1
|
Kasravi M, Yaghoobi A, Tayebi T, Hojabri M, Taheri AT, Shirzad F, Nooshin BJ, Mazloomnejad R, Ahmadi A, Tehrani FA, Yazdanpanah G, Farjoo MH, Niknejad H. MMP inhibition as a novel strategy for extracellular matrix preservation during whole liver decellularization. BIOMATERIALS ADVANCES 2024; 156:213710. [PMID: 38035639 DOI: 10.1016/j.bioadv.2023.213710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
As the only reliable treatment option for end-stage liver diseases, conventional liver transplantation confronts major supply limitations. Accordingly, the decellularization of discarded livers to produce bioscaffolds that support recellularization with progenitor/stem cells has emerged as a promising translational medicine approach. The success of this approach will substantially be determined by the extent of extracellular matrix (ECM) preservation during the decellularization process. Here, we assumed that the matrix metalloproteinase (MMP) inhibition could reduce the ECM damage during the whole liver decellularization of an animal model using a perfusion-based system. We demonstrated that the application of doxycycline as an MMP inhibitor led to significantly higher preservation of collagen, glycosaminoglycans, and hepatic growth factor (HGF) contents, as well as mechanical and structural features, including tensile strength, fiber integrity, and porosity. Notably, produced bioscaffolds were biocompatible and efficiently supported cell viability and proliferation in vitro. We also indicated that produced bioscaffolds efficiently supported HepG2 cell function upon seeding onto liver ECM discs using albumin and urea assay. Additionally, MMP inhibitor pretreated decellularized livers were more durable in contact with collagenase digestion compared to control bioscaffolds in vitro. Using zymography, we confirmed the underlying mechanism that results in these promising effects is through the inhibition of MMP2 and MMP9. Overall, we demonstrated a novel method based on MMP inhibition to ameliorate the ECM structure and composition preservation during liver decellularization as a critical step in fabricating transplantable bioengineered livers.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hojabri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shirzad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Jambar Nooshin
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mohammad-Pour N, Moghimi V, Bidkhori HR, Momeni-Moghaddam M, Naderi-Meshkin H. Comparing the Effects of Two Cryoprotectant Protocols, Dimethyl-Sulfoxide (DMSO) and Glycerol, on the Recovery Rate of Cultured Keratinocytes on Amniotic Membrane. INT J LOW EXTR WOUND 2023:15347346231155751. [PMID: 36794512 DOI: 10.1177/15347346231155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background: Off-the-shelf supply of viable engineered tissue is critical for effective and fast treatment of life-threatening injuries such as deep burns. An expanded keratinocyte sheet on the human amniotic membrane (KC sheet-HAM) is a beneficial tissue-engineering product for wound healing. To access an on-hand supply for the widespread application and overcome the time-consuming process, it is necessary to develop a cryopreservation protocol that guarantees the higher recovery of viable keratinocyte sheets after freeze-thawing. This research aimed to compare the recovery rate of KC sheet-HAM after cryopreservation by dimethyl-sulfoxide (DMSO) and glycerol. Methods: Amniotic membrane was decellularized with trypsin, and keratinocytes were cultured on it to form a multilayer, flexible, easy-to-handle KC sheet-HAM. The effects of 2 different cryoprotectants were investigated by histological analysis, live-dead staining, and proliferative capacity assessments before and after cryopreservation. Results: KCs well adhered and proliferated on the decellularized amniotic membrane and successfully represented 3 to 4 stratified layers of epithelialization after 2 to 3 weeks culture period; making it easy to cut, transfer, and cryopreserve. However, viability and proliferation assay indicated that both DMSO and glycerol cryosolutions have detrimental effects on KCs, and KCs-sheet HAM could not recover to the control level after 8 days of culture post-cryo. The KC sheet lost its stratified multilayer nature on AM, and sheet layers were reduced in both cryo-groups compared to the control. Conclusion: Expanding keratinocytes on the decellularized amniotic membrane as a multilayer sheet made a viable easy-to-handle sheet, nonetheless cryopreservation reduced viability and affected histological structure after thawing. Although some viable cells were detectable, our research highlighted the need for a better cryoprotectant protocol other than DMSO and glycerol, specific for the successful banking of viable tissue constructs.
Collapse
Affiliation(s)
- Najmeh Mohammad-Pour
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Madjid Momeni-Moghaddam
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| |
Collapse
|
4
|
Naeem A, Gupta N, Arzoo N, Naeem U, Khan MJ, Choudhry MU, Cui W, Albanese C. A Survey and Critical Evaluation of Isolation, Culture, and Cryopreservation Methods of Human Amniotic Epithelial Cells. Cell Cycle 2022; 21:655-673. [PMID: 35289707 PMCID: PMC8973348 DOI: 10.1080/15384101.2021.2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human amniotic epithelial cells (hAECs), derived from an epithelial cell layer of the human amniotic membrane, possess embryonic stem-like properties and are known to maintain multilineage differentiation potential. Unfortunately, an inability to expand hAECs without significantly compromising their stem cell potency has precluded their widespread use for regenerative therapies. This article critically evaluates the methods used for isolation, expansion, and cryopreservation of hAECs. We assessed the impact of these methods on ex-vivo expansion and stem cell phenotype of hAECs. Moreover, the progress and challenges to optimize clinically suitable culture conditions for an efficient ex-vivo expansion and storage of these cells are highlighted. Additionally, we also reviewed the currently used hAECs isolation and characterization methods employed in clinical trials. Despite the developments made in the last decade, significant challenges still exist to overcome limitations of ex-vivo expansion and retention of stemness of hAECs in both xenogeneic and xenofree culture conditions. Therefore, optimization and standardization of culture conditions for robust ex-vivo maintenance of hAECs without affecting tissue regenerative properties is an absolute requirement for their successful therapeutic manipulation. This review may help the researchers to optimize the methods that support ex-vivo survival, proliferation, and self-renewal properties of the hAECs.Abbreviations: AM: Human amniotic membrane; CM-HBSS: Ca++ and Mg++ free HBSS; DMEM: Dulbecco's Modified Eagle Medium; DMEM-HG: DMEM-high glucose; EMEM: Eagle's Modified Essential Medium; EMT: Epithelial-to-mesenchymal transition; EpM: Epi-life complete media; ESC: Embryonic stem cells; ESCM: Epithelial cell surface markers; hAECs: Human amniotic epithelial cells; HLA: Human leukocyte antigen; IM: Immunogenicity markers; iPSC: Induced pluripotent stem cells; KOSR; KSR: Knockout serum replacement; KSI: Key success indicators; CHM: Cell heterogeneity markers; Nanog: NANOG homeobox; Oct-4: Octamer binding transcription factor 4; OR: Operation room; P: Passage; PM: Pluripotency markers; SCM: Stem cell markers for non-differentiated cells; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen; UC: Ultra-culture; XF: Xenogeneic free.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.,Health Research Governance Department, Ministry of Public Health, Qatar
| | - Nikita Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Natasha Arzoo
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Usra Naeem
- Department of Health Professional Technology, University of Lahore, Pakistan
| | | | - Muhammad Umer Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Wanxing Cui
- Cell Therapy Manufacturing Facility, MedStar Georgetown University Hospital, Washington, District of Columbia, USA.,Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Oncology, Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin-angiotensin-aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Cryopreservation Engineering Strategies for Mass Production of Adipose-Derived Stem Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-019-1359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
8
|
Narakornsak S, Aungsuchawan S, Pothacharoen P, Puaninta C, Markmee R, Tancharoen W, Laowanitwattana T, Poovachiranon N, Thaojamnong C. Amniotic fluid: Source of valuable mesenchymal stem cells and alternatively used as cryopreserved solution. Acta Histochem 2019; 121:72-83. [PMID: 30401477 DOI: 10.1016/j.acthis.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs), which possess remarkable capabilities, are found in amniotic fluid (AF). The findings of several studies have shown the potential benefits of these cells in applications of regenerative medicine. In clinical applications, an over-period of time is required in a preparation process that makes cell collection become more necessary. Herein, the aim of this study was to preserve and characterize the cell's properties after cell cryopreservation into an appropriate cryogenic medium. The results illustrated that the highest hAF-MSCs viability was found when the cells were conserved in a solution of 5% DMSO + 10% FBS in AF. However, no statistical differences were identified in a chromosomal aberration of the post-thawed cells when compared to the non-frozen cells. These cells could also maintain their MSC features through the ability to express cell prolific quality, illustrating the typical MSC markers and immune privilege properties of CD44, CD73, CD90 and HLA-ABC. Additionally, post-thawed cells were able to differentiate into chondrogenic lineage by exhibiting chondrogenic related genes (SOX9, AGC, COL2A1) and proteins (transcription factor SOX9 protein (SOX9), cartilage oligomeric matrix protein (COMP) and aggrecan core protein (AGC)), as well as to present sGAGs accumulation. Interestingly, the use of a transmission electron microscope (TEM) uncovered the enrichment of the rough endoplasmic reticulum (rER) that coincided with euchromatin and the prominent nucleolus in the chondrogenic-induced cells that are normally found in the cells of natural cartilage. All in all, this study manifested that AF can be a major consideration and applied for use as a co-mixture of cryogenic medium.
Collapse
|
9
|
Arrizabalaga JH, Nollert MU. Human Amniotic Membrane: A Versatile Scaffold for Tissue Engineering. ACS Biomater Sci Eng 2018; 4:2226-2236. [PMID: 33435098 DOI: 10.1021/acsbiomaterials.8b00015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human amniotic membrane (hAM) is a collagen-based extracellular matrix derived from the human placenta. It is a readily available, inexpensive, and naturally biocompatible material. Over the past decade, the development of tissue engineering and regenerative medicine, along with new decellularization protocols, has recast this simple biomaterial as a tunable matrix for cellularized tissue engineered constructs. Thanks to its biocompatibility, decellularized hAM is now commonly used in a broad range of medical fields. New preparation techniques and composite scaffold strategies have also emerged as ways to tune the properties of this scaffold. The current state of understanding about the hAM as a biomaterial is summarized in this review. We examine the processing techniques available for the hAM, addressing their effect on the mechanical properties, biodegradation, and cellular response of processed scaffolds. The latest in vitro applications, in vivo studies, clinical trials, and commercially available products based on the hAM are reported, organized by medical field. We also look at the possible alterations to the hAM to tune its properties, either through composite materials incorporating decellularized hAM, chemical cross-linking, or innovative layering and tissue preparation strategies. Overall, this review compiles the current literature about the myriad capabilities of the human amniotic membrane, providing a much-needed update on this biomaterial.
Collapse
Affiliation(s)
- Julien H Arrizabalaga
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Matthias U Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Farhadihosseinabadi B, Farahani M, Tayebi T, Jafari A, Biniazan F, Modaresifar K, Moravvej H, Bahrami S, Redl H, Tayebi L, Niknejad H. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:431-440. [PMID: 29687742 DOI: 10.1080/21691401.2018.1458730] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
One of the main goals of tissue engineering and regenerative medicine is to develop skin substitutes for treating deep dermal and full thickness wounds. In this regard, both scaffold and cell source have a fundamental role to achieve exactly the same histological and physiological analog of skin. Amnion epithelial and mesenchymal cells possess the characteristics of pluripotent stem cells which have the capability to differentiate into all three germ layers and can be obtained without any ethical concern. Amniotic cells also produce different growth factors, angio-modulatory cytokines, anti-bacterial peptides and a wide range of anti-inflammatory agents which eventually cause acceleration in wound healing. In addition, amniotic membrane matrix exhibits characteristics of an ideal scaffold and skin substitute through various types of extracellular proteins such as collagens, laminins and fibronectins which serve as an anchor for cell attachment and proliferation, a bed for cell delivery and a reservoir of drugs and growth factors involved in wound healing process. Recently, isolation of amniotic cells exosomes, surface modification and cross-linking approaches, construction of amnion based nanocomposites and impregnation of amnion with nanoparticles, construction of amnion hydrogel and micronizing process promoted its properties for tissue engineering. In this manuscript, the recent progress was reviewed which approve that amnion-derived cells and matrix have potential to be involved in skin substitutes; an enriched cell containing scaffold which has a great capability to be translated into the clinic.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mehrdad Farahani
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Tahereh Tayebi
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ameneh Jafari
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Basic Sciences, School of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Felor Biniazan
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Khashayar Modaresifar
- c Department of Biomaterials, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | - Hamideh Moravvej
- d Skin Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Soheyl Bahrami
- e Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center , Vienna , Austria
| | - Heinz Redl
- e Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center , Vienna , Austria
| | - Lobat Tayebi
- f Department of Developmental Sciences , Marquette University School of Dentistry , Milwaukee , WI , USA
| | - Hassan Niknejad
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Azizian S, Khatami F, Modaresifar K, Mosaffa N, Peirovi H, Tayebi L, Bahrami S, Redl H, Niknejad H. Immunological compatibility status of placenta-derived stem cells is mediated by scaffold 3D structure. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:876-884. [DOI: 10.1080/21691401.2018.1438452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Azizian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Khatami
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Khashayar Modaresifar
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Habibollah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
12
|
Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep 2017; 7:17022. [PMID: 29208979 PMCID: PMC5717175 DOI: 10.1038/s41598-017-17210-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Due to antibacterial characteristic, amnion has been frequently used in different clinical situations. Developing an in vitro method to augment endogenous antibacterial ingredient of amniotic epithelial and mesenchymal stem cells is desirable for a higher efficacy of this promising biomaterial. In this study, epithelial or mesenchymal side dependent effect of amniotic membrane (AM) on antibacterial activity against some laboratory and clinical isolated strains was investigated by modified disk diffusion method and colony count assay. The effect of exposure to IL-1β in production and release of antibacterial ingredients was investigated by ELISA assay. The results showed that there is no significant difference between epithelial and mesenchymal sides of amnion in inhibition of bacterial growth. Although the results of disk diffusion showed that the AM inhibitory effect depends on bacterial genus and strain, colony count assay showed that the extract of AM inhibits all investigated bacterial strains. The exposure of AM to IL-1β leads to a higher level of antibacterial peptides secretion including elafin, HBD-2, HBD-3 and cathelicidic LL-37. Based on these results, amniotic cells possess antibacterial activity which can be augmented by inflammatory signal inducers; a process which make amnion and its epithelial and mesenchymal stem cells more suitable for tissue engineering and regenerative medicine.
Collapse
|
13
|
Different Light Transmittance of Placental and Reflected Regions of Human Amniotic Membrane That Could Be Crucial for Corneal Tissue Engineering. Cornea 2017; 35:997-1003. [PMID: 27149533 DOI: 10.1097/ico.0000000000000867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Because of long-term incorporation of amniotic membrane (AM) into corneal stroma after transplantation as a scaffold for stem cell delivery, the variation in haziness is a major factor that influences visual quality. The aim of this study was to evaluate probable sources of transparency variation in fresh and freeze-dried AM and compare the obtained results with transparency of rabbit corneas. METHODS Amnions were extracted from placental and reflected regions of placentas from elective Cesarean sections. The effects of removing epithelial cells and spongy layer on transparency and thickness of fresh and freeze-dried AMs and rabbit cornea were evaluated. The epithelial surface of AMs was evaluated with histological analysis and scanning electron microscopy. RESULTS The reflected region of intact AM was thinner and more transparent than the placental region. From histological analysis, the main source of difference between placental and reflected regions of amnion is related to epithelial cells. The process of acellularization improved light transmission of the AM in both placental and reflected regions and also omitted variation between transparency of reflected and placental regions of AM. Freeze-drying of intact AM did not improve transparency because of scattering of light by cellular debris; however, removing the epithelial layer before freeze-drying resulted in optimized light transmission similar to transparency of rabbit cornea. CONCLUSIONS The amniotic epithelial cells play a major role as a source of variation in light transmission properties of amnion. From the results, epithelial-denuded freeze-dried AM was found to be a suitable scaffold to be applied in corneal tissue engineering.
Collapse
|
14
|
The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiology 2016; 74:61-67. [PMID: 27956223 DOI: 10.1016/j.cryobiol.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/07/2016] [Accepted: 12/05/2016] [Indexed: 01/24/2023]
Abstract
Human amniotic membrane (AM) is an appropriate candidate for treatment of cancer due to special properties, such as inhibition of angiogenesis and secretion of pro-apoptotic factors. This research was designed to evaluate the impact of cryopreservation on cancer cell death induction and anti-angiogenic properties of the AM. Cancer cells were treated with fresh and cryopreserved amniotic condition medium during 24 h and cancer cell viability was determined by MTT assay. To evaluate angiogenesis, the rat aorta ring assay was performed for both fresh and cryopreserved AM within 7 days. In addition, four anti-angiogenic factors Tissue Inhibitor of Matrix Metalloproteinase-1 and 2 (TIMP-1 and TIMP-2), Thrombospondin, and Endostatin were measured by ELISA assay before and after cryopreservation. The results showed that the viability of cultured cancer cells dose-dependently decreased after treatment with condition medium of fresh and cryopreserved tissue and no significant difference was observed between the fresh and cryopreserved AM. The results revealed that the amniotic epithelial stem cells inhibit the penetration of fibroblast-like cells and angiogenesis. Moreover, the penetration of fibroblast-like cells in both epithelial and mesenchymal sides of fresh and cryopreserved AM was observed after removing of epithelial cells. The cryopreservation procedure significantly decreased anti-angiogenic factors TIMP-1, TIMP-2, Thrombospondin, and Endostatin which shows that angio-modulatory property is not fully dependent on proteomic and metabolomic profiles of the AM. These promising results demonstrate that cancer cell death induction and anti-angiogenic properties of the AM were maintained within cryopreservation; a procedure which can circumvent limitations of the fresh AM.
Collapse
|
15
|
|
16
|
Kim SM, Yun CK, Park JH, Hwang JW, Kim ZH, Choi YS. Efficient cryopreservation of human mesenchymal stem cells using silkworm hemolymph-derived proteins. J Tissue Eng Regen Med 2016. [DOI: 10.1002/term.2116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sun-Mi Kim
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Chang-Koo Yun
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Jin-Ho Park
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Jung Wook Hwang
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Z-Hun Kim
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| |
Collapse
|
17
|
Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 2016; 363:599-608. [DOI: 10.1007/s00441-016-2364-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
|
18
|
The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane. Cryobiology 2015; 71:413-8. [DOI: 10.1016/j.cryobiol.2015.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 02/03/2023]
|
19
|
Cryopreservation and recovery of human endometrial epithelial cells with high viability, purity, and functional fidelity. Fertil Steril 2015; 105:501-10.e1. [PMID: 26515378 DOI: 10.1016/j.fertnstert.2015.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eECs) retaining molecular and functional characteristics of endometrial epithelium in vivo. DESIGN In vitro study using human endometrial cells. SETTING University research laboratory. PATIENT(S) Endometrial biopsies were obtained from premenopausal women undergoing benign gynecologic procedures. INTERVENTION(S) Primary eECs were cryopreserved in 1% fetal bovine serum/10% dimethylsulfoxide in Defined Keratinocyte Serum-Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium. MAIN OUTCOME MEASURE(S) Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity. RESULT(S) Endometrial epithelial cells recovered after cryopreservation (n = 5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared with eSF, recovered eECs displayed increased (P<.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eECs secreted levels of cytokines and growth factors similarly to freshly cultured eECs. Recovered eECs could form a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN. CONCLUSION(S) We have developed a protocol for cryopreservation of eECs in which recovered cells after thawing demonstrate morphologic, transcriptomic, and functional characteristics of human endometrial epithelium in vivo.
Collapse
|
20
|
Kakavand M, Yazdanpanah G, Ahmadiani A, Niknejad H. Blood compatibility of human amniotic membrane compared with heparin-coated ePTFE for vascular tissue engineering. J Tissue Eng Regen Med 2015; 11:1701-1709. [PMID: 26190586 DOI: 10.1002/term.2064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 01/31/2023]
Abstract
Amniotic membrane (AM), a placenta-derived natural biomaterial, has several characteristics which make it a potential substitute for blood vessels. However, there are no reports on the effects of the AM on blood components. The aim of this study was to evaluate the blood compatibility of the epithelial and mesenchymal surfaces of the amnion for potential use in vascular tissue engineering. The activation of intrinsic and extrinsic pathways of the clotting system, haemolysis and platelet adhesion were studied and the results were compared with heparin-coated expanded polytetrafluoroethylene (ePTFE) as a standard synthetic vascular graft. Prothrombin time (PT), activated partial thromboplastin time (aPTT), clotting time (CT) and haemolysis (%) tests showed that both the epithelial and mesenchymal sides of the AM are haemocompatible. Platelet aggregation and P-selectin production from the platelets showed that the epithelial surface of the AM has less induction of platelet activation than ePTFE. The results of scanning electron microscopy (SEM) demonstrated that platelets in contact with ePTFE had a higher rate of adhesion than with the epithelial and mesenchymal surfaces of the AM. Moreover, the morphological distribution of the platelets showed that the majority of platelets were round, while a large number of cells on ePTFE were dendritic. These results suggest that the AM which contains epithelial and mesenchymal stem cells has appropriate haemocompatibility to be employed in vascular tissue engineering, especially as a vein substitute. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mona Kakavand
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Nanomedicine and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hassan Niknejad
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Nanomedicine and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Hennes A, Gucciardo L, Zia S, Lesage F, Lefèvre N, Lewi L, Vorsselmans A, Cos T, Lories R, Deprest J, Toelen J. Safe and effective cryopreservation methods for long-term storage of human-amniotic-fluid-derived stem cells. Prenat Diagn 2015; 35:456-62. [DOI: 10.1002/pd.4556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Aurélie Hennes
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
| | - Léonardo Gucciardo
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
- Departments of Obstetrics and Prenatal Medicine, University Hospital Brussels; Vrije Universiteit Brussel; Brussels Belgium
- Department of Obstetrics and Gynecology; University Hospital Brugmann; Brussels Belgium
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
| | - Flore Lesage
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
| | - Nicolas Lefèvre
- Department of Pulmonology, Allergology and Cystic Fibrosis; Hôpital Universitaire des Enfants Reine Fabiola; Brussels Belgium
| | - Liesbeth Lewi
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
- Department of Obstetrics and Gynaecology, Fetal Medicine Unit; University Hospitals Leuven; Leuven Belgium
| | - Annick Vorsselmans
- Departments of Obstetrics and Prenatal Medicine, University Hospital Brussels; Vrije Universiteit Brussel; Brussels Belgium
| | - Teresa Cos
- Department of Obstetrics and Gynecology; University Hospital Brugmann; Brussels Belgium
| | - Rik Lories
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
- Department of Rheumatology; University Hospitals Leuven; Leuven Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
- Department of Obstetrics and Gynaecology, Fetal Medicine Unit; University Hospitals Leuven; Leuven Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Group Biomedical Sciences; KU; Leuven Belgium
- Department of Pediatrics; University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
22
|
Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank 2014; 15:199-211. [PMID: 24554400 DOI: 10.1007/s10561-014-9428-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/05/2014] [Indexed: 02/08/2023]
Abstract
Stem cell therapy is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention toward amniotic membrane and amniotic fluid stem cells, since these sources possess many advantages: first of all as cells can be extracted from discarded foetal material it is inexpensive, secondly abundant stem cells can be obtained and finally, these stem cell sources are free from ethical considerations. Many studies have demonstrated the differentiation potential in vitro and in vivo toward mesenchymal and non-mesenchymal cell types; in addition the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. This review offers an overview on markers characterisation and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.
Collapse
Affiliation(s)
- Michela Pozzobon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | | | | |
Collapse
|