1
|
Colbert BM, Smeal M, Cromar ZJ, Rosa P, Blanton SH, Lam BL, Liu XZ. Prevalence of Molecular Diagnoses for Usher Syndrome and the Need for Coordinated Care. Laryngoscope 2025; 135:1777-1780. [PMID: 39560289 PMCID: PMC11980960 DOI: 10.1002/lary.31911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Usher syndrome (USH) is a rare, autosomal-recessive genetic disorder and a leading cause of early onset deaf-blindness. A clinical diagnosis is made by the presence of retinitis pigmentosa (RP) with sensorineural hearing loss (SNHL). Subtype (USH1, USH2, USH3) is determined by severity and age of onset. Molecular testing is able to further distinguish USH subtypes by causative gene. As gene therapy strategies continue to be explored for USH, it is important to know the underlying genetic cause and to coordinate care among an interdisciplinary team. METHODS We reviewed charts of 198 individuals presenting to the RP clinic at Bascom Palmer Eye Institute (BPEI) for suspected USH. Demographic information, USH clinical diagnosis, molecular testing, molecular diagnosis, and audiological data were collected. RESULTS Of the 198 patients reviewed, 190 (96%) met clinical criteria for USH and received a clinical diagnosis. There were 67 (35%) that had a genetic test with a pathogenic molecular diagnosis. The average ages at molecular diagnosis were USH1B, 20 years old; USH2A, 37 years old; USH2C, 50 years old. Of the 67 with a molecular diagnosis, 23 (34%) established ophthalmic care and 8 of these (11%) established audiological care. DISCUSSION/CONCLUSION Molecular testing and diagnosis should be part of the routine care of USH individuals to facilitate earlier interventions and coordinated care between ophthalmology and audiology. LEVEL OF EVIDENCE 4 Laryngoscope, 135:1777-1780, 2025.
Collapse
Affiliation(s)
- Brett M. Colbert
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
- Medical Scientist Training ProgramUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| | - Molly Smeal
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| | - Zachary J. Cromar
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| | - Potyra Rosa
- Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| | - Susan H. Blanton
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| | - Byron L. Lam
- Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| | - Xue Z. Liu
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
- Department of BiochemistryUniversity of Miami Miller School of MedicineMiamiFloridaU.S.A.
| |
Collapse
|
2
|
Fry LE, Major L, Salman A, McDermott LA, Yang J, King AJ, McClements ME, MacLaren RE. Comparison of CRISPR-Cas13b RNA base editing approaches for USH2A-associated inherited retinal degeneration. Commun Biol 2025; 8:200. [PMID: 39922978 PMCID: PMC11807095 DOI: 10.1038/s42003-025-07557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/15/2025] [Indexed: 02/10/2025] Open
Abstract
CRISPR-Cas13 systems have therapeutic promise for the precise correction of point mutations in RNA. Using adenosine deaminase acting on RNA (ADAR) effectors, A-I base conversions can be targeted using guide RNAs (gRNAs). We compare the Cas13 effectors PspCas13b and Cas13bt3 for the repair of the gene USH2A, a common cause of inherited retinal disease and Usher syndrome. In cultured cells, we demonstrate up to 80% efficiency for the repair of the common c.11864 G > A and its murine equivalent c.11840 G > A, across different gRNAs and promoters. We develop and characterize a mouse model of Usher syndrome carrying the c.11840 G > A mutation designed for the evaluation of base editors for inherited retinal disease. Finally, we compare Cas13 effectors delivered via AAV for the repair of Ush2a in photoreceptors. Mean RNA editing rates in photoreceptors across different constructs ranged from 0.32% to 2.04%, with greater efficiency in those injected with PspCas13b compared to Cas13bt3 constructs. In mice injected with PspCas13b constructs, usherin protein was successfully restored and correctly localized to the connecting cilium following RNA editing. These results support the development of transcriptome targeting gene editing therapies for retinal disease.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - Lauren Major
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ahmed Salman
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michelle E McClements
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
3
|
Kiraly P, Klein J, Seitz IP, Reichel FF, Peters T, Ardan T, Juhasova J, Juhás S, Ellederova Z, Nemesh Y, Nyshchuk R, Klymiuk N, Nagel-Wolfrum K, Winslow AR, Wolfrum U, Motlik J, Fischer MD. Safety of Human USH1C Transgene Expression Following Subretinal Injection in Wild-Type Pigs. Invest Ophthalmol Vis Sci 2025; 66:48. [PMID: 39836403 PMCID: PMC11756606 DOI: 10.1167/iovs.66.1.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose. Methods Twelve WT pigs (24 eyes) were divided into three groups: four pigs each received bilateral subretinal injections of either vehicle, low dose (3.3 × 1010 vector genomes [vg] per eye), or high dose (1.0 × 1011 vg per eye). Total retinal thickness (TRT) was evaluated using optical coherence tomography and retinal function was assessed with full-field electroretinography (ff-ERG) at baseline and two months post-surgery. After necropsy, retinal changes were examined through histopathology, and human USH1C_a1/harmonin expression was assessed by quantitative PCR (qPCR) and Western blotting. Results OT_USH_101 led to high USH1C_a1 expression in WT pig retinas without significant TRT changes two months after subretinal injection. The qPCR revealed expression of the human USH1C_a1 transgene delivered by the adeno-associated virus vector. TRT changes were minimal across groups: vehicle (256 ± 21 to 243 ± 18 µm; P = 0.108), low dose (251 ± 32 to 258 ± 30 µm; P = 0.076), and high dose (242 ± 24 to 259 ± 28 µm; P = 0.590). The ff-ERG showed no significant changes in rod or cone responses. Histopathology indicated no severe retinal adverse effects in the vehicle and low dose groups. Conclusions Early-phase clinical imaging, electrophysiology, and histopathological assessments indicated that subretinal administration of OT_USH_101 was well tolerated in the low-dose treatment arm. OT_USH_101 treatment resulted in high expression of human USH1C_a1. Although histopathological changes were not severe, more frequent changes were observed in the high-dose group.
Collapse
Affiliation(s)
- Peter Kiraly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Joshua Klein
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Immanuel P. Seitz
- University Eye Hospital Tübingen, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Felix F. Reichel
- University Eye Hospital Tübingen, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Tobias Peters
- University Eye Hospital Tübingen, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
- STZeyetrial GmbH, Tübingen, Germany
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Stefan Juhás
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Yaroslav Nemesh
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ruslan Nyshchuk
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University, Mainz, Germany
| | | | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
- University Eye Hospital Tübingen, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Mkaouar R, Riahi Z, Marrakchi J, Mezzi N, Romdhane L, Boujemaa M, Dallali H, Sayeb M, Lahbib S, Jaouadi H, Boudabbous H, Zekri L, Chargui M, Messaoud O, Elyounsi M, Kraoua I, Zaouak A, Turki I, Mokni M, Boucher S, Petit C, Giraudet F, Mbarek C, Besbes G, Halayem S, Zainine R, Turki H, Tounsi A, Bonnet C, Mrad R, Abdelhak S, Trabelsi M, Charfeddine C. Current phenotypic and genetic spectrum of syndromic deafness in Tunisia: paving the way for precision auditory health. Front Genet 2024; 15:1384094. [PMID: 38711914 PMCID: PMC11072975 DOI: 10.3389/fgene.2024.1384094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 05/08/2024] Open
Abstract
Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.
Collapse
Affiliation(s)
- Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zied Riahi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Marrakchi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Otorhinolaryngology, District Hospital of Menzel Bourguiba, Bizerte, Tunisia
| | - Nessrine Mezzi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Marwa Sayeb
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saida Lahbib
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hager Jaouadi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Hela Boudabbous
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Laboratory of Hereditary Diseases of the Metabolism Investigation and Patients Management, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Epidemiology and Public Health, Directorate General of Military Health, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Zekri
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- ICHARA Association (International Research Institute on Sign Language), Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Elyounsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ichraf Kraoua
- Child and Adolescent Neurology Department of Neurology, National Institute of Neurology, Tunis, Tunisia
- LR18SP04 Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology in Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital, Research Unit Genodermatoses and Cancers LR12SP03, Tunis, Tunisia
| | - Ilhem Turki
- Child and Adolescent Neurology Department of Neurology, National Institute of Neurology, Tunis, Tunisia
- LR18SP04 Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology in Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Mourad Mokni
- Service de dermatologie, Hôpital La Rabta, Unité de recherche UR 12SP07, Hôpital La Rabta, Tunis, Tunisia
| | - Sophie Boucher
- Service d’ORL et chirurgie cervico-faciale, CHU d’Angers, Angers, France
- Equipe Mitolab, Institut Mitovasc, CNRS UMR6015, UMR Inserm 1083, Université d’Angers, Angers, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
- Collège de France, Paris, France
| | - Fabrice Giraudet
- Unité Mixte de Recherche (UMR) 1107, INSERM, Clermont-Ferrand, France
- Centre Auditif SoluSons, Clermont-Ferrand, France
| | - Chiraz Mbarek
- ENT Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Ghazi Besbes
- Department of Otorhinolaryngology and Maxillofacial Surgery - La Rabta Hospital in Tunis, Tunis, Tunisia
| | - Soumeyya Halayem
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Service de pédopsychiatrie, Hôpital Razi, Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia
| | - Rim Zainine
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Otorhinolaryngology and Maxillofacial Surgery - La Rabta Hospital in Tunis, Tunis, Tunisia
| | - Hamida Turki
- Dermatology Department Hedi Chaker University Hospital, Sfax University Sfax Tunisia, Tunis, Tunisia
| | | | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mediha Trabelsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Sharkova M, Aparicio G, Mouzaaber C, Zolessi FR, Hocking JC. Photoreceptor calyceal processes accompany the developing outer segment, adopting a stable length despite a dynamic core. J Cell Sci 2024; 137:jcs261721. [PMID: 38477343 PMCID: PMC11058337 DOI: 10.1242/jcs.261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Aparicio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Constantin Mouzaaber
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Flavio R. Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
7
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
8
|
Guimaraes TACD, Arram E, Shakarchi AF, Georgiou M, Michaelides M. Inherited causes of combined vision and hearing loss: clinical features and molecular genetics. Br J Ophthalmol 2023; 107:1403-1414. [PMID: 36162969 DOI: 10.1136/bjo-2022-321790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Combined vision and hearing loss, also known as dual sensory impairment, can occur in several genetic conditions, including ciliopathies such as Usher and Bardet-Biedl syndrome, mitochondrial DNA disorders and systemic diseases, such as CHARGE, Stickler, Waardenburg, Alport and Alstrom syndrome. The retinal phenotype may point to the diagnosis of such disorders. Herein, we aim to provide a comprehensive review of the molecular genetics and clinical features of the most common non-chromosomal inherited disorders to cause dual sensory impairment.
Collapse
Affiliation(s)
| | - Elizabeth Arram
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Ahmed F Shakarchi
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michalis Georgiou
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
9
|
Crane R, Tebbe L, Mwoyosvi ML, Al-Ubaidi MR, Naash MI. Expression of the human usherin c.2299delG mutation leads to early-onset auditory loss and stereocilia disorganization. Commun Biol 2023; 6:933. [PMID: 37700068 PMCID: PMC10497539 DOI: 10.1038/s42003-023-05296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.2290delG mutation in usherin equivalent to human frameshift mutation c.2299delG. Previously we described how this model reproduces patient's retinal phenotypes. Here, we present the cochlear phenotype, showing that the mutant usherin, is expressed during early postnatal stages. The c.2290delG mutation results in a truncated protein that is mislocalized within the cell body of the hair cells. The knock-in model also exhibits congenital hearing loss that remains consistent throughout the animal's lifespan. Structurally, the stereocilia bundles, particularly in regions associated with functional hearing loss, are disorganized. Our findings shed light on the role of usherin in maintaining structural support, specifically in longer inner hair cell stereocilia, during development, which is crucial for proper bundle organization and hair cell function. Overall, we present a genetic mouse model with cochlear defects associated with the c.2290delG mutation, providing insights into the etiology of hearing loss and offering potential avenues for the development of effective therapeutic treatments for USH2A patients.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
10
|
Shamshad A, Kang C, Jenny LA, Persad-Paisley EM, Tsang SH. Translatability barriers between preclinical and clinical trials of AAV gene therapy in inherited retinal diseases. Vision Res 2023; 210:108258. [PMID: 37244011 PMCID: PMC10526971 DOI: 10.1016/j.visres.2023.108258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Inherited retinal diseases (IRDs) are progressive degenerative diseases which cause gradual vision loss or complete blindness. As over 270 gene mutations have been identified in the underlying pathology of IRDs, gene therapy as a treatment modality has been an increasingly active realm of investigation. Currently, the most common vehicle of ocular gene delivery is the adeno-associated virus (AAV) vector. This is injected into the immune-privileged subretinal space to mediate transgene expression in retinal cells. Although numerous animal models of IRDs have demonstrated successful outcomes following AAV-mediated gene delivery, many of these studies fail to translate into successful outcomes in clinical trials. The purpose of this review is to A) comparatively assess preclinical and clinical IRD trials in which the success of AAV-mediated therapy failed to translate between animal and human participants B) discuss factors which may complicate the translatability of gene therapy in animals to results in humans.
Collapse
Affiliation(s)
| | - Chaerim Kang
- Warren Alpert Medical School of Brown University, USA
| | - Laura A Jenny
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Stephen H Tsang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY, USA; Insitute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Tebbe L, Mwoyosvi ML, Crane R, Makia MS, Kakakhel M, Cosgrove D, Al-Ubaidi MR, Naash MI. The usherin mutation c.2299delG leads to its mislocalization and disrupts interactions with whirlin and VLGR1. Nat Commun 2023; 14:972. [PMID: 36810733 PMCID: PMC9944904 DOI: 10.1038/s41467-023-36431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a-/- model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.2299delG. This mouse exhibits retinal degeneration and expresses a truncated, glycosylated protein which is mislocalized to the photoreceptor inner segment. The degeneration is associated with a decline in retinal function, structural abnormalities in connecting cilium and outer segment and mislocaliztion of the usherin interactors very long G-protein receptor 1 and whirlin. The onset of symptoms is significantly earlier compared to Ush2a-/-, proving expression of mutated protein is required to recapitulate the patients' retinal phenotype.
Collapse
Affiliation(s)
- Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
12
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
13
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
14
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
15
|
Usher syndrome IIIA: a review of the disorder and preclinical research advances in therapeutic approaches. Hum Genet 2022; 141:759-783. [PMID: 35320418 DOI: 10.1007/s00439-022-02446-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/27/2022]
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive pigmentary retinopathy, and vestibular dysfunction. The degree and onset of hearing loss vary among subtypes I, II, and III, while blindness often occurs in the second to fourth decades of life. Usher type III (USH3), characterized by postlingual progressive sensorineural hearing loss, varying levels of vestibular dysfunction, and varying degrees of visual impairment, typically manifests in the first to second decades of life. While USH3 is rare, it is highly prevalent in certain populations. RP61, USH3, and USH3A symbolize the same disorder, with the latter symbol used more frequently in recent literature. This review focuses on the clinical features, epidemiology, molecular genetics, treatment, and research advances for sensory deficits in USH3A.
Collapse
|
16
|
Grotz S, Schäfer J, Wunderlich KA, Ellederova Z, Auch H, Bähr A, Runa-Vochozkova P, Fadl J, Arnold V, Ardan T, Veith M, Santamaria G, Dhom G, Hitzl W, Kessler B, Eckardt C, Klein J, Brymova A, Linnert J, Kurome M, Zakharchenko V, Fischer A, Blutke A, Döring A, Suchankova S, Popelar J, Rodríguez-Bocanegra E, Dlugaiczyk J, Straka H, May-Simera H, Wang W, Laugwitz KL, Vandenberghe LH, Wolf E, Nagel-Wolfrum K, Peters T, Motlik J, Fischer MD, Wolfrum U, Klymiuk N. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol Med 2022; 14:e14817. [PMID: 35254721 PMCID: PMC8988205 DOI: 10.15252/emmm.202114817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Sophia Grotz
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Kirsten A Wunderlich
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Hannah Auch
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Petra Runa-Vochozkova
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Janet Fadl
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vanessa Arnold
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Miroslav Veith
- Ophthalmology Clinic, University Hospital Kralovske Vinohrady, Praha, Czech Republic
| | - Gianluca Santamaria
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Georg Dhom
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Wolfgang Hitzl
- Biostatistics and Data Science, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Christian Eckardt
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Joshua Klein
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Anna Brymova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Valeri Zakharchenko
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Döring
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Stepanka Suchankova
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jiri Popelar
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Eduardo Rodríguez-Bocanegra
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Hans Straka
- Faculty of Biology, LMU Munich, Planegg, Germany
| | - Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, JGU Mainz, Mainz, Germany
| | - Weiwei Wang
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Karl-Ludwig Laugwitz
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Tobias Peters
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, NDCN, University of Oxford, Oxford, UK
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| |
Collapse
|
17
|
Abstract
Usher syndrome (USH) is the most common genetic condition responsible for combined loss of hearing and vision. Balance disorders and bilateral vestibular areflexia are also observed in some cases. The syndrome was first described by Albrecht von Graefe in 1858, but later named by Charles Usher, who presented a large number of cases with hearing loss and retinopathy in 1914. USH has been grouped into three main clinical types: 1, 2, and 3, which are caused by mutations in different genes and are further divided into different subtypes. To date, nine causative genes have been identified and confirmed as responsible for the syndrome when mutated: MYO7A, USH1C, CDH23, PCDH15, and USH1G (SANS) for Usher type 1; USH2A, ADGRV1, and WHRN for Usher type 2; CLRN1 for Usher type 3. USH is inherited in an autosomal recessive pattern. Digenic, bi-allelic, and polygenic forms have also been reported, in addition to dominant or nonsyndromic forms of genetic mutations. This narrative review reports the causative forms, diagnosis, prognosis, epidemiology, rehabilitation, research, and new treatments of USH.
Collapse
|
18
|
Miles A, Blair C, Emili A, Tropepe V. Usher syndrome type 1-associated gene, pcdh15b, is required for photoreceptor structural integrity in zebrafish. Dis Model Mech 2021; 14:272551. [PMID: 34668518 PMCID: PMC8669488 DOI: 10.1242/dmm.048965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Blindness associated with Usher syndrome type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown because most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 genes, protocadherin-15b (pcdh15b), a putative cell adhesion molecule. Zebrafish Pcdh15 is expressed exclusively in photoreceptors within calyceal processes (CPs), at the base of the outer segment (OS) and within the synapse. In our mutants, rod and cone photoreceptor integrity is compromised, with early and progressively worsening abnormal OS disc growth and detachment, in part due to weakening CP contacts. These effects were attenuated or exacerbated by growth in dark and bright-light conditions, respectively. We also describe novel evidence for structural defects in synapses of pcdh15b mutant photoreceptors. Cell death does not accompany these defects at early stages, suggesting that photoreceptor structural defects, rather than overt cell loss, may underlie vision deficits. Thus, we present the first genetic animal model of a PCDH15-associated retinopathy that can be used to understand the aetiology of blindness in USH1. This article has an associated First Person interview with the first author of the paper. Summary: We present one of the first genetic animal mutants for PCDH15 that displays a severe, early retinopathy and suggests that zebrafish could be a useful model for PCDH15-associated retinal phenotypes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Clarke Blair
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
19
|
Abstract
Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births. Currently there is no cure for hearing loss. Treatment options are limited to hearing aids for mild and moderate cases, and cochlear implants for severe and profound hearing loss. Here we provide a literature overview of the environmental and genetic causes of congenital hearing loss, common animal models and methods used for hearing research, as well as recent advances towards developing therapies to treat congenital deafness. © 2021 The Authors.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, Ohio
| |
Collapse
|
20
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
22
|
Sánchez-Bellver L, Toulis V, Marfany G. On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:623734. [PMID: 33748110 PMCID: PMC7973215 DOI: 10.3389/fcell.2021.623734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Ciliopathies are a group of heterogeneous inherited disorders associated with dysfunction of the cilium, a ubiquitous microtubule-based organelle involved in a broad range of cellular functions. Most ciliopathies are syndromic, since several organs whose cells produce a cilium, such as the retina, cochlea or kidney, are affected by mutations in ciliary-related genes. In the retina, photoreceptor cells present a highly specialized neurosensory cilium, the outer segment, stacked with membranous disks where photoreception and phototransduction occurs. The daily renewal of the more distal disks is a unique characteristic of photoreceptor outer segments, resulting in an elevated protein demand. All components necessary for outer segment formation, maintenance and function have to be transported from the photoreceptor inner segment, where synthesis occurs, to the cilium. Therefore, efficient transport of selected proteins is critical for photoreceptor ciliogenesis and function, and any alteration in either cargo delivery to the cilium or intraciliary trafficking compromises photoreceptor survival and leads to retinal degeneration. To date, mutations in more than 100 ciliary genes have been associated with retinal dystrophies, accounting for almost 25% of these inherited rare diseases. Interestingly, not all mutations in ciliary genes that cause retinal degeneration are also involved in pleiotropic pathologies in other ciliated organs. Depending on the mutation, the same gene can cause syndromic or non-syndromic retinopathies, thus emphasizing the highly refined specialization of the photoreceptor neurosensory cilia, and raising the possibility of photoreceptor-specific molecular mechanisms underlying common ciliary functions such as ciliary transport. In this review, we will focus on ciliary transport in photoreceptor cells and discuss the molecular complexity underpinning retinal ciliopathies, with a special emphasis on ciliary genes that, when mutated, cause either syndromic or non-syndromic retinal ciliopathies.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Tatour Y, Ben-Yosef T. Syndromic Inherited Retinal Diseases: Genetic, Clinical and Diagnostic Aspects. Diagnostics (Basel) 2020; 10:diagnostics10100779. [PMID: 33023209 PMCID: PMC7600643 DOI: 10.3390/diagnostics10100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal diseases (IRDs), which are among the most common genetic diseases in humans, define a clinically and genetically heterogeneous group of disorders. Over 80 forms of syndromic IRDs have been described. Approximately 200 genes are associated with these syndromes. The majority of syndromic IRDs are recessively inherited and rare. Many, although not all, syndromic IRDs can be classified into one of two major disease groups: inborn errors of metabolism and ciliopathies. Besides the retina, the systems and organs most commonly involved in syndromic IRDs are the central nervous system, ophthalmic extra-retinal tissues, ear, skeleton, kidney and the cardiovascular system. Due to the high degree of phenotypic variability and phenotypic overlap found in syndromic IRDs, correct diagnosis based on phenotypic features alone may be challenging and sometimes misleading. Therefore, genetic testing has become the benchmark for the diagnosis and management of patients with these conditions, as it complements the clinical findings and facilitates an accurate clinical diagnosis and treatment.
Collapse
|
24
|
Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol 2020; 12:2515841420952194. [PMID: 32995707 PMCID: PMC7502997 DOI: 10.1177/2515841420952194] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
Usher syndrome has three subtypes, each being clinically and genetically heterogeneous characterised by sensorineural hearing loss and retinitis pigmentosa (RP), with or without vestibular dysfunction. It is the most common cause of deaf–blindness worldwide with a prevalence of between 4 and 17 in 100 000. To date, 10 causative genes have been identified for Usher syndrome, with MYO7A accounting for >50% of type 1 and USH2A contributing to approximately 80% of type 2 Usher syndrome. Variants in these genes can also cause non-syndromic RP and deafness. Genotype–phenotype correlations have been described for several of the Usher genes. Hearing loss is managed with hearing aids and cochlear implants, which has made a significant improvement in quality of life for patients. While there is currently no available approved treatment for the RP, various therapeutic strategies are in development or in clinical trials for Usher syndrome, including gene replacement, gene editing, antisense oligonucleotides and small molecule drugs.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Waheeda Pagarkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
25
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
26
|
Khela H, Kenna MA. Genetics of pediatric hearing loss: A functional perspective. Laryngoscope Investig Otolaryngol 2020; 5:511-519. [PMID: 32596495 PMCID: PMC7314484 DOI: 10.1002/lio2.390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This article reviews the current role of genetics in pediatric hearing loss (HL). METHODS A review of the current literature regarding the genetic basis of HL in children was performed. RESULTS To date, 119 nonsyndromic genes have been associated with HL. There are also hundreds of syndromic causes that have HL as part of the clinical phenotype. CONCLUSIONS Identifying HL genes coupled with clinical characteristics ("genotype-phenotype") yields a more accurate diagnosis and prognosis. Although the complexity of the auditory apparatus presents challenges, gene therapy is emerging and may be a viable management option in the future.
Collapse
Affiliation(s)
- Harmon Khela
- Summer Scholars Program, Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Margaret A. Kenna
- Department of Otolaryngology and Communication EnhancementBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
27
|
Ehn M, Wahlqvist M, Danermark B, Dahlström Ö, Möller C. Health, work, social trust, and financial situation in persons with Usher syndrome type 1. Work 2018; 60:209-220. [PMID: 29865098 PMCID: PMC6027944 DOI: 10.3233/wor-182731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Research has demonstrated that persons with Usher syndrome type 1 (USH1) have significantly poorer physical and psychological health compared to a reference group. PURPOSE To explore the relation between work, health, social trust, and financial situation in USH1 compared to a reference group. MATERIAL Sixty-six persons (18-65 y) from the Swedish Usher database received a questionnaire and 47 were included, 23 working and 24 non-working. The reference group comprised 3,049 working and 198 non-working persons. METHODS The Swedish Health on Equal Terms questionnaire was used and statistical analysis with multiple logistic regression was conducted. RESULTS The USH1 non-work group had a higher Odds ratio (95% CI) in poor psychological and physical health, social trust, and financial situation compared to the USH1 work group and reference groups. Age, gender, hearing, and vision impairment did not explain the differences. The relation between the USH1 work and non-work groups showed the same pattern as the reference groups, but the magnitude of problems was significantly higher. CONCLUSIONS Both disability and unemployment increased the risk of poor health, social trust and financial situation in persons with USH1, but having an employment seemed to counteract the risks related to disability.
Collapse
Affiliation(s)
- Mattias Ehn
- Audiological Research Centre, Örebro University Hospital, Sweden.,Linneus HEAD centre, The Swedish Institute for Disability Research, Örebro University, Sweden.,School of Health and Medical science, Örebro University, Sweden
| | - Moa Wahlqvist
- Audiological Research Centre, Örebro University Hospital, Sweden.,Linneus HEAD centre, The Swedish Institute for Disability Research, Örebro University, Sweden.,School of Health and Medical science, Örebro University, Sweden
| | - Berth Danermark
- Audiological Research Centre, Örebro University Hospital, Sweden.,Linneus HEAD centre, The Swedish Institute for Disability Research, Örebro University, Sweden.,School of Health and Medical science, Örebro University, Sweden
| | - Örjan Dahlström
- Linneus HEAD centre, The Swedish Institute for Disability Research, Örebro University, Sweden.,Swedish Institute for Disability Research, Linköping University, Linköping, Sweden.,Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| | - Claes Möller
- Audiological Research Centre, Örebro University Hospital, Sweden.,Linneus HEAD centre, The Swedish Institute for Disability Research, Örebro University, Sweden.,School of Health and Medical science, Örebro University, Sweden
| |
Collapse
|
28
|
A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med 2018; 20:1004-1012. [PMID: 29300381 DOI: 10.1038/gim.2017.227] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE We aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome. METHODS Whole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells. RESULTS We identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y. CONCLUSION Homozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.
Collapse
|
29
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
30
|
Myosin 7 and its adaptors link cadherins to actin. Nat Commun 2017; 8:15864. [PMID: 28660889 PMCID: PMC5493754 DOI: 10.1038/ncomms15864] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia. Cadherin is essential for mechanotransduction and myosin-adaptor-harmonin complexes anchor it to actin. Here the authors present the structures of myosin 7 MF2 domains bound to the harmonin PDZ3c domain and give insights into myosin-adaptor-harmonin complex assembly.
Collapse
|
31
|
Schietroma C, Parain K, Estivalet A, Aghaie A, Boutet de Monvel J, Picaud S, Sahel JA, Perron M, El-Amraoui A, Petit C. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment. J Cell Biol 2017; 216:1849-1864. [PMID: 28495838 PMCID: PMC5461027 DOI: 10.1083/jcb.201612030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/21/2017] [Indexed: 01/19/2023] Open
Abstract
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but USH1 protein function in the retina is unclear. Schietroma et al. use Xenopus to model the deficiency in two USH1 proteins—protocadherin-15 and cadherin-23—and identify crucial roles for these molecules in shaping the photoreceptor outer segment. Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal.
Collapse
Affiliation(s)
- Cataldo Schietroma
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Amrit Estivalet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Asadollah Aghaie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Jacques Boutet de Monvel
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, 94405 Orsay, France
| | - Aziz El-Amraoui
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Christine Petit
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France .,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France.,Collège de France, 75005 Paris, France
| |
Collapse
|
32
|
Kletke S, Batmanabane V, Dai T, Vincent A, Li S, Gordon KA, Papsin BC, Cushing SL, Héon E. The combination of vestibular impairment and congenital sensorineural hearing loss predisposes patients to ocular anomalies, including Usher syndrome. Clin Genet 2017; 92:26-33. [PMID: 27743452 DOI: 10.1111/cge.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
The co-occurrence of hearing impairment and visual dysfunction is devastating. Most deaf-blind etiologies are genetically determined, the commonest being Usher syndrome (USH). While studies of the congenitally deaf population reveal a variable degree of visual problems, there are no effective ophthalmic screening guidelines. We hypothesized that children with congenital sensorineural hearing loss (SNHL) and vestibular impairment were at an increased risk of having USH. A retrospective chart review of 33 cochlear implants recipients for severe to profound SNHL and measured vestibular dysfunction was performed to determine the ocular phenotype. All the cases had undergone ocular examination and electroretinogram (ERG). Patients with an abnormal ERG underwent genetic testing for USH. We found an underlying ocular abnormality in 81.81% (27/33) of cases; of which 75% had refractive errors, and 50% of those patients showed visual improvement with refractive correction. A total of 14 cases (42.42%; 14/33) had generalized rod-cone dysfunction on ERG suggestive of Usher syndrome type 1, confirmed by mutational analysis. This work shows that adding vestibular impairment as a criterion for requesting an eye exam and adding the ERG to detect USH increases the chances of detecting ocular anomalies, when compared with previous literature focusing only on congenital SNHL.
Collapse
Affiliation(s)
- S Kletke
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - V Batmanabane
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - T Dai
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Vincent
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Li
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - K A Gordon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Otolaryngology - Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - B C Papsin
- Department of Otolaryngology - Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S L Cushing
- Department of Otolaryngology - Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - E Héon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
34
|
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: An update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:349-366. [PMID: 27862925 DOI: 10.1002/ajmg.c.31534] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal degenerations present a unique challenge as disease progression is irreversible and the retina has little regenerative potential. No current treatments for inherited retinal disease have the ability to reverse blindness, and current dietary supplement recommendations only delay disease progression with varied results. However, the retina is anatomically accessible and capable of being monitored at high resolution in vivo. This, in addition to the immune-privileged status of the eye, has put ocular disease at the forefront of advances in gene- and cell-based therapies. This review provides an update on gene therapies and randomized control trials for inherited retinal disease, including Leber congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, X-linked retinoschisis, Leber hereditary optic neuropathy, and achromatopsia. New gene-modifying and cell-based strategies are also discussed. © 2016 Wiley Periodicals, Inc.
Collapse
|
35
|
Dad S, Rendtorff ND, Tranebjærg L, Grønskov K, Karstensen HG, Brox V, Nilssen Ø, Roux AF, Rosenberg T, Jensen H, Møller LB. Usher syndrome in Denmark: mutation spectrum and some clinical observations. Mol Genet Genomic Med 2016; 4:527-539. [PMID: 27957503 PMCID: PMC5023938 DOI: 10.1002/mgg3.228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Usher syndrome (USH) is a genetically heterogeneous deafness‐blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Methods Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Results Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C,USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Conclusion Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A. The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.
Collapse
Affiliation(s)
- Shzeena Dad
- Applied Human Genetics Kennedy Center Department of Clinical Genetics Copenhagen University Rigshospitalet Glostrup Denmark
| | - Nanna Dahl Rendtorff
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Otorhinolaryngology, Head & Neck Surgery and AudiologyBispebjerg Hospital/RigshospitaletCopenhagenDenmark
| | - Lisbeth Tranebjærg
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Otorhinolaryngology, Head & Neck Surgery and AudiologyBispebjerg Hospital/RigshospitaletCopenhagenDenmark
| | - Karen Grønskov
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark
| | - Helena Gásdal Karstensen
- Department of Cellular and Molecular Medicine The Faculty of Health Sciences University of Copenhagen 2200 Copenhagen Denmark
| | - Vigdis Brox
- Department of Medical Genetics University Hospital of North-Norway N-9038 Tromsø Norway
| | - Øivind Nilssen
- Department of Medical GeneticsUniversity Hospital of North-NorwayN-9038TromsøNorway; Department of Clinical Medicine, Medical GeneticsUniversity of TromsøNO-9037TromsøNorway
| | - Anne-Françoise Roux
- Laboratoire de Génétique MoléculaireCHU MontpellierMontpellierF-34000France; U827InsermMontpellierF-34000France
| | - Thomas Rosenberg
- The National Eye ClinicThe Kennedy CenterDepartment of OphthalmologyCopenhagen University Hospital2600RigshospitaletGlostrupDenmark; Institute of Clinical MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200Copenhagen NDenmark
| | - Hanne Jensen
- The National Eye Clinic The Kennedy Center Department of Ophthalmology Copenhagen University Hospital 2600 Rigshospitalet Glostrup Denmark
| | - Lisbeth Birk Møller
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Science Systems and Models (NSM)Roskilde UniversityDK 4000RoskildeDenmark
| |
Collapse
|
36
|
Wahlqvist M, Möller K, Möller C, Danermark B. Physical and psychological health, social trust, and financial situation for persons with Usher syndrome type 1. BRITISH JOURNAL OF VISUAL IMPAIRMENT 2015. [DOI: 10.1177/0264619615610158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The article describes physical health, psychological health, social trust, and financial situation in persons with deafblindness due to Usher syndrome type 1 (USH1) in comparison with a cross-section of the Swedish population. Persons with USH1 were recruited through the Swedish Usher database. Totally, 87 adults received the Health on Equal Terms (HET) questionnaire. The HET was adjusted, thus the questions were translated into Swedish sign language, and a large font size, better contrast, and a structure compatible with the Braille script reader were also provided. The questionnaire comprises a wide range of domains related to health and wellbeing. In all, 60 persons responded (60% women, mean age: 49 years, range: 21–79 years). The persons with USH1 were compared to a cross section of the Swedish population that included 5738 individuals (56% women, mean age: 49 years, range: 16–84 years). Significant differences in physical health, psychological health, social trust, and financial situation as well as the odds ratio adjusted for sex and age, and its 95% confidence interval are reported. The psychological health, social trust, and financial situation of persons with USH1 were significantly poorer compared to the reference group although this was not the case for physical health. Persons with USH1 only expressed significantly more problems with headache compared to the cross section of the Swedish population. The respondents revealed major problems with fatigue, loss of confidence, and suicide thoughts and attempts. Major social trust and financial problems were reported in terms of refraining going out alone, not receiving help, having no one with whom to share thoughts, and confide in and being unable to obtain 15.000 SEK (approximately US$1.724 or €1.544) in the case of an unforeseen situation. To identify factors associated with physical health, psychological health, social trust, and financial situation is important in the design of future rehabilitation strategies for persons with USH1. The high level of psychological distress and lack of social trust reported could be related to ontological insecurity, as well as lack of recognition from others. Special attention must be devoted to suicide behavior.
Collapse
|
37
|
Abstract
Hearing loss (HL) is one of the most common birth defects in developed countries and is a diverse pathologic condition with different classifications. One of these is based on the association with other clinical features, defined as syndromic hearing loss (SHL). Determining the cause of the HL in these patients is extremely beneficial as it enables a personalized approach to caring for the individual. Early screening can further aid in optimal rehabilitation for a child's development and growth. The advancement of high-throughput sequencing technology is facilitating rapid and low-cost diagnostics for patients with SHL.
Collapse
Affiliation(s)
- Tal Koffler
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
38
|
Toms M, Bitner-Glindzicz M, Webster A, Moosajee M. Usher syndrome: a review of the clinical phenotype, genes and therapeutic strategies. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1033403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Benson MD, MacDonald IM. Bilateral uveitis and Usher syndrome: a case report. J Med Case Rep 2015; 9:60. [PMID: 25889597 PMCID: PMC4365770 DOI: 10.1186/s13256-015-0534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/28/2015] [Indexed: 12/03/2022] Open
Abstract
Introduction Usher syndrome is a genetically heterogeneous condition and represents the most common cause of inherited combined vision and hearing loss. Deficits manifest as sensorineural hearing loss that typically develops at a young age and retinitis pigmentosa that can lead to peripheral vision loss and night blindness. As a result, this syndrome can have a significant impact on a patient’s quality of life. Previous studies have described an association between Usher syndrome and Fuchs’ heterochromic iridocyclitis, a form of non-granulomatous uveitis that generally presents in a unilateral manner. We present a rare finding of bilateral uveitis and, to the best of our knowledge, the first report of granulomatous uveitis as a feature in a patient with Usher syndrome. Case presentation A 45-year-old Caucasian woman with a known history of retinitis pigmentosa presented to our clinic with suspected Usher syndrome, given her report of long-standing hearing loss. Aside from a mild loss in visual acuity, our patient was otherwise asymptomatic. Visual field testing, audiology and electroretinography findings supported the diagnosis of Usher syndrome. With slit lamp examination she was found to have bilateral keratic precipitates, with large, greasy-white, mutton-fat keratic precipitates on the endothelial surface of her left eye. A thorough work-up that included blood tests and imaging was negative for an alternative cause of her uveitis. Conclusion We present a rare finding of bilateral uveitis and what we believe to be the first reported instance of mutton-fat keratic precipitates and granulomatous uveitis as a feature in a patient with Usher syndrome. By identifying atypical presentations of the disease, we hope to contribute to the range of ophthalmic conditions that may be seen in association with Usher syndrome.
Collapse
Affiliation(s)
- Matthew D Benson
- Department of Ophthalmology and Visual Sciences, University of Alberta, Room 2319, 10240 Kingsway Avenue, Edmonton, AB, T5H 3V9, Canada.
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta, Room 2319, 10240 Kingsway Avenue, Edmonton, AB, T5H 3V9, Canada.
| |
Collapse
|
40
|
Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta Mol Basis Dis 2014; 1852:406-20. [PMID: 25481835 DOI: 10.1016/j.bbadis.2014.11.020] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Usher syndrome (USH), clinically and genetically heterogeneous, is the leading genetic cause of combined hearing and vision loss. USH is classified into three types, based on the hearing and vestibular symptoms observed in patients. Sixteen loci have been reported to be involved in the occurrence of USH and atypical USH. Among them, twelve have been identified as causative genes and one as a modifier gene. Studies on the proteins encoded by these USH genes suggest that USH proteins interact among one another and function in multiprotein complexes in vivo. Although their exact functions remain enigmatic in the retina, USH proteins are required for the development, maintenance and function of hair bundles, which are the primary mechanosensitive structure of inner ear hair cells. Despite the unavailability of a cure, progress has been made to develop effective treatments for this disease. In this review, we focus on the most recent discoveries in the field with an emphasis on USH genes, protein complexes and functions in various tissues as well as progress toward therapeutic development for USH.
Collapse
Affiliation(s)
- Pranav Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
41
|
Sotoca JV, Alvarado JC, Fuentes-Santamaría V, Martinez-Galan JR, Caminos E. Hearing impairment in the P23H-1 retinal degeneration rat model. Front Neurosci 2014; 8:297. [PMID: 25278831 PMCID: PMC4166116 DOI: 10.3389/fnins.2014.00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022] Open
Abstract
The transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording. Animals were separated into different hearing levels following the response to natural stimuli (hand clapping and kissing sounds). Of all the analyzed animals, 25.9% presented auditory loss before 50 days of age (P50) and 45% were totally deaf by P200. ABR recordings showed that all the rats had a higher hearing threshold than the control Sprague-Dawley (SD) rats, which was also higher than any other rat strains. The integrity of the central and peripheral auditory pathway was analyzed by histology and immunocytochemistry. In the cochlear nucleus (CN), statistical differences were found between SD and P23H-1 rats in VGluT1 distribution, but none were found when labeling all the CN synapses with anti-Syntaxin. This finding suggests anatomical and/or molecular abnormalities in the auditory downstream pathway. The inner ear of the hypoacusic P23H-1 rats showed several anatomical defects, including loss and disruption of hair cells and spiral ganglion neurons. All these results can explain, at least in part, how hearing impairment can occur in a high percentage of P23H-1 rats. P23H-1 rats may be considered an experimental model with visual and auditory dysfunctions in future research.
Collapse
Affiliation(s)
- Jorge V Sotoca
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain ; Barn och Ungdomsmedicin Eskilstuna, Sweden
| | - Juan C Alvarado
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Juan R Martinez-Galan
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Elena Caminos
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| |
Collapse
|