented more serious pathological changes than those in asthmatic rats and s-control rats. The expressions of EPI and PNMT in asthmatic rats were significantly decreased, as compared with levels in controls (P<0.05), and a further decline was observed in s-asthmatic rats (P<0.05). The expression of peripherin was higher in the asthmatic rats than in the controls, and the highest level was found in the s-asthmatic rats (P<0.05). CONCLUSION/SIGNIFICANCE Compared with asthmatic rats and s-control rats, the transformation tendency of AMCCs to neurons is more obvious in the s-asthmatic rats. Moreover, this phenotype alteration in the asthmatic rats is accompanied by reduced EPI and PNMT, and increased peripherin expression. This result provides further evidence to support the notion that phenotype alteration of AMCCs contributes to asthma pathogenesis.
Collapse
|
45
|
Spear PC, Erickson CA. Interkinetic nuclear migration: a mysterious process in search of a function. Dev Growth Differ 2012; 54:306-16. [PMID: 22524603 DOI: 10.1111/j.1440-169x.2012.01342.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During interkinetic nuclear migration (INM), the nuclei in many epithelial cells migrate between the apical and basal surfaces, coordinating with the cell cycle, and undergoing cytokinesis at the apical surface. INM is observed in a wide variety of tissues and species. Recent advances in time-lapse microscopy have provided clues about the mechanisms and functions of INM. Whether actin or microtubules are responsible for nuclear migration is controversial. How mitosis is initiated during INM is poorly understood, as is the relationship between the cell cycle and nuclear movement. It is possible that the disagreements stem from differences in the tissues being studied, since epithelia undergoing INM vary greatly in terms of cell height and cell fates. In this review we examine the reports addressing the mode and mechanisms that regulate INM and suggest possible functions for this dramatic event.
Collapse
Affiliation(s)
- Philip C Spear
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University California Davis, Davis, 95616, California, USA.
| | | |
Collapse
|
46
|
Ju C, Zhang K, Wu X. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro. PLoS One 2012; 7:e42378. [PMID: 22860120 PMCID: PMC3409168 DOI: 10.1371/journal.pone.0042378] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/04/2012] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC) to differentiate to functional corneal endothelial cell (CEC)-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na+/K+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet’s membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.
Collapse
Affiliation(s)
- Chengqun Ju
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Kai Zhang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
- * E-mail:
| |
Collapse
|
47
|
Adult neurogenesis in the central and peripheral nervous systems. Int Neurourol J 2012; 16:57-61. [PMID: 22816045 PMCID: PMC3395800 DOI: 10.5213/inj.2012.16.2.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/20/2012] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis occurs during embryonic development and continues throughout adulthood. Although spontaneous adult neurogenesis is restricted to selective germinal regions, including the subventricular zone and dentate gyrus of the hippocampus, neural stem cells (NSCs) are widely distributed in the central and peripheral nervous systems. Besides their ability to integrate into existing neural networks during physiological conditions, NSCs also proliferate and differentiate in response to injury, thus promising the potential use of endogenous NSCs for the treatment of neuropathological conditions. In this review, we discuss recent progress in the understanding of adult neurogenesis in the brain and peripheral nervous system.
Collapse
|
48
|
Osuna M, Sonobe Y, Itakura E, Devnath S, Kato T, Kato Y, Inoue K. Differentiation capacity of native pituitary folliculostellate cells and brain astrocytes. J Endocrinol 2012; 213:231-7. [PMID: 22434586 DOI: 10.1530/joe-12-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary folliculostellate (FS) cells are characterized by producing S100B protein, as do brain astrocytes. FS cells have some functions in the pituitary gland, i.e. scavenger functions, sustentacular cell activity through cytokines, and intercellular communication through gap junctions. However, the biological significances of FS cells, especially their differentiation capacities in the anterior pituitary gland, are still under discussion. To understand FS cells with new approaches, we generated a transgenic rat expressing GFP under S100b gene promoter, which regulates tissue-specific expression of S100b gene. Using the transgenic rat, we succeeded in inducing skeletal muscle cells from FS cells by culturing it in serum-free medium containing B-27 supplement, thyroid hormone (tri-iodothyronine), epidermal growth factor, and basic fibroblast growth factor. In this study, we also succeeded in inducing skeletal muscle cells from primary cultured astrocytes and astrocyte cell line, C6 cells. Hence, we concluded that pituitary FS cells have wide differentiation potential and have similar characteristics to astrocytes, which not only support cell activity but also support differentiation capacity.
Collapse
Affiliation(s)
- Marumi Osuna
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Kinsler V, Shaw AC, Merks JH, Hennekam RC. The face in congenital melanocytic nevus syndrome. Am J Med Genet A 2012; 158A:1014-9. [PMID: 22438093 DOI: 10.1002/ajmg.a.34217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/27/2011] [Indexed: 11/08/2022]
Abstract
Congenital melanocytic nevi (CMN) are known to be associated with neurological abnormalities and melanoma, but have not been considered to be part of a developmental syndrome. The objective of this study was to test our clinical observation that children with CMN show more facial similarities than might be expected by coincidence. We selected facial photographs of 95 white Caucasian children with CMN from our database only on the basis of good neutral views, allowing careful evaluation of facial morphology. These were scored independently by two clinical geneticists using standardized categories and definitions for facial morphology. Prevalence of age-independent features was compared to established norms in a large population, and associations with cutaneous phenotype were investigated. CMN were found to be associated with characteristic facies, and 74% of children in this series had at least three typical features. The characteristic features were: wide or prominent forehead, apparent hypertelorism, eyebrow variants, periorbital fullness, small/short nose, narrow nasal ridge, broad nasal tip, broad or round face, full cheeks, prominent pre-maxilla, prominent/long philtrum, and everted lower lip. No association was found with the severity of cutaneous phenotype. We conclude that children with CMN often have a characteristic face. We propose the term "congenital melanocytic nevus syndrome" to describe this association.
Collapse
Affiliation(s)
- Veronica Kinsler
- Paediatric Dermatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | | | |
Collapse
|
50
|
Lu Y, West FD, Jordan BJ, Mumaw JL, Jordan ET, Gallegos-Cardenas A, Beckstead RB, Stice SL. Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cells Dev 2011; 21:394-403. [PMID: 21970437 DOI: 10.1089/scd.2011.0499] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Avian species are important model animals for developmental biology and disease research. However, unlike in mice, where clonal lines of pluripotent stem cells have enabled researchers to study mammalian gene function, clonal and highly proliferative pluripotent avian cell lines have been an elusive goal. Here we demonstrate the generation of avian induced pluripotent stem cells (iPSCs), the first nonmammalian iPSCs, which were clonally isolated and propagated, important attributes not attained in embryo-sourced avian cells. This was accomplished using human pluripotency genes rather than avian genes, indicating that the process in which mammalian and nonmammalian cells are reprogrammed is a conserved process. Quail iPSCs (qiPSCs) were capable of forming all 3 germ layers in vitro and were directly differentiated in culture into astrocytes, oligodendrocytes, and neurons. Ultimately, qiPSCs were capable of generating live chimeric birds and incorporated into tissues from all 3 germ layers, extraembryonic tissues, and potentially the germline. These chimera competent qiPSCs and in vitro differentiated cells offer insight into the conserved nature of reprogramming and genetic tools that were only previously available in mammals.
Collapse
Affiliation(s)
- Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | | | | | | | | | | | | | | |
Collapse
|